首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previously, Szatkiewicz and colleagues evaluated the performance of a wide variety of statistics for quantitative-trait-locus linkage, using discordant sibling pairs. They found that the most powerful statistics, in general, were a score statistic and a "composite statistic." However, whereas these two statistics have equal power under ideal conditions, each has limitations that reduce its power in certain circumstances. The score statistic depends on estimates of trait parameters and can lose a lot of power if those estimates are incorrect. The composite statistic is not sensitive to trait-parameter estimates but does depend on arbitrary weights that must be chosen on the basis of the ascertainment scheme. In this report, we elucidate the algebraic relationship between the score and composite statistics and then use that relationship to suggest a new statistic that combines the best properties of both. We call our new statistic the "robust discordant pair" (RDP) statistic. We report simulation studies to show that the RDP statistic does, indeed, have all of the strengths and none of the weaknesses of the score and composite statistics.  相似文献   

2.
Extreme discordant sibling pairs (EDSPs) are theoretically powerful for the mapping of quantitative-trait loci (QTLs) in humans. EDSPs have not been used much in practice, however, because of the need to screen very large populations to find enough pairs that are extreme and discordant. Given appropriate statistical methods, another alternative is to use moderately discordant sibling pairs (MDSPs)--pairs that are discordant but not at the far extremes of the distribution. Such pairs can be powerful yet far easier to collect than extreme discordant pairs. Recent work on statistical methods for QTL mapping in humans has included a number of methods that, though not developed specifically for discordant pairs, may well be powerful for MDSPs and possibly even EDSPs. In the present article, we survey the new statistics and discuss their applicability to discordant pairs. We then use simulation to study the type I error and the power of various statistics for EDSPs and for MDSPs. We conclude that the best statistic(s) for discordant pairs (moderate or extreme) is (are) to be found among the new statistics. We suggest that the new statistics are appropriate for many other designs as well-and that, in fact, they open the way for the exploration of entirely novel designs.  相似文献   

3.
The traditional variance components approach for quantitative trait locus (QTL) linkage analysis is sensitive to violations of normality and fails for selected sampling schemes. Recently, a number of new methods have been developed for QTL mapping in humans. Most of the new methods are based on score statistics or regression-based statistics and are expected to be relatively robust to non-normality of the trait distribution and also to selected sampling, at least in terms of type I error. Whereas the theoretical development of these statistics is more or less complete, some practical issues concerning their implementation still need to be addressed. Here we study some of these issues such as the choice of denominator variance estimates, weighting of pedigrees, effect of parameter misspecification, effect of non-normality of the trait distribution, and effect of incorporating dominance. We present a comprehensive discussion of the theoretical properties of various denominator variance estimates and of the weighting issue and then perform simulation studies for nuclear families to compare the methods in terms of power and robustness. Based on our analytical and simulation results, we provide general guidelines regarding the choice of appropriate QTL mapping statistics in practical situations.  相似文献   

4.
With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). The inverse-variance weighted (IVW) method (with a fixed-effect meta-analysis model) is most powerful when all IVs are valid; however, when horizontal pleiotropy is present, it may lead to biased inference. On the other hand, Egger regression is one of the most widely used methods robust to (uncorrelated) pleiotropy, but it suffers from loss of power. We propose a two-component mixture of regressions to combine and thus take advantage of both IVW and Egger regression; it is often both more efficient (i.e. higher powered) and more robust to pleiotropy (i.e. controlling type I error) than either IVW or Egger regression alone by accounting for both valid and invalid IVs respectively. We propose a model averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference for finite samples. Through extensive simulations and applications to the GWAS summary data of 48 risk factor-disease pairs and 63 genetically uncorrelated trait pairs, we showcase that our proposed methods could often control type I error better while achieving much higher power than IVW and Egger regression (and sometimes than several other new/popular MR methods). We expect that our proposed methods will be a useful addition to the toolbox of Mendelian randomization for causal inference.  相似文献   

