首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.

Principal Findings

Pretreatment of hydrogen peroxide (H2O2) specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H2O2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR) and the unfolded protein recovery, and enhanced eIF2α phosphorylation and/or XBP1 splicing, land marks of ER stress. These H2O2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H2O2–mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H2O2–mediated enhanced heat sensitivity.

Conclusions

H2O2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.  相似文献   

2.

Background

Excessive oxidative stress has been reported to be generated in inflamed tissues and contribute to the pathogenesis of inflammatory lung diseases, exacerbations of which induced by viral infections are associated with toll-like receptor (TLR) activation. Among these receptors, TLR8 has been reported as a key receptor that recognizes single-strand RNA virus. However, it remains unknown whether TLR8 signaling is potentiated by oxidative stress. The aim of this study is to examine whether oxidative stress modulates TLR8 signaling in vitro.

Methods

Human peripheral blood neutrophils were obtained from healthy non-smokers and stimulated with TLR 7/8 agonist imidazoquinoline resiquimod (R848) in the presence or absence of hydrogen peroxide (H2O2). Neutrophilic responses including cytokine release, superoxide production and chemotaxis were examined, and the signal transduction was also analyzed.

Results

Activation of TLR8, but not TLR7, augmented IL-8 release. The R848-augmented IL-8 release was significantly potentiated by pretreatment with H2O2 (p < 0.01), and N-acetyl-L-cysteine reversed this potentiation. The combination of H2O2 and R848 significantly potentiated NF-kB phosphorylation and IkBα degradation. The H2O2-potentiated IL-8 release was suppressed by MG-132, a proteosome inhibitor, and by dexamethasone. The expressions of TLR8, myeloid differentiation primary response gene 88 (MyD88), and tumor necrosis factor receptor-associated factor 6 (TRAF6) were not affected by H2O2.

Conclusion

TLR8-mediated neutrophilic responses were markedly potentiated by oxidative stress, and the potentiation was mediated by enhanced NF-kB activation. These results suggest that oxidative stress might potentiate the neutrophilic inflammation during viral infection.  相似文献   

3.

Background

Mitochondrial oxidative stress is a contributing factor in the etiology of numerous neuronal disorders. However, the precise mechanism(s) by which mitochondrial reactive oxygen species (ROS) modify cellular targets to induce the death of neurons remains unknown. The goal of this study was to determine if oxidative inactivation of mitochondrial aconitase (m-aconitase) resulted in the release of redox-active iron (Fe2+) and hydrogen peroxide (H2O2) and whether this contributes to cell death.

Methodology/Principal Findings

Incubation of rat primary mesencephalic cultures with the redox cycling herbicide paraquat (PQ2+) resulted in increased production of H2O2 and Fe2+ at times preceding cell death. To confirm the role of m-aconitase as a source of Fenton reagents and death, we overexpressed m-aconitase using an adenoviral construct thereby increasing the target available for inactivation by ROS. Co-labeling studies identified astrocytes as the predominant cell type expressing transduced m-aconitase although neurons were identified as the primary cell type dying. Oxidative inactivation of m-aconitase overexpressing cultures resulted in exacerbation of H2O2 production, Fe2+ accumulation and increased neuronal death. Increased cell death in m-aconitase overexpressing cultures was attenuated by addition of catalase and/or a cell permeable iron chelator suggesting that neuronal death occurred in part via astrocyte-derived H2O2.

Conclusions

These results suggest a role of ROS-sensitive m-aconitase as a source of Fe2+ and H2O2 and as a contributing factor to neurotoxicity.  相似文献   

4.

Background

MicroRNAs (miRNAs) are small, highly conserved, non-coding RNA that alter protein expression and regulate multiple intracellular processes, including those involved in the response to cellular stress. Alterations in miRNA expression may occur following exposure to several stress-inducing anticancer agents including ionizing radiation, etoposide, and hydrogen peroxide (H2O2).

Methodology/Principal Findings

Normal human fibroblasts were exposed to radiation, H2O2, or etoposide at doses determined by clonogenic cell survival curves. Total RNA was extracted and miRNA expression was determined by microarray. Time course and radiation dose responses were determined using RT-PCR for individual miRNA species. Changes in miRNA expression were observed for 17 miRNA species following exposure to radiation, 23 after H2O2 treatment, and 45 after etoposide treatment. Substantial overlap between the miRNA expression changes between agents was observed suggesting a signature miRNA response to cell stress. Changes in the expression of selected miRNA species varied in response to radiation dose and time. Finally, production of reactive oxygen species (ROS) increased with increasing doses of radiation and pre-treatment with the thiol antioxidant cysteine decreased both ROS production and the miRNA response to radiation.

Conclusions

These results demonstrate a common miRNA expression signature in response to exogenous genotoxic agents including radiation, H2O2, and etoposide. Additionally, pre-treatment with cysteine prevented radiation-induced alterations in miRNA expression which suggests that miRNAs are responsive to oxidative stress. Taken together, these results imply that miRNAs play a role in cellular defense against exogenous stress and are involved in the generalized cellular response to genotoxic oxidative stress.  相似文献   

5.

Background

DNA repair is a cellular defence mechanism responding to DNA damage caused in large part by oxidative stress. There is a controversy with regard to the effect of red blood cells on DNA damage and cellular response.

Aim

To investigate the effect of red blood cells on H2O2-induced DNA damage and repair in human peripheral blood mononuclear cells.

Methods

DNA breaks were induced in peripheral blood mononuclear cells by H2O2 in the absence or presence of red blood cells, red blood cells hemolysate or hemoglobin. DNA repair was measured by 3H-thymidine uptake, % double-stranded DNA was measured by fluorometric assay of DNA unwinding. DNA damage was measured by the comet assay and by the detection of histone H2AX phosphorylation.

Results

Red blood cells and red blood cells hemolysate reduced DNA repair in a dose-dependent manner. Red blood cells hemolysate reduced % double-stranded DNA, DNA damage and phosphorylation of histone H2AX. Hemoglobin had the same effect as red blood cells hemolysate on % double-stranded DNA.

Conclusion

Red blood cells, via red blood cells hemolysate and hemoglobin, reduced the effect of oxidative stress on peripheral blood mononuclear cell DNA damage and phosphorylation of histone H2AX. Consequently, recruitment of DNA repair proteins diminished with reduction of DNA repair. This suggests that anemia predisposes to increased oxidative stress induced DNA damage, while a higher hemoglobin level provides protection against oxidative-stress-induced DNA damage.  相似文献   

6.
7.
8.
9.

Background

To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders.

Methods

We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K+ current.

Results

H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking.

Conclusions

Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.  相似文献   

10.
11.

Background

Oxidative stress-mediated hepatotoxic effect of arsenic (As) is mainly due to the depletion of glutathione (GSH) in liver. Taurine, on the other hand, enhances intracellular production of GSH. Little is known about the mechanism of the beneficial role of taurine in As-induced hepatic pathophysiology. Therefore, in the present study we investigated its beneficial role in As-induced hepatic cell death via mitochondria-mediated pathway.

Methodology/Principal Findings

Rats were exposed to NaAsO2 (2 mg/kg body weight for 6 months) and the hepatic tissue was used for oxidative stress measurements. In addition, the pathophysiologic effect of NaAsO2 (10 µM) on hepatocytes was evaluated by determining cell viability, mitochondrial membrane potential and ROS generation. As caused mitochondrial injury by increased oxidative stress and reciprocal regulation of Bcl-2, Bcl-xL/Bad, Bax, Bim in association with increased level of Apaf-1, activation of caspase 9/3, cleavage of PARP protein and ultimately led to apoptotic cell death. In addition, As markedly increased JNK and p38 phosphorylation with minimal disturbance of ERK. Pre-exposure of hepatocytes to a JNK inhibitor SP600125 prevented As-induced caspase-3 activation, ROS production and loss in cell viability. Pre-exposure of hepatocytes to a p38 inhibitor SB2035, on the other hand, had practically no effect on these events. Besides, As activated PKCδ and pre-treatment of hepatocytes with its inhibitor, rottlerin, suppressed the activation of JNK indicating that PKCδ is involved in As-induced JNK activation and mitochondrial dependent apoptosis. Oral administration of taurine (50 mg/kg body weight for 2 weeks) both pre and post to NaAsO2 exposure or incubation of the hepatocytes with taurine (25 mM) were found to be effective in counteracting As-induced oxidative stress and apoptosis.

Conclusions/Significance

Results indicate that taurine treatment improved As-induced hepatic damages by inhibiting PKCδ-JNK signalling pathways. Therefore taurine supplementation could provide a new approach for the reduction of hepatic complication due to arsenic poisoning.  相似文献   

12.

Background

An excess of caffeine is cytotoxic to all eukaryotic cell types. We aim to study how cells become tolerant to a toxic dose of this drug, and the relationship between caffeine and oxidative stress pathways.

Methodology/Principal Findings

We searched for Schizosaccharomyces pombe mutants with inhibited growth on caffeine-containing plates. We screened a collection of 2,700 haploid mutant cells, of which 98 were sensitive to caffeine. The genes mutated in these sensitive clones were involved in a number of cellular roles including the H2O2-induced Pap1 and Sty1 stress pathways, the integrity and calcineurin pathways, cell morphology and chromatin remodeling. We have investigated the role of the oxidative stress pathways in sensing and promoting survival to caffeine. The Pap1 and the Sty1 pathways are both required for normal tolerance to caffeine, but only the Sty1 pathway is activated by the drug. Cells lacking Pap1 are sensitive to caffeine due to the decreased expression of the efflux pump Hba2. Indeed, ?hba2 cells are sensitive to caffeine, and constitutive activation of the Pap1 pathway enhances resistance to caffeine in an Hba2-dependent manner.

Conclusions/Significance

With our caffeine-sensitive, genome-wide screen of an S. pombe deletion collection, we have demonstrated the importance of some oxidative stress pathway components on wild-type tolerance to the drug.  相似文献   

13.

Background

Episodic cessation of airflow during sleep in patients with sleep apnea syndrome results in intermittent hypoxia (IH). Our aim was to investigate the effects of IH on cerebellar granule cells and to identify the mechanism of IH-induced cell death.

Methods

Cerebellar granule cells were freshly prepared from neonatal Sprague-Dawley rats. IH was created by culturing the cerebellar granule cells in the incubators with oscillating O2 concentration at 20% and 5% every 30 min for 1-4 days. The results of this study are based on image analysis using a confocal microscope and associated software. Cellular oxidative stress increased with increase in IH. In addition, the occurrence of cell death (apoptosis and necrosis) increased as the duration of IH increased, but decreased in the presence of an iron chelator (phenanthroline) or poly (ADP-ribose) polymerase (PARP) inhibitors [3-aminobenzamide (3-AB) and DPQ]. The fluorescence of caspase-3 remained the same regardless of the duration of IH, and Western blots did not detect activation of caspase-3. However, IH increased the ratio of apoptosis-inducing factor (AIF) translocation to the nucleus, while PARP inhibitors (3-AB) reduced this ratio.

Results

According to our findings, IH increased oxidative stress and subsequently leading to cell death. This effect was at least partially mediated by PARP activation, resulting in ATP depletion, calpain activation leading to AIF translocation to the nucleus.

Conclusions

We suggest that IH induces cell death in rat primary cerebellar granule cells by stimulating oxidative stress PARP-mediated calpain and AIF activation.  相似文献   

14.
Zhang ZF  Zhang J  Hui YN  Zheng MH  Liu XP  Kador PF  Wang YS  Yao LB  Zhou J 《PloS one》2011,6(10):e26102

Background

Human N-Myc downstream regulated gene2 (NDRG2), a novel gene has been cloned and shown to be related to a number of cellular processes, including proliferation, differentiation, stress, and apoptosis. NDRG2 has also been linked to age-related Alzheimer''s disease. Since the role of this gene in senescence is limited, we have investigated the potential role of NDRG2 in human lens epithelial cells (HLECs), a paradigm implicated in age-related cataract.

Methodology/Principal Findings

Cultured HLECs (SRA01/04) were subjected to prolonged exposure to low dose of H2O2 to simulate senescence. After being exposed to 50 µM H2O2 for 2 weeks, HLECs senescent-morphological changes appeared, cell viability decreased dramatically, cell proliferation reduced from 37.4% to 16.1%, and senescence-associated β-galactosidase activity increased from 0 to 90.3%. Ndrg2 protein expression was also significantly increased in these senescent cells. To induce overexpression of NDRG2, SRA01/04 cells were infected with the adenoviral vector of NDRG2. In these cells, overexpression of NDRG2 resulted in a fibroblast-like appearance and the cell viability decreased about 20%. In addition, the NDRG2-overexpression cells demonstrated 20% lower viability when exposed to 50–200 µM H2O2 for acute oxidative stress. Furthermore, the expression of NDRG2 from age-related cataracts was up-regulated 2-fold at both mRNA and protein levels compared with the clear lenses.

Conclusions/Significance

NDRG2 is up regulated not only in the ageing process of HLECs in vitro but also in the cells from human age-related cortical cataract in vivo. Up-regulation of NDRG2 induces cell morphological changes, reduces cell viability, and especially lowers cellular resistance to oxidative stress. NDRG2-mediated affects in HLECs may associate with age-related cataract formation.  相似文献   

15.

Objective

This study aimed to investigate the influence of low-dose levodopa (L-DOPA) on neuronal cell death under oxidative stress.

Methods

PC12 cells were treated with L-DOPA at different concentrations. We detected the L-DOPA induced reactive oxygen species (ROS). Meanwhile, MTT and LDH assay were performed to determine the proliferation and growth of PC12 cells with or without ROS scavenger. In addition, after pretreatment with L-DOPA at different concentrations alone or in combination with CD39 inhibitor, PC12 cells were incubated with hydrogen peroxide (H2O2) and the cell viability was evaluated by MTT and LDH assay. In addition, the expression of pCREB and CD39 was detected by immunofluorescence staining and Western blot assay in both cells and rat’s brain after L-DOPA treatment.

Results

After treatment with L-DOPA for 3 days, the cell proliferation and growth were promoted when the L-DOPA concentration was <30 µM, while cell proliferation was comparable to that in control group when the L-DOPA concentration was >30 µM. Low dose L-DOPA could protect the PC12 cells from H2O2 induced oxidative stress, which was compromised by CD39 inhibitor. In addition, the expression of CD39 and pCREB increased in both PC12 cells and rats’ brain after L-DOPA treatment.

Conclusions

L-DOPA at different concentrations has distinct influence on proliferation and growth of PC12 cells, and low dose (<30 µM) L-DOPA protects PC12 cells against oxidative stress which might be related to the up-regulation of CD39 and pCREB expression.  相似文献   

16.
17.

Background

Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts.

Results

Proteomics analysis was used to determine the differential expression of proteins in H9c2 cells cultured in the conditions of control, 400 μM H2O2 exposure for 30 min with and/or without 10 to 20 μM EGCG pre-treatment. In this model, eight proteins associated with energy metabolism, mitochondrial electron transfer, redox regulation, signal transduction, and RNA binding were identified to take part in EGCG-ameliorating H2O2-induced injury in H9c2 cells. H2O2 exposure increased oxidative stress evidenced by increases in reactive oxygen species and cytosolic Ca2+ overload, increases in glycolytic protein, α-enolase, decreases in antioxidant protein, peroxiredoxin-4, as well as decreases in mitochondrial proteins, including aldehyde dehydrogenase-2, ornithine aminotransferase, and succinate dehydrogenase ubiquinone flavoprotein subunit. All of these effects were reversed by EGCG pre-treatment. In addition, EGCG attenuated the H2O2-induced increases of Type II inositol 3, 4-bisphosphate 4-phosphatase and relieved its subsequent inhibition of the downstream signalling for Akt and glycogen synthase kinase-3β (GSK-3β)/cyclin D1 in H9c2 cells. Pre-treatment with EGCG or GSK-3β inhibitor (SB 216763) significantly improved the H2O2-induced suppression on cell viability, phosphorylation of pAkt (S473) and pGSK-3β (S9), and level of cyclin D1 in cells.

Conclusions

Collectively, these findings suggest that EGCG blunts the H2O2-induced oxidative effect on the Akt activity through the modulation of PIP3 synthesis leading to the subsequent inactivation of GSK-3β mediated cardiac cell injury.  相似文献   

18.

Background

Soluble guanylyl cyclase (sGC) plays a central role in nitric oxide (NO)-mediated signal transduction in the cardiovascular, nervous and gastrointestinal systems. Alternative RNA splicing has emerged as a potential mechanism to modulate sGC expression and activity. C-α1 sGC is an alternative splice form that is resistant to oxidation-induced protein degradation and demonstrates preferential subcellular distribution to the oxidized environment of endoplasmic reticulum (ER).

Methodology/Principal Findings

Here we report that splicing of C-α1 sGC can be modulated by H2O2 treatment in BE2 neuroblastoma and MDA-MD-468 adenocarcinoma human cells. In addition, we show that the H2O2 treatment of MDA-MD-468 cells selectively decreases protein levels of PTBP1 and hnRNP A2/B1 splice factors identified as potential α1 gene splicing regulators by in silico analysis. We further demonstrate that down-regulation of PTBP1 by H2O2 occurs at the protein level with variable regulation observed in different breast cancer cells.

Conclusions/Significance

Our data demonstrate that H2O2 regulates RNA splicing to induce expression of the oxidation-resistant C-α1 sGC subunit. We also report that H2O2 treatment selectively alters the expression of key splicing regulators. This process might play an important role in regulation of cellular adaptation to conditions of oxidative stress.  相似文献   

19.

Background/Aim

The hepatitis B virus (HBV) infection is accompanied by the induction of oxidative stress, especially mediated by HBV X protein (HBx). Oxidative stress has been implicated in a series of pathological states, such as DNA damage, cell survival and apoptosis. However, the host factor by which cells protect themselves under this oxidative stress is poorly understood.

Methodology/Principal Findings

In this study, we first confirmed that HBV infection significantly induced oxidative stress. Moreover, viral protein HBx plays a major role in the oxidative stress induced by HBV. Importantly, we found that mitochondrial protein SIRT3 overexpression could decrease reactive oxygen species (ROS) induced by HBx while SIRT3 knockdown increased HBx-induced ROS. Importantly, SIRT3 overexpression abolished oxidative damage of HBx-expressing cells as evidenced by γH2AX and AP sites measurements. In contrast, SIRT3 knockdown promoted HBx-induced oxidative damage. In addition, we also observed that oxidant H2O2 markedly promoted HBV replication while the antioxidant N-acetyl-L-cysteine (NAC) inhibited HBV replication. Significantly, SIRT3 overexpression inhibited HBV replication by reducing cellular ROS level.

Conclusions/Significance

Collectively, these data suggest HBx expression induces oxidative stress, which promotes cellular oxidative damage and viral replication during HBV pathogenesis. Mitochondrial protein SIRT3 protected HBx expressing-cells from oxidative damage and inhibited HBV replication possibly by decreased cellular ROS level. These studies shed new light on the physiological significance of SIRT3 on HBx-induced oxidative stress, which can contribute to the liver pathogenesis.  相似文献   

20.

Background

Heat stress can be acutely cytotoxic, and heat stress-induced apoptosis is a prominent pathological feature of heat-related illnesses, although the precise mechanisms by which heat stress triggers apoptosis are poorly defined.

Methods

The percentages of viability and cell death were assessed by WST-1 and LDH release assays. Apoptosis was assayed by DNA fragmentation and caspase activity. Expression of cleaved PARP, Apaf-1, phospho-PERK, Phospho-eIF2a, ATF4, XBP-1s, ATF6, GRP78, phospho-IP3R, RYR and SERCA was estimated by Western blot. The effect of calcium overload was determined using flow cytometric analysis with the fluorescent probe Fluo-3/AM. The generation of ROS (O2 , H2O2, NO) was labeled by confocal laser scanning microscopy images of fluorescently and flow cytometry.

Results

In this study, we found that heat stress in HUVEC cells activated initiators of three major unfolded protein response (UPR) signaling transduction pathways: PERK-eIF2a-ATF4, IRE1-XBP-1S and ATF6 to protect against ER stress, although activation declined over time following cessation of heat stress. Furthermore, we show that intense heat stress may induce apoptosis in HUVEC cells through the calcium-mediated mitochondrial apoptotic pathway, as indicated by elevation of cytoplasmic Ca2+, expression of Apaf-1, activation of caspase-9 and caspase-3, PARP cleavage, and ultimately nucleosomal DNA fragmentation; Reactive oxygen species (ROS) appear to act upstream in this process. In addition, we provide evidence that IP3R upregulation may promote influx of Ca2+ into the cytoplasm after heat stress.

Conclusion

Our findings describe a novel mechanism for heat stress-induced apoptosis in HUVEC cells: following elevation of cytoplasm Ca2+, activation of the mitochondrial apoptotic pathway via the IP3R upregulation, with ROS acting as an upstream regulator of the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号