首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscarinic receptor activation facilitates the induction of synaptic plasticity and enhances cognitive function. However, the specific muscarinic receptor subtype involved and the critical intracellular signaling pathways engaged have remained controversial. Here, we show that the recently discovered highly selective allosteric M(1) receptor agonist 77-LH-28-1 facilitates long-term potentiation (LTP) induced by theta burst stimulation at Schaffer collateral synapses in the hippocampus. Similarly, release of acetylcholine by stimulation of cholinergic fibers facilitates LTP via activation of M(1) receptors. N-methyl-D-aspartate receptor (NMDAR) opening during theta burst stimulation was enhanced by M(1) receptor activation, indicating this is the mechanism for LTP facilitation. M(1) receptors were found to enhance NMDAR activation by inhibiting SK channels that otherwise act to hyperpolarize postsynaptic spines and inhibit NMDAR opening. Thus, we describe a mechanism where M(1) receptor activation inhibits SK channels, allowing enhanced NMDAR activity and leading to a facilitation of LTP induction in the hippocampus.  相似文献   

2.
The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM) and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways.  相似文献   

3.
Bloodgood BL  Sabatini BL 《Neuron》2007,53(2):249-260
The roles of voltage-sensitive sodium (Na) and calcium (Ca) channels located on dendrites and spines in regulating synaptic signals are largely unknown. Here we use 2-photon glutamate uncaging to stimulate individual spines while monitoring uncaging-evoked excitatory postsynaptic potentials (uEPSPs) and Ca transients. We find that, in CA1 pyramidal neurons in acute mouse hippocampal slices, CaV(2.3) voltage-sensitive Ca channels (VSCCs) are found selectively on spines and act locally to dampen uncaging-evoked Ca transients and somatic potentials. These effects are mediated by a regulatory loop that requires opening of CaV(2.3) channels, voltage-gated Na channels, small conductance Ca-activated potassium (SK) channels, and NMDA receptors. Ca influx through CaV(2.3) VSCCs selectively activates SK channels, revealing the presence of functional Ca microdomains within the spine. Our results suggest that synaptic strength can be modulated by mechanisms that regulate voltage-gated conductances within the spine but do not alter the properties or numbers of synaptic glutamate receptors.  相似文献   

4.
We have used rats and mice with mutations in myosin-Va to evaluate the range and function of IP3-mediated Ca2+ signaling in dendritic spines. In these mutants, the endoplasmic reticulum and its attendant IP3 receptors do not enter the postsynaptic spines of parallel fiber synapses on cerebellar Purkinje cells. Long-term synaptic depression (LTD) is absent at the parallel fiber synapses of the mutants, even though the structure and function of these synapses otherwise appear normal. This loss of LTD is associated with selective changes in IP3-mediated Ca2+ signaling in spines and can be rescued by photolysis of a caged Ca2+ compound. Our results reveal that IP3 must release Ca2+ locally in the dendritic spines to produce LTD and indicate that one function of dendritic spines is to target IP3-mediated Ca2+ release to the proper subcellular domain.  相似文献   

5.
Small cell carcinoma of the lung (SCC) expresses several characteristics of neuronal cells, including voltage-gated Ca2+ channels (VGCC), and also expresses muscarinic acetylcholine receptors (mAChR). In testing the possibility that VGCC may be functionally coupled to mAChR in SCC cell lines, we found that depolarization-dependent Ca2+ influx was inhibited by carbachol (IC50 = 0.78 microM) and oxotremorine (IC50 = 0.69 microM). Equilibrium dissociation constants for several mAChR antagonists indicated that a mAChR of M3 subtype was involved. Exposure of SCC to carbachol induced the hydrolysis of phosphoinositides and increased the cytosolic free Ca2+ concentration ([Ca2+]i). The carbachol-mediated inhibition of depolarization-dependent Ca2+ influx did not directly correlate with increased [Ca2+]i but did correlate with inositol poly-phosphate generation. The protein kinase C activators phorbol 12-myristate 13-acetate or 1-oleoyl-2-acetyl-sn-glycerol neither mimicked nor amplified the inhibitory effect of carbachol on Ca2+ influx. However, phorbol 12-myristate 13-acetate suppressed the carbachol-induced inositol polyphosphate generation and inhibition of depolarization-dependent Ca2+ influx. The inactive compound 4 alpha-phorbol had no effect. These data suggest that the inhibition of VGCC caused by carbachol is not due to protein kinase C activation, but rather is due to events mediated by inositol polyphosphates. This is the first documentation of a role for phosphoinositide hydrolysis in the functional coupling of mAChR and VGCC. The expression of M3 mAChR functionally coupled to VGCC could have therapeutic implications for SCC, in light of recent demonstrations that cell proliferation can be influenced by activation of neurotransmitter receptors.  相似文献   