5.
We present a new method of quantitative-trait linkage analysis that combines the simplicity and robustness of regression-based methods and the generality and greater power of variance-components models. The new method is based on a regression of estimated identity-by-descent (IBD) sharing between relative pairs on the squared sums and squared differences of trait values of the relative pairs. The method is applicable to pedigrees of arbitrary structure and to pedigrees selected on the basis of trait value, provided that population parameters of the trait distribution can be correctly specified. Ambiguous IBD sharing (due to incomplete marker information) can be accommodated in the method by appropriate specification of the variance-covariance matrix of IBD sharing between relative pairs. We have implemented this regression-based method and have performed simulation studies to assess, under a range of conditions, estimation accuracy, type I error rate, and power. For normally distributed traits and in large samples, the method is found to give the correct type I error rate and an unbiased estimate of the proportion of trait variance accounted for by the additive effects of the locus-although, in cases where asymptotic theory is doubtful, significance levels should be checked by simulations. In large sibships, the new method is slightly more powerful than variance-components models. The proposed method provides a practical and powerful tool for the linkage analysis of quantitative traits.  相似文献   

6.
The Haseman-Elston (HE) regression method offers a mathematically and computationally simpler alternative to variance-components (VC) models for the linkage analysis of quantitative traits. However, current versions of HE regression and VC models are not optimised for binary traits. Here, we present a modified HE regression and a liability-threshold VC model for binary-traits. The new HE method is based on the regression of a linear combination of the trait squares and the trait cross-product on the proportion of alleles identical by descent (IBD) at the putative locus, for sibling pairs. We have implemented both the new HE regression-based method and have performed analytic and simulation studies to assess its type 1 error rate and power under a range of conditions. These studies showed that the new HE method is well-behaved under the null hypothesis in large samples, is more powerful than both the original and the revisited HE methods, and is approximately equivalent in power to the liability-threshold VC model.  相似文献   

7.
Researchers conducting family-based association studies have a wide variety of transmission/disequilibrium (TD)-based methods to choose from, but few guidelines exist in the selection of a particular method to apply to available data. Using a simulation study design, we compared the power and type I error of eight popular TD-based methods under different family structures, frequencies of missing parental data, genetic models, and population stratifications. No method was uniformly most powerful under all conditions, but type I error was appropriate for nearly every test statistic under all conditions. Power varied widely across methods, with a 46.5% difference in power observed between the most powerful and the least powerful method when 50% of families consisted of an affected sib pair and one parent genotyped under an additive genetic model and a 35.2% difference when 50% of families consisted of a single affection-discordant sibling pair without parental genotypes available under an additive genetic model. Methods were generally robust to population stratification, although some slightly less so than others. The choice of a TD-based test statistic should be dependent on the predominant family structure ascertained, the frequency of missing parental genotypes, and the assumed genetic model.  相似文献   

8.
We have compared the power of a large number of allele-sharing statistics for "nonparametric" linkage analysis with affected sibships. Our rationale was that there is an extensive literature comparing statistics for sibling pairs but that there has not been much guidance on how to choose statistics for studies that include sibships of various sizes. We concentrated on statistics that can be described as assigning scores to each identity-by-descent-sharing configuration that a pedigree might take on (Whittemore and Halpern 1994). We considered sibships of sizes two through five, 27 different genetic models, and varying recombination fractions between the marker and the trait locus. We tried to identify statistics whose power was robust over a wide variety of models. We found that the statistic that is probably used most often in such studies-S(all)-performs quite well, although it is not necessarily the best. We also found several other statistics (such as the R criterion, S(robdom), and the Sobel-and-Lange statistic C) that perform well in most situations, a few (such as S(-#geno) and the Feingold-and-Siegmund version of S(pairs)) that have high power only in very special situations, and a few (such as S(-#geno), the N criterion, and the Sobel-and-Lange statistic B) that seem to have low power for the majority of the trait models. For the most part, the same statistics performed well for all sibship sizes. We also used our results to give some suggestions regarding how to weight sibships of different sizes, in forming an overall statistic.  相似文献   

9.
A statistical model for doubled haploids and backcrosses based on the interval-mapping methodology has been used to carry out power studies to investigate the effects of different experimental designs, heritabilities of the quