首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Evasion of apoptosis, for example, by inhibitor of apoptosis (IAP) proteins, contributes to treatment resistance and poor outcome in acute myeloid leukemia (AML). Here we identify a novel synergistic interaction between the small-molecule second mitochondria-derived activator of caspases (Smac) mimetic BV6, which antagonizes X-linked IAP, cellular IAP (cIAP)1 and cIAP2, and the demethylating agents 5-azacytidine or 5-aza-2′-deoxycytidine (DAC) to induce cell death in AML cells, including apoptosis-resistant cells. Calculation of combination index (CI) confirms that this drug combination is highly synergistic (CI 0.02–0.4). In contrast, BV6 and DAC at equimolar concentrations do not cause synergistic toxicity against normal peripheral blood lymphocytes, pointing to some tumor cell selectivity. Molecular studies reveal that BV6 and DAC cooperate to trigger the activation of caspases, mitochondrial perturbations and DNA fragmentation, consistent with apoptotic cell death. However, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to protect against BV6/DAC-induced cell death and even significantly increases the percentage of Annexin-V/propidium iodide double-positive cells. Importantly, BV6/DAC-induced cell death in the presence of zVAD.fmk is significantly reduced by pharmacological inhibition of key components of necroptosis signaling, that is, receptor-interacting protein (RIP) 1 using necrostatin-1 or mixed lineage kinase domain-like protein (MLKL) using necrosulfonamide. This indicates a switch from BV6/DAC-induced cell death from apoptosis to necroptosis upon caspase inhibition. Thus, BV6 cooperates with demethylating agents to induce cell death in AML cells and circumvents apoptosis resistance via a switch to necroptosis as an alternative mode of cell death. The identification of a novel synergism of BV6 and demethylating agents has important implications for the development of new treatment strategies for AML.  相似文献   

3.
4.
The Rsu-1-PINCH1-ILK complex is regulated by Ras activation in tumor cells   总被引:1,自引:0,他引:1  
The link between Ras transformation and enhanced cell migration due to altered integrin signaling is well established in tumorigenesis, however there remain gaps in our understanding of its mechanism. The Ras suppressor, Rsu-1, has recently been linked to the IPP (integrin-linked kinase {ILK}, PINCH-1/LIMS1, parvin) focal adhesion complex based on its interaction with the LIM 5 domain of PINCH1. Defining the role of the Rsu1-PINCH1-ILK-parvin complex in tumorigenesis is important because both ILK and PINCH1 are elevated in certain tumors while ectopic expression of Rsu-1 blocks tumorigenesis. Our studies previously identified an alternatively spliced isoform of Rsu-1 in high-grade gliomas. We report here the detection of a truncated (p29) Rsu-1 protein, which correlates with the presence of the alternatively spliced Rsu-1 RNA. This RNA and the respective protein were detected in human tumor cell lines that contain high levels of activated Ras, and inhibitor studies demonstrate that the Mek-ERK pathway regulates expression of this truncated Rsu-1 product. We also show that Rsu-1 co-localizes with ILK at focal contacts and co-immunoprecipitates with the ILK-PINCH1 complex in non-transformed cells, but following Ras transformation the association of Rsu-1 with the PINCH1-ILK complex is greatly reduced. Using a human breast cancer cell line, our in vitro studies demonstrate that the depletion of Rsu-1 full-length protein enhances cell migration coincident with an increase in Rac-GTP while the depletion of the p29 Rsu-1 truncated protein inhibits migration. These findings indicate that Rsu-1 may inhibit cell migration by stabilizing the IPP adhesion complex and that Ras activation perturbs this inhibitory function by modulating both Rsu-1 splicing and association of full-length Rsu-1 with IPP. Hence, our findings demonstrate that Rsu-1 links the Ras pathway with the IPP complex and the perturbations of cell attachment-dependent signaling that occur in the malignant process.  相似文献   

5.
Nucleic acids are potent triggers for innate immunity. Double‐stranded DNA and RNA adopt different helical conformations, including the unusual Z‐conformation. Z‐DNA/RNA is recognised by Z‐binding domains (ZBDs), which are present in proteins implicated in antiviral immunity. These include ZBP1 (also known as DAI or DLM‐1), which induces necroptosis, an inflammatory form of cell death. Using reconstitution and knock‐in models, we report that mutation of key amino acids involved in Z‐DNA/RNA binding in ZBP1's ZBDs prevented necroptosis upon infection with mouse cytomegalovirus. Induction of cell death was cell autonomous and required RNA synthesis but not viral DNA replication. Accordingly, ZBP1 directly bound to RNA via its ZBDs. Intact ZBP1‐ZBDs were also required for necroptosis triggered by ectopic expression of ZBP1 and caspase blockade, and ZBP1 cross‐linked to endogenous RNA. These observations show that Z‐RNA may constitute a molecular pattern that induces inflammatory cell death upon sensing by ZBP1.  相似文献   

6.
Long-chain n-3 polyunsaturated fatty acids are known to have beneficial effects on intestinal health. However, the underling mechanisms are largely unknown. The present study was conducted to investigate whether docosahexaenoic acid (DHA) attenuates TNF-α-induced intestinal cell injury and barrier dysfunction by modulating necroptosis signalling. Intestinal porcine epithelial cell line 1 was cultured with or without 12.5 µg/ml DHA, followed by exposure to 50 ng/ml TNF-α for indicated time periods. DHA restored cell viability and cell number triggered by TNF-α. DHA also improved barrier function, which was indicated by increased trans-epithelial electrical resistance, decreased FD4 flux and increased membrane localisation of zonula occludins (ZO-1) and claudin-1. Moreover, DHA suppressed cell necrosis in TNF-α-challenged cells, as shown in the IncuCyte ZOOM™ live cell imaging system and transmission electron microscopy. In addition, DHA decreased protein expression of TNF receptor, receptor interacting protein kinase 1, RIP3 and phosphorylation of mixed lineage kinase-like protein, phosphoglycerate mutase family 5, dynamin-related protein 1 and high mobility group box-1 protein. Furthermore, DHA suppressed protein expression of caspase-3 and caspase-8. Collectively, these results indicate that DHA is capable of alleviating TNF-α-induced cell injury and barrier dysfunction by suppressing the necroptosis signalling pathway.  相似文献   

7.
Potassium-selective leak channels control neuromuscular function through effects on membrane excitability. Nonetheless, their existence as independent molecular entities was established only recently with the cloning of KCNKO from Drosophila melanogaster. Here, the operating mechanism of these 2 P domain leak channels is delineated. Single KCNKO channels switch between two long-lived states (one open and one closed) in a tenaciously regulated fashion. Activation can increase the open probability to approximately 1, and inhibition can reduce it to approximately 0.05. Gating is dictated by a 700-residue carboxy-terminal tail that controls the closed state dwell time but does not form a channel gate; its deletion (to produce a 300-residue subunit with two P domains and four transmembrane segments) yields unregulated leak channels that enter, but do not maintain, the closed state. The tail integrates simultaneous input from multiple regulatory pathways acting via protein kinases C, A, and G.  相似文献   

8.
Bisphenol A (BPA) is an endocrine disruptor chemical, which is commonly used in everyday products. Adverse effects of its exposure are reported even at picomolar doses. Effects of picomolar and nanomolar concentrations of BPA on cytotoxicity, nitric oxide (NO) levels, acetylcholinesterase (AChE) gene expression and activity, and tumor necrosis factor‐α (TNF‐α) and caspase‐8 levels were determined in SH‐SY5Y cells. The current study reveals that low‐dose BPA treatment induced cytotoxicity, NO, and caspase‐8 levels in SH‐SY5Y cells. We also evaluated the mechanism underlying BPA‐induced cell death. Ours is the first report that receptor‐interacting serine/threonine‐protein kinase 1–mediated necroptosis is induced by nanomolar BPA treatment in SH‐SY5Y cells. This effect is mediated by altered AChE and decreased TNF‐α levels, which result in an apoptosis‐necroptosis switch. Moreover, our study reveals that BPA is an activator of AChE.  相似文献   

9.
The huge majority of myeloma cell lines express TNFR2 while a substantial subset of them failed to show TNFR1 expression. Stimulation of TNFR1 in the TNFR1-expressing subset of MM cell lines had no or only a very mild effect on cellular viability. Surprisingly, however, TNF stimulation enhanced cell death induction by CD95L and attenuated the apoptotic effect of TRAIL. The contrasting regulation of TRAIL- and CD95L-induced cell death by TNF could be traced back to the concomitant NFκB-mediated upregulation of CD95 and the antiapoptotic FLIP protein. It appeared that CD95 induction, due to its strength, overcompensated a rather moderate upregulation of FLIP so that the net effect of TNF-induced NFκB activation in the context of CD95 signaling is pro-apoptotic. TRAIL-induced cell death, however, was antagonized in response to TNF because in this context only the induction of FLIP is relevant. Stimulation of TNFR2 in myeloma cells leads to TRAF2 depletion. In line with this, we observed cell death induction in TNFR1-TNFR2-costimulated JJN3 cells. Our studies revealed that the TNF-TNF receptor system adjusts the responsiveness of the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms that generate a highly context-dependent net effect on myeloma cell survival.  相似文献   

10.
Alveolar epithelial cell (AEC) necroptosis is critical to disrupt the alveolar barrier and provoke acute lung injury (ALI). Here, we define calcitonin gene-related peptide (CGRP), the most abundant endogenous neuropeptide in the lung, as a novel modulator of AEC necroptosis in lipopolysaccharide (LPS)-induced ALI. Upon LPS-induced ALI, overexpression of Cgrp significantly mitigates the inflammatory response, alleviates lung tissue damage, and decreases AEC necroptosis. Similarly, CGRP alleviated AEC necroptosis under the LPS challenge in vitro. Previously, we identified that long optic atrophy 1 (L-OPA1) deficiency mediates mitochondrial fragmentation, leading to AEC necroptosis. In this study, we discovered that CGRP positively regulated mitochondrial fusion through stabilizing L-OPA1. Mechanistically, we elucidate that CGRP activates AMP-activated protein kinase (AMPK). Furthermore, the blockade of AMPK compromised the protective effect of CGRP against AEC necroptosis following the LPS challenge. Our study suggests that CRGP-mediated activation of the AMPK/L-OPA1 axis may have potent therapeutic benefits for patients with ALI or other diseases with necroptosis.  相似文献   

11.
Caspase-dependent apoptosis is considered one of the most important cell death pathways. When the apoptotic process is blocked, a form of programmed necrosis called necroptosis occurs. Apoptosis and necroptosis may share some regulatory mechanisms. Recent studies indicated that receptor interacting protein 1 (RIP1), an Hsp90-associated kinase, is an important regulatory switch between apoptosis and necroptosis. In this study, we showed that oxygen-glucose deprivation (OGD) combined with a caspase inhibitor zVAD (OGD/zVAD)-induced RIP1 protein expression in a time-dependent manner. We found that geldanamycin (GA), a benzoquinone ansamycin, protected against neuronal injury induced by OGD/zVAD treatment in cultured primary neurons. More importantly, GA decreased RIP1 protein level in a time- and concentration-dependent manner. In this study, we found that GA also decreased the Hsp90 protein level, which caused instability of RIP1 protein, resulting in decreased RIP1 protein level but not RIP1 mRNA level after GA treatment. We concluded that the GA-mediated protection against OGD/zVAD-induced neuronal injury was associated with enhanced RIP1 protein instability by decreasing Hsp90 protein level. GA and its derivatives may be promising for the prevention of neuronal injury during ischemic injury.  相似文献   

12.
24(S)-hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, has an important role in maintaining brain cholesterol homeostasis. We have previously reported that 24S-OHC induces necroptosis in human neuroblastoma SH-SY5Y cells. In the present study, we investigated the mechanisms by which 24S-OHC-induced cell death occurs. We found that lipid droplets formed at the early stages in the treatment of SH-SY5Y cells with 24S-OHC. These lipid droplets could be almost completely eliminated by treatment with a specific inhibitor or by siRNA knockdown of acyl-CoA:cholesterol acyltransferase 1 (ACAT1). In association with disappearance of lipid droplets, cell viability was recovered by treatment with the inhibitor or siRNA for ACAT1. Using gas chromatography–mass spectrometry, we confirmed that 24S-OHC-treated cells exhibited accumulation of 24S-OHC esters but not of cholesteryl esters and confirmed that accumulation of 24S-OHC esters was reduced when ACAT1 was inhibited. 24S-OHC induced apoptosis in T-lymphoma Jurkat cells, which endogenously expressed caspase-8, but did not induce apoptosis in SH-SY5Y cells, which expressed no caspase-8. In Jurkat cells treated with the pan-caspase inhibitor ZVAD and in caspase-8-deficient Jurkat cells, 24S-OHC was found to induce caspase-independent cell death, and this was partially but significantly inhibited by Necrostatin-1. Similarly, knockdown of receptor-interacting protein kinase 3, which is one of the essential kinases for necroptosis, significantly suppressed 24S-OHC-induced cell death in Jurkat cells treated with ZVAD. These results suggest that 24S-OHC can induce apoptosis or necroptosis, which of the two is induced being determined by caspase activity. Regardless of the presence or absence of ZVAD, 24S-OHC treatment induced the formation of lipid droplets and cell death in Jurkat cells, and this was suppressed by treatment with ACAT1 inhibitor. Collectively, these results suggest that it is ACAT1-catalyzed 24S-OHC esterification and the resulting lipid droplet formation that is the initial key event which is responsible for 24S-OHC-induced cell death.  相似文献   

13.
14.
Glucose is a very important energy source for a wide variety of cells, and the ability of cells to respond to changes in glucose availability or other cell stresses is of critical importance. Many mammalian cells respond to acute stress by increasing the V(max) of transport through GLUT1; the most ubiquitously expressed glucose transporter isoform. This study investigated the acute response of glucose uptake to glucose deprivation in L929 fibroblast cells--a cell line that expresses only the GLUT1 transporter. Results indicated that glucose deprivation of only a minute activated glucose uptake 10-fold and reached a maximum of 20-fold within 10 min. The activation was dose dependent and only partially muted by addition of up to 20mM pyruvate as an alternate energy source. In contrast to the kinetics of acute metabolic stress, glucose deprivation decreased the K(m) of transport, but did not alter the V(max). Maximal activation of glucose transport by glucose deprivation was completely additive to activation of transport by methylene blue--a stimulant that increased the V(max) of transport without a change in the K(m). Glucose-deprived activation of glucose transport was not inhibited by wortmannin or herbimycin A, but was completely inhibited by phenylarsine oxide. Altogether, the data indicate that L929 fibroblast cells respond quickly and robustly to the cell stress of glucose deprivation and methylene blue treatment by two distinct activation pathways.  相似文献   

15.
The goal of this study was to test the role cellular senescence plays in the increased inflammation, chronic liver disease, and hepatocellular carcinoma seen in mice null for Cu/Zn‐Superoxide dismutase (Sod1KO). To inhibit senescence, wildtype (WT) and Sod1KO mice were given the senolytics, dasatinib, and quercetin (D + Q) at 6 months of age when the Sod1KO mice begin exhibiting signs of accelerated aging. Seven months of D + Q treatment reduced the expression of p16 in the livers of Sod1KO mice to WT levels and the expression of several senescence‐associated secretory phenotype factors (IL‐6, IL‐1β, CXCL‐1, and GDF‐15). D + Q treatment also reduced markers of inflammation in livers of the Sod1KO mice, for example, cytokines, chemokines, macrophage levels, and Kupffer cell clusters. D + Q treatment had no effect on various markers of liver fibrosis in the Sod1KO mice but reduced the expression of genes involved in liver cancer and dramatically reduced the incidence of hepatocellular carcinoma. Surprisingly, D + Q also reduced markers of necroptosis (phosphorylated and oligomerized MLKL) in the Sod1KO mice to WT levels. We also found that inhibiting necroptosis in the Sod1KO mice with necrostatin‐1s reduced the markers of cellular senescence (p16, p21, and p53). Our study suggests that an interaction occurs between cellular senescence and necroptosis in the liver of Sod1KO mice. We propose that these two cell fates interact through a positive feedback loop resulting in a cycle amplifying both cellular senescence and necroptosis leading to inflammaging and age‐associated pathology in the Sod1KO mice.  相似文献   

16.
During replication, DNA damage can challenge replication fork progression and cell viability. Homologous Recombination (HR) and Translesion Synthesis (TLS) pathways appear as major players involved in the resumption and completion of DNA replication. How both pathways are coordinated in human cells to maintain genome stability is unclear. Numerous helicases are involved in HR regulation. Among them, the helicase FBH1 accumulates at sites of DNA damage and potentially constrains HR via its anti-recombinase activity. However, little is known about its regulation in vivo. Here, we report a mechanism that controls the degradation of FBH1 after DNA damage. Firstly, we found that the sliding clamp Proliferating Cell Nuclear Antigen (PCNA) is critical for FBH1 recruitment to replication factories or DNA damage sites. We then showed the anti-recombinase activity of FBH1 is partially dependent on its interaction with PCNA. Intriguingly, after its re-localization, FBH1 is targeted for degradation by the Cullin-ring ligase 4-Cdt2 (CRL4Cdt2)–PCNA pathway via a PCNA-interacting peptide (PIP) degron. Importantly, expression of non-degradable FBH1 mutant impairs the recruitment of the TLS polymerase eta to chromatin in UV-irradiated cells. Thus, we propose that after DNA damage, FBH1 might be required to restrict HR and then degraded by the Cdt2–proteasome pathway to facilitate TLS pathway.  相似文献   

17.
Parathyroid hormone (PTH) exerts potent and diverse effects in bone and cartilage through activation of type 1 PTH receptors (PTH1R) capable of coupling to protein kinase A (PKA) and PKC. We have used macroarrays to identify zinc finger protein butyrate response factor-1 (BRF1) as a novel PTH regulated gene in clonal and normal osteoblasts of human and rodent origin. We further demonstrate that in human osteoblast-like OHS cells, biologically active hPTH(1-84) and hPTH(1-34) stimulate BRF1 mRNA expression in a dose- and time-dependent manner, while the amino-terminally truncated hPTH(3-84) which does not activate PTH1R has no effect. Moreover, using specific stimulators or inhibitors of PKA and PKC activity, the PTH-elicited BRF1 mRNA expression is mediated through the PKA signaling pathway. In mouse calvarial osteoblasts, BRF1 mRNA levels are upregulated by PTH(1-84) and reduced in response to bone morphogenetic protein 2 (BMP-2). Hence, our data showing that BRF1 is expressed in osteoblastic cells and regulated by PTH and BMP-2, suggest an important role for BRF1 in osteoblasts within the molecular network of PTH-dependent bone remodeling.  相似文献   

18.
The adaptor protein complex-1 (AP-1) sorts and packages membrane proteins into clathrin-coated vesicles (CCVs) at the TGN and endosomes. Here we show that this process is highly regulated by phosphorylation of AP-1 subunits. Cell fractionation studies revealed that membrane-associated AP-1 differs from cytosolic AP-1 in the phosphorylation status of its beta1 and mu1 subunits. AP-1 recruitment onto the membrane is associated with protein phosphatase 2A (PP2A)-mediated dephosphorylation of its beta1 subunit, which enables clathrin assembly. This Golgi-associated isoform of PP2A exhibits specificity for phosphorylated beta1 compared with phosphorylated mu1. Once on the membrane, the mu1 subunit undergoes phosphorylation, which results in a conformation change, as revealed by increased sensitivity to trypsin. This conformational change is associated with increased binding to sorting signals on the cytoplasmic tails of cargo molecules. Dephosphorylation of mu1 (and mu2) by another PP2A-like phosphatase reversed the effect and resulted in adaptor release from CCVs. Immunodepletion and okadaic acid inhibition studies demonstrate that PP2A is the cytosolic cofactor for Hsc-70-mediated adaptor uncoating. A model is proposed where cyclical phosphorylation/dephosphorylation of the subunits of AP-1 regulate its function from membrane recruitment until its release into cytosol.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号