首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ghrelin is produced mainly by endocrine cells in the stomach and is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). It also influences feeding behavior, metabolic regulation, and energy balance. It affects islet hormone secretion, and expression of ghrelin and GHS-R in the pancreas has been reported. In human islets, ghrelin expression is highest pre- and neonatally. We examined ghrelin and GHS-R in rat islets during development with immunocytochemistry and in situ hybridization. We also studied the effect of ghrelin on insulin secretion from INS-1 (832/13) cells and the expression of GHS-R in these cells. We found ghrelin expression in rat islet endocrine cells from mid-gestation to 1 month postnatally. Islet expression of GHS-R mRNA was detected from late fetal stages to adult. The onset of islet ghrelin expression preceded that of gastric ghrelin. Islet ghrelin cells constitute a separate and novel islet cell population throughout development. However, during a short perinatal period a minor subpopulation of the ghrelin cells co-expressed glucagon or pancreatic polypeptide. Markers for cell lineage, proliferation, and duct cells revealed that the ghrelin cells proliferate, originate from duct cells, and share lineage with glucagon cells. Ghrelin dose-dependently inhibited glucose-stimulated insulin secretion from INS-1 (832/13) cells, and GHS-R was detected in the cells. We conclude that ghrelin is expressed in a novel developmentally regulated endocrine islet cell type in the rat pancreas and that ghrelin inhibits glucose-stimulated insulin secretion via a direct effect on the beta-cell.  相似文献   

2.
Ghrelin, a novel peptide isolated from stomach tissue of rats and humans, has been identified as the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). In addition to its secretion from the stomach, ghrelin is also expressed in the hypothalamic arcuate nucleus, intestine, kidney, placenta, and pancreas. GHS-R mRNA, on the other hand, is expressed in the hypothalamus, pituitary, heart, lung, liver, pancreas, stomach, intestine, and adipose tissue. Ghrelin is considered to have important roles in feeding regulation and energy metabolism as well as in the release of growth hormone (GH). Recent physiological experiments on the pancreas have shown that ghrelin regulates insulin secretion. However, sites of action of ghrelin in the pancreas are yet to be identified. In this study, to gain insight into the role of ghrelin in rat pancreatic islets, we used immunohistochemistry to determine the localization of ghrelin and GHS-R in islet cells. Double fluorescence immunohistochemistry revealed that weak GHS-R-like immunoreactivity was found in B cells containing insulin. GHS-R immunoreactivity overlapped that of glucagon-like immunoreactive cells. Moreover, both ghrelin and GHS-R-like immunoreactivities were detected mostly in the same cells in the periphery of the islets of Langerhans. These observations suggest that ghrelin is synthesized and secreted from A cells, and acts back on A cells in an autocrine and/or paracrine manner. In addition, ghrelin may act on B cells via GHS-R to regulate insulin secretion.  相似文献   

3.
OBJECTIVES: Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), was recently identified in the stomach. Ghrelin is produced in a population of endocrine cells in the gastric mucosa, but expression in intestine, hypothalamus and testis has also been reported. Recent data indicate that ghrelin affects insulin secretion and plays a direct role in metabolic regulation and energy balance. On the basis of these findings, we decided to examine whether ghrelin is expressed in human pancreas. Specimens from fetal to adult human pancreas and stomach were studied by immunocytochemistry, for ghrelin and islet hormones, and in situ hybridisation, for ghrelin mRNA. RESULTS: We identified ghrelin expression in a separate population of islet cells in human fetal, neonatal, and adult pancreas. Pancreatic ghrelin cells were numerous from midgestation to early postnatally (10% of all endocrine cells). The cells were few, but regularly seen in adults as single cells at the islet periphery, in exocrine tissue, in ducts, and in pancreatic ganglia. Ghrelin cells did not express any of the known islet hormones. In fetuses, at midgestation, ghrelin cells in the pancreas clearly outnumbered those in the stomach. CONCLUSIONS: Ghrelin is expressed in a quite prominent endocrine cell population in human fetal pancreas, and ghrelin expression in the pancreas precedes by far that in the stomach. Pancreatic ghrelin cells remain in adult islets at lower numbers. Ghrelin is not co-expressed with any known islet hormone, and the ghrelin cells may therefore constitute a new islet cell type.  相似文献   

4.
Cannabinoids participate in the modulation of numerous functions in the human organism, increasing the sense of hunger, affecting carbohydrate and lipid metabolism, and controlling systemic energy balance mechanisms. Moreover, they influence the endocrine system functions, acting via two types of receptors, CB1 and CB2. The aim of the present study was to examine the number, distribution and activity of ghrelin and somatostatin producing endocrine cells in the pancreas of rats after a single administration of selective CP 55,940 agonist of CB1 receptor. The study was performed on 20 rats. Neuroendocrine cells were identified by immunohistochemical reactions, involving specific antibodies against ghrelin and somatostatin. The distribution and number of ghrelin- and somatostatin-immunoreactive cells were separately studied in five pancreas islets of each section. A performed analysis showed a decreased number of somatostatin-immunoreactive cells and a weak immunoreactivity of ghrelin and somatostatin containing neuroendocrine cells in the pancreatic islets of experimental rats, compared to control animals. The obtained results suggest that a single administration of a selective CP 55,940 agonist of CB1 receptor influences the immunoreactivity of endocrine cells with ghrelin and somatostatin expression in the pancreas islets.  相似文献   

5.
W B Rhoten 《Acta anatomica》1987,129(4):257-261
Light-microscopic immunocytochemistry was used to localize 4 major pancreatic hormones in the pancreas of the spectacled caiman, Caiman fuscus. Somatostatin, insulin, glucagon and pancreatic polypeptide were localized by the peroxidase-antiperoxidase complex technique. A relatively large population of somatostatin-containing D cells was present. The D cells were nearly as numerous as the insulin-containing B cells and glucagon-containing A cells which were the most common cell types. All three cell types were commonly intermingled with one another in endocrine cell areas. Pancreatic polypeptide-reactive F cells were absent from some regions of the pancreas, but where present were related to other endocrine cell types. Functional properties of the pancreatic endocrine cells in this anatomical variant remain to be determined.  相似文献   

6.
Thyrotropin-releasing hormone (TRH) is present in small quantities in the rat adult pancreas. As hypothyroidism increases dramatically the pancreatic content of this peptide, this model was used to localize TRH in the gland by immunocytochemistry. Immunocytochemical staining of semithin (0.5–1.0 μm) and thin (golden) sections was performed as well as antibody and method controls to check the specificity of the immunoperoxidase staining. At the light microscope level, a very faint TRH-like immunoreactivity was apparent in the pancreas of normal untreated animals. In hypothyroid rats, a strong TRH immunostaining was observed in the central portion of the islets of Langerhans. On the contrary, in previously hypothyroid rats made euthyroid, no TRH-like immunoreactivity was found. Serial sections alternately labelled with TRH and insulin antisera revealed the simultaneous occurrence of both immunoreactivities. In addition, the TRH immunoreactive cells were distinct from glucagon- or somatostatin-containing cells. At the electron microscope level, immunoreactive TRH was found over the secretory granules of insulin-containing cells. Hypothyroid animals offer therefore a suitable model for the study of TRH in the pancreas.  相似文献   

7.
In the present study, we investigated types of pancreatic endocrine cells and its respective peptides in the Brazilian sparrow species using immunocytochemistry. The use of polyclonal specific antisera for somatostatin, glucagon, avian pancreatic polypeptide (APP), YY polypeptide (PYY) and insulin, revealed a diversified distribution in the pancreas. All these types of immunoreactive cells were observed in the pancreas with different amounts. Insulin-Immunoreactive cells to (B cells) were most numerous, preferably occupying the central place in the pancreatic islets. Somatostatin, PPA, PYY and glucagon immunoreactive cells occurred in a lower frequency in the periphery of pancreatic islets.  相似文献   

8.
Indirect immunofluorescence technique with anti-somatostatin serum has allowed us to detect somatostatin containing cells in the Langerhans' islets of three species of monkeys (Macacus irus, Papio hamadryas, Cercopithecus aethiops). These cells are in close relationship with another cells, but occupy a more central position in the islets. Thus, the distribution of somatostatin-containing cells in the monkey's endocrine pancreas has not a similar pattern as in rodent's pancreas; they have a comparable topography as in the human islets but these cells are always more elongated than in the human islets. Only slight morphological differences are observed in the three species of monkeys.  相似文献   

9.
Cells immunoreactive for insulin, glucagon, somatostatin, bovine pancreatic polypeptide and 5-hydroxytryptamine are found in the pancreas of the newborn opossum and of all later stages examined. All immunoreactive cell types are present in primary and secondary islets and within elements of the exocrine pancreas. Cells immunoreactive for glucagon, bovine pancreatic polypeptide, somatostatin and 5-hydroxytryptamine generally are confined to the periphery of secondary (intralobular) islets, whereas insulin-immunoreactive cells occupy the central region. Endocrine cells within primary (interlobular) islets are randomly scattered. A small number of pancreatic-polypeptide-immunoreactive cells are reactive for the amine 5-hydroxytryptamine also, but the reverse is not observed. The endocrine pancreas continues to differentiate and develop throughout postnatal life and into adulthood. Little difference was observed between the head and tail regions of the opossum pancreas for the measurements made.  相似文献   

10.
Activin A is expressed in endocrine precursor cells of the fetal pancreatic anlage. To determine the physiological significance of activins in the pancreas, a transgenic mouse line expressing the truncated type II activin receptor under the control of beta-actin promoter was developed. Histological analyses of the pancreas revealed that the pancreatic islets of the transgenic mouse were small in size and were located mainly along the pancreatic ducts. Immunoreactive insulin was detected in islets, some acinar cells, and in some epithelial cells in the duct. In addition, there were abnormal endocrine cells outside the islets. The shape and the size of the endocrine cells varied and some of them were larger than islets. These cells expressed immunoreactive insulin and glucagon. In the exocrine portion, there were morphologically abnormal exocrine cells, which did not form a typical acinar structure. The cells lacked spatial polarity characteristics of acinar cells but expressed immunoreactive amylase, which was distributed diffusely in the cytoplasm. Plasma glucose concentration was normal in the transgenic mouse before and after the administration of glucose. The insulin content of the pancreas in transgenic and normal mice was nearly identical. These results suggest that activins or related ligands regulate the differentiation of the pancreatic endocrine and exocrine cells.  相似文献   

11.
Originally thought of as a stomach-derived endocrine peptide acting via its receptors in the central nervous system to stimulate food intake and growth hormone expression, ghrelin and its receptor (growth hormone secretagogue receptor (GHS-R)) are widely expressed in a number of organ systems, including cancer cells. However, the direct functional role of ghrelin and its receptor in tumors of central nervous system origin remains to be defined. Here, we demonstrate that the human astrocytoma cell lines U-118, U-87, CCF-STTG1, and SW1088 express 6-, 11-, 15-, and 29-fold higher levels of GHS-R compared with primary normal human astrocytes. The ligation of GHS-R by ghrelin on these cells resulted in an increase in intracellular calcium mobilization, protein kinase C activation, actin polymerization, matrix metalloproteinase-2 activity, and astrocytoma motility. In addition, ghrelin led to actin polymerization and membrane ruffling on cells, with the specific co-localization of the small GTPase Rac1 with GHS-R on the leading edge of the astrocytoma cells and imparting the tumor cells with a motile phenotype. Disruption of the endogenous ghrelin/GHS-R pathway by RNA interference resulted in diminished motility, matrix metalloproteinase activity, and Rac expression, whereas tumor cells stably overexpressing GHS-R exhibited increased cell motility. The relevance of ghrelin and GHS-R expression was verified in clinically relevant tissues from 20 patients with oligodendrogliomas and grade II-IV astrocytomas. Analysis of a central nervous system tumor tissue microarray revealed that strong GHS-R and ghrelin expression was significantly more common in high grade tumors compared with low grade ones. Together, these findings suggest a novel role for the ghrelin/GHS-R axis in astrocytoma cell migration and invasiveness of cancers of central nervous system origin.  相似文献   

12.
Ghrelin--not just another stomach hormone   总被引:14,自引:0,他引:14  
Growth hormone (GH) secretagogues (GHSs) are non-natural, synthetic substances that stimulate GH secretion via a G-protein-coupled receptor called the GHS-receptor (GHS-R). The natural ligand for the GHS-R has been identified recently; it is called ghrelin. Ghrelin and its receptor show a widespread distribution in the body; the greatest expression of ghrelin is in stomach endocrine cells. Administration of exogenous ghrelin has been shown to stimulate pituitary GH secretion, appetite, body growth and fat deposition. Ghrelin was probably designed to be a major anabolic hormone. Ghrelin also exerts several other activities in the stomach. The findings that ghrelin is produced in mucosal endocrine cells of the stomach and intestine, and that ghrelin is measurable in the general circulation indicate its hormonal nature. A maximal expression of ghrelin in the stomach suggests that there is a gastrointestinal hypothalamic-pituitary axis that influences GH secretion, body growth and appetite that is responsive to nutritional and caloric intakes.  相似文献   

13.
Summary In the pancreas, calcitonin gene-related peptide (CGRP) immunoreactivity has been described in nerve fibers and in distinct types of islet cells. This unique, apparently species-specific cell-type expression prompted the present investigation to clarify further the pattern of CGRP immunoreactivity in different mammalian species (i.e., different strains of rats, mice, guinea pigs, rabbits, cats, dogs, pigs, and humans) commonly used for functional and anatomical studies of the pancreas by means of immunohistochemistry using three different CGRP antibodies. In each species, CGRP-immunoreactive neurites innervate the exocrine and endocrine compartments, the vasculature, and the intrapancreatic ganglia, where they form dense networks encircling unstained cell bodies. The only exception is the pig pancreas, where the islets appear to be devoid of immunoreactive fibers. The overall density of immunoreactive pancreatic axons in different species is as follows: rat, mouse, and rabbit>guinea pigpig and cat> >dog and human. CGRP-immunoreactive endocrine cells appear to be restricted to the rat pancreas, where they form a subpopulation of somatostatin-containing D cells. In contrast, in mouse, guinea pig, cat, dog, and human pancreas, a homogeneous staining of the core of the islets, where insulin-producing B cells are located, was visualized in sections incubated with the rabbit CGRP antiserum at 4°C, but not at 37°C (an incubation temperature that does not affect the islet cell staining in the rat nor the fiber labeling in any species). Furthermore, the staining of islet B cells was not reproductible with all the CGRP antibodies used, all of which comparably stain nerve fibers in each species, and islet D cells in the rat. Immunoreactive islet cells were not visualized in pig and rabbit pancreas. These results are consistent with the hypothesis that the expression of CGRP in nerve fibers is a common feature of mammalian pancreas, whereas its expression in endocrine cells appears to be restricted to the D cells of the rat pancreas.  相似文献   

14.
Summary S-100 protein-immunoreactive cells were demonstrated by immunocytochemical procedures in the pancreatic islets of Langerhans in the monkey Macaca irus. By use of antibodies against human S-100 protein or bovine S-100 protein, these cells were observed in all islets in the head and tail portions of the pancreas. Immunostained cells were usually located in the center of the islets or sometimes found in a more widely distributed form, but they were never arranged in a regular concentric fashion. The number of immunoreactive cells varied from one islet to another but it was relatively limited making up only 0.75%–6.3% of all insular cells. With the use of the double-immunoenzymatic procedure for demonstration of the four main endocrine cell types (insulin-, glucagon-, somatostatin-and pancreatic polypeptide producing elements), it was possible to establish that S-100 protein-immunoreactive cells represent a distinct cell type. Antibodies against S-100 protein-stained neuroinsular complexes. The present findings speak in favor of a new cell type to be added to the large variety of S-100 protein-immunoreactive cells outside the central nervous system.  相似文献   

15.
Obestatin and ghrelin are two peptides derived from the same prohormone. It is well established that ghrelin is produced by endocrine cells in the gastric mucosa. However, the distribution of human obestatin immunoreactive cells is not thoroughly characterized. A polyclonal antibody that specifically recognizes human obestatin was produced. Using this antibody and a commercial antibody vs ghrelin, the distribution of obestatin and ghrelin immunoreactive cells was determined in a panel of human tissues using immunohistochemistry. The two peptides were detected in the mucosa of the gastrointestinal tract, from cardia to ileum, and in the pancreatic islets. Interestingly, epithelial cells in the ducts of mammary glands showed distinct immunoreactivity for both ghrelin and obestatin. By double immunofluorescence microscopy, it was shown that all detected cells were immunoreactive for both peptides. Furthermore, the subcellular localization of obestatin and ghrelin was essentially identical, indicating that obestatin and ghrelin are stored in the same secretory vesicles.  相似文献   

16.
The gestational time of appearance and distribution of immunoreactive glicentin was compared to that of immunoreactive glucagon in the gastrointestinal tract and endocrine pancreas of human fetuses, aged between 5 and 24 weeks, by an indirect immunoperoxidase method. With the glicentin antiserum No. R 64, the first immunoreactive cells were detected at the 10th week of gestation in the oxyntic mucosa and proximal small intestine, at the 8th week in the ileum and at the 12th week in the colon. In the endocrine pancreas, the first immunoreactive cells were observed as early as 8 weeks within the walls of the primitive pancreatic ductules. At a more advanced stage of development (12 weeks), they were found interspersed among the islet cell clusters and still later (16 weeks) inside the recognizable islets of Langerhans. With the glucagon antiserum No. GB 5667, no immunoreactive cells were demonstrated in the gastrointestinal tract whatever the age of the fetuses. In the endocrine pancreas, the first immunoreactive cells were observed at the 8th week of gestation in the pancreatic parenchyma. The distribution of glucagon-containing cells in the pancreas was similar to that of glicentin immunoreactivity throughout ontogenesis. In the pancreatic islets of one 18-week-old human fetus, the study of consecutive semithin sections treated by both antisera showed that the same cells were labelled. The significance of these findings concerning the role of glicentin as a glucagon precursor is discussed.  相似文献   

17.
Ghrelin is an important endocrine peptide that links the gastrointestinal system and brain in the regulation of food intake and energy expenditure. In human, rat, and goldfish plasma levels of ghrelin and GH are elevated in fasted animals, suggesting that ghrelin is an orexigenic signal and a driving force behind the elevated plasma levels of GH during fasting. Ghrelin's orexigenic action is mediated by the ghrelin receptor (GHS-R1a and GHS-R1b) which is localized on neuropeptide Y (NPY) neurons in the brain. Studies were undertaken to investigate the effect of short-term fasting on plasma ghrelin and brain expression of GHS-R1a, GHS-R1b, and NPY in the tilapia. Fasting for 7 days had no effect on plasma ghrelin concentrations, whereas significant increases in plasma levels of GH were observed on day 3. Fasting significantly reduced plasma levels of IGF-I on days 3 and 7, and of glucose on days 3, 5, and 7. Brain expression of ghrelin and GHS-R1b were significantly elevated in fasted fish on day 3, but were significantly reduced on day 5. This reduction was likely due to a significant increase in the expression in the fed controls on day 5 compared to day 0. No change was detected in the expression of GHS-R1a or NPY in the brain. These results indicate that ghrelin is not acting as a hunger signal in short-term fasted tilapia and is not responsible for the elevated levels of plasma GH.  相似文献   

18.
M El-Salhy 《Histochemistry》1984,80(2):193-205
The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish, Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scattered islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, alpha-endorphin, beta-endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P- immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

19.
本研究用ABC免疫染色法,结合葡萄糖氧化酶-DAB-硫酸镍铵(Glucose oxidase-DAB-Nickle,GDN)显色技术,在Bouin液固定的常规石蜡切片上,研究了5-羟色胺(5-hydroxytryptamin,5-HT)在豚鼠胰腺内的定位和分布,并用相邻切片免疫双标记,观察了它与胰岛素的共存关系,结果发现,在豚鼠胰腺内,外分泌部均有5-HT免疫反应细胞分布。在胰腺内分泌部(胰岛)5-HT免疫反应细胞分布均匀,大部分胰岛细胞呈阳性5-HT样免疫反应,用相邻薄切片免疫双标记技术证明,胰岛内的5-HT免疫反应细胞主要是B细胞。在胰腺外分泌部,5-HT免疫反应细胞呈单个分散或聚集分布,主要位于腺泡和导管等处,偶见于结缔组织间隔中。本文对研究5-HT在胰腺的生理作用及其机制提供了形态学依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号