6.
7.
Small conductance calcium-activated potassium channels link elevations of intracellular calcium ions to membrane potential, exerting a hyperpolarizing influence when activated. The consequences of SK channel activity have been revealed by the specific blocker apamin, a peptide toxin from honeybee venom. Recent studies have revealed unexpected roles for SK channels in fine-tuning intrinsic cell firing properties and in responsiveness to synaptic input. They have also identified specific roles for different SK channel subtypes. A host of Ca2+ sources, including distinct subtypes of voltage-dependent calcium channels, intracellular Ca2+ stores and Ca2+-permeable ionotropic neurotransmitter receptors, activate SK channels. The macromolecular complex in which the Ca2+ source, SK channels and various modulators are assembled determines the kinetics and consequences of SK channel activation.  相似文献   

8.
When SK-N-SH human neuroblastoma cells were exposed to nicotine (NIC) or KCl they showed a dose-dependent transient increase (2- to 4-fold) in intracellular Ca2+ concentration ([Ca2+])i as detected by quin-2 fluorescence, with half maximal effects (EC50) observed at 13 microM and 26 mM, respectively. Tubocurarine and 1-isodihydrohistrionicotoxin potently blocked the NIC-evoked (IC50 congruent to 1 microM and 0.3 microM, respectively), but not the high [K+]o-evoked [Ca2+]i accumulation. The KCl-induced response was inhibited by verapamil and diltiazem (IC50 = 1.4 and 10.9 microM, respectively). Tetrodotoxin (3 microM) and tetraethylammonium (10 microM) had no effect on [Ca2+]i accumulation induced by either agent. Increases in [Ca2+]i could be evoked sequentially by NIC and KCl in the same cells suggesting independent mechanisms of Ca2+ entry. In a Ca2+-free medium, no response to either KCl or NIC was observed. However, when Ca2+ ions were restored, [Ca2+]i accumulation was enhanced to the same extent as cells suspended in a Ca2+-containing buffer. Long-term (18 hr) pretreatment of SK-N-SH cells with pertussis (100 ng/ml) or cholera toxins (10 nM) had no effect on NIC or KCl-induced [Ca2+]i accumulation. Together, these data demonstrate the presence of NIC receptors and voltage-sensitive Ca2+ channels on SK-N-SH neuroblastoma cells, through which [Ca2+]i may be modulated.  相似文献   

9.
Dopamine signaling through D1 receptors in the prefrontal cortex (PFC) plays a critical role in the maintenance of higher cognitive functions, such as working memory. At the cellular level, these functions are predicated to involve alterations in neuronal calcium levels. The dendrites of PFC neurons express D1 receptors and N-type calcium channels, yet little information exists regarding their coupling. Here, we show that D1 receptors potently inhibit N-type channels in dendrites of rat PFC neurons. Using coimmunoprecipitation, we demonstrate the existence of a D1 receptor-N-type channel signaling complex in this region, and we provide evidence for a direct receptor-channel interaction. Finally, we demonstrate the importance of this complex to receptor-channel colocalization in heterologous systems and in PFC neurons. Our data indicate that the N-type calcium channel is an important physiological target of D1 receptors and reveal a mechanism for D1 receptor-mediated regulation of cognitive function in the PFC.  相似文献   

10.
Emptage N  Bliss TV  Fine A 《Neuron》1999,22(1):115-124
We have used confocal microscopy to monitor synaptically evoked Ca2+ transients in the dendritic spines of hippocampal pyramidal cells. Individual spines respond to single afferent stimuli (<0.1 Hz) with Ca2+ transients or failures, reflecting the probability of transmitter release at the activated synapse. Both AMPA and NMDA glutamate receptor antagonists block the synaptically evoked Ca2+ transients; the block by AMPA antagonists is relieved by low Mg2+. The Ca2+ transients are mainly due to the release of calcium from internal stores, since they are abolished by antagonists of calcium-induced calcium release (CICR); CICR antagonists, however, do not depress spine Ca2+ transients generated by backpropagating action potentials. These results have implications for synaptic plasticity, since they show that synaptic stimulation can activate NMDA receptors, evoking substantial Ca2+ release from the internal stores in spines without inducing long-term potentiation (LTP) or depression (LTD).  相似文献   

11.
12.
M(1)-muscarinic acetylcholine (ACh) receptors (M(1)R) were directly demonstrated immunocytochemically in electronmicroscopic images of rat diaphragm neuromuscular junctions (NMJ). Specific electron-dense granules were located at presynaptic nerve ending membranes and in the sarcolemma in the depths of postsynaptic folds. This first visualization of M(1)R on both sides of the NMJ is in agreement with previous pharmacological data on the regulatory role of M(1)R in quantal and non-quantal ACh release.  相似文献   

13.
We investigated the potential ability of p-fluoro-hexahydro-sila-difenidol (p-F-HHSiD) to discriminate between M1 and M3 muscarinic receptor subtypes using Chinese hamster ovary cells stably transfected with the genes encoding the two receptors. Both radioligand binding and functional assays were utilized for this purpose. In contrast to initial reports of a 14-fold selectivity of this antagonist for M3 versus M1 receptors, we have detected a qualitatively similar selectivity that was markedly smaller in magnitude.  相似文献   

14.
An analysis of the relationship between electrical membrane activity and Ca2+ influx in differentiated GnRH-secreting (GT1) neurons revealed that most cells exhibited spontaneous, extracellular Ca(2+)-dependent action potentials (APs). Spiking was initiated by a slow pacemaker depolarization from a baseline potential between -75 and -50 mV, and AP frequency increased with membrane depolarization. More hyperpolarized cells fired sharp APs with limited capacity to promote Ca2+ influx, whereas more depolarized cells fired broad APs with enhanced capacity for Ca2+ influx. Characterization of the inward currents in GT1 cells revealed the presence of tetrodotoxin-sensitive Na+, Ni(2+)-sensitive T-type Ca2+, and dihydropyridine-sensitive L-type Ca2+ components. The availability of Na+ and T-type Ca2+ channels was dependent on the baseline potential, which determined the activation/inactivation status of these channels. Whereas all three channels were involved in the generation of sharp APs, L-type channels were solely responsible for the spike depolarization in cells exhibiting broad APs. Activation of GnRH receptors led to biphasic changes in cytosolic Ca2+ concentration ([Ca2+]i), with an early, extracellular Ca(2+)-independent peak and a sustained, extracellular Ca(2+)-dependent phase. During the peak [Ca2+]i response, electrical activity was abolished due to transient hyperpolarization. This was followed by sustained depolarization of cells and resumption of firing of increased frequency with a shift from sharp to broad APs. The GnRH-induced change in firing pattern accounted for about 50% of the elevated Ca2+ influx, the remainder being independent of spiking. Basal [Ca2+]i was also dependent on Ca2+ influx through AP-driven and voltage-insensitive pathways. Thus, in both resting and agonist-stimulated GT1 cells, membrane depolarization limits the participation of Na+ and T-type channels in firing, but facilitates AP-driven Ca2+ influx.  相似文献   

15.
T-type calcium channels play critical roles in controlling neuronal excitability, including the generation of complex spiking patterns and the modulation of synaptic plasticity, although the mechanisms and extent to which T-type Ca(2+) channels are modulated by G-protein-coupled receptors (GPCRs) remain largely unexplored. To examine specific interactions between T-type Ca(2+) channel subtypes and muscarinic acetylcholine receptors (mAChRS), the Cav3.1 (alpha(1G)), Cav3.2 (alpha(1H)), and Cav3.3 (alpha) T-type Ca(2+)(1I)channels were co-expressed with the M1 Galpha(q/11)-coupled mAChR. Perforated patch recordings demonstrate that activation of M1 receptors has a strong inhibitory effect on Cav3.3 T-type Ca(2+) currents but either no effect or a moderate stimulating effect on Cav3.1 and Cav3.2 peak current amplitudes. This differential modulation was observed for both rat and human T-type Ca(2+) channel variants. The inhibition of Cav3.3 channels by M1 receptors is reversible, use-independent, and associated with a concomitant increase in inactivation kinetics. Loss-of-function experiments with genetically encoded antagonists of Galpha and Gbetagamma proteins and gain-of-function experiments with genetically encoded Galpha subtypes indicate that M1 receptor-mediated inhibition of Cav3.3 occurs through Galpha(q/11). This is supported by experiments showing that activation of the M3 and M5 Galpha(q/11)-coupled mAChRs also causes inhibition of Cav3.3 currents, although Galpha(i)-coupled mAChRs (M2 and M4) have no effect. Examining Cav3.1-Cav3.3 chimeric channels demonstrates that two distinct regions of the Cav3.3 channel are necessary and sufficient for complete M1 receptor-mediated channel inhibition and represent novel sites not previously implicated in T-type channel modulation.  相似文献   

16.
Alpha 1-adrenergic receptor (alpha 1R) mediated increases in the cytosolic levels of free Ca+2 and the inositol phosphates were measured in a smooth muscle cell line, DDT1. Norepinephrine (NE) stimulated a rapid increase in cytosolic Ca+2 by two distinct components: 1) release of Ca+2 from intracellular sites (mobilization), and 2) influx of extracellular Ca+2. The mobilization component was not affected by removal of extracellular Ca+2 or addition of La+3 or Co+2 to the buffer. The influx component was abolished by EGTA, La+3, or Co+2, but was not affected by the voltage-operated Ca+2 channel blockers diltiazem or nifedipine. Depolarization of DDT1 cells with 100 mM KCl or with gramicidin did not induce Ca+2 influx. NE also increased inositol trisphosphate to 78% over basal levels within 1 minute. These results suggest that alpha 1R on DDT1 cells are coupled to both the mobilization of intracellular Ca+2 and to receptor-operated Ca+2 channels in the plasma membrane, and that polyphosphoinositide hydrolysis may play a role in these phenomena.  相似文献   

17.
Muscarinic acetylcholine receptors (mAChRs) are well known to transmit extracellular cholinergic signals into the cytoplasm from their position on the cell surface. However, we show here that M1‐mAChRs are also highly expressed on intracellular membranes in neurons of the telencephalon and activate signaling cascades distinct from those of cell surface receptors, contributing uniquely to synaptic plasticity. Radioligand‐binding experiments with cell‐permeable and ‐impermeable ligands and immunohistochemical observations revealed intracellular and surface distributions of M1‐mAChRs in the hippocampus and cortex of rats, mice, and humans, in contrast to the selective occurrence on the cell surface in other tissues. All intracellular muscarinic‐binding sites were abolished in M1‐mAChR‐gene‐knockout mice. Activation of cell surface M1‐mAChRs in rat hippocampal neurons evoked phosphatidylinositol hydrolysis and network oscillations at theta rhythm, and transiently enhanced long‐term potentiation. On the other hand, activation of intracellular M1‐mAChRs phosphorylated extracellular‐regulated kinase 1/2 and gradually enhanced long‐term potentiation. Our data thus demonstrate that M1‐mAChRs function at both surface and intracellular sites in telencephalon neurons including the hippocampus, suggesting a new mode of cholinergic transmission in the central nervous system.  相似文献   

18.
G protein coupling to M1 and M3 muscarinic receptors in sublingual glands   总被引:1,自引:0,他引:1  
Rat sublingual glandM1 and M3 muscarinic receptors each directlyactivate exocrine secretion. To investigate the functional role ofcoreceptor expression, we determined receptor-G protein coupling.Although membrane proteins of 40 and 41 kDa are ADP-ribosylated bypertussis toxin (PTX), and 44 kDa proteins by cholera toxin (CTX), bothcarbachol-stimulated high-affinity GTPase activity and the GTP-inducedshift in agonist binding are insensitive to CTX or PTX. Carbacholenhances photoaffinity labeling([-32P]GTP-azidoaniline) of only 42-kDa proteins thatare subsequently tractable to immunoprecipitation by antibodiesspecific for Gq or G11 but notG12 or G13. Carbachol-stimulatedphotoaffinity labeling as well as phosphatidylinositol 4,5-bisphosphate(PIP2) hydrolysis is reduced 55% and 60%, respectively,by M1 receptor blockade with m1-toxin.Gq/11-specific antibody blocks carbachol-stimulated PIP2 hydrolysis. We also provide estimates of the molarratios of receptors to Gq and G11.Although simultaneous activation of M1 and M3receptors is required for a maximal response, both receptor subtypesare coupled to Gq and G11 to stimulateexocrine secretion via redundant mechanisms.

  相似文献   

19.
20.
The persistent sodium current density (I(NaP)) at the soma measured with the 'whole-cell' patch-clamp recording method is linearized about the resting state and used as a current source along the dendritic cable (depicting the spatial distribution of voltage-dependent persistent sodium ionic channels). This procedure allows time-dependent analytical solutions to be obtained for the membrane depolarization. Computer simulated response to a dendritic current injection in the form of synaptically-induced voltage change located at a distance from the recording site in a cable with unequally distributed persistent sodium ion channel densities per unit length of cable (the so-called 'hot-spots') is used to obtain conclusions on the density and distribution of persistent sodium ion channels. It is shown that the excitatory postsynaptic potentials (EPSPs) are amplified if hot-spots of persistent sodium ion channels are spatially distributed along the dendritic cable, with the local density of I(NaP) with respect to the recording site shown to specifically increase the peak amplitude of the EPSP for a proximally placed synaptic input, while the spatial distribution of I(NaP) serves to broaden the time course of the amplified EPSP. However, in the case of a distally positioned synaptic input, both local and nonlocal densities yield an approximately identical enhancement of EPSPs in contradiction to the computer simulations performed by Lipowsky et al. [J. Neurophysiol. 76 (1996) 2181]. The results indicate that persistent sodium channels produce EPSP amplification even when their distribution is relatively sparse (i.e. , approximately 1-2% of the transient sodium channels are found in dendrites of CA1 hippocampal pyramidal neurons). This gives a strong impetus for the use of the theory as a novel approach in the investigation of synaptic integration of signals in active dendrites represented as ionic cables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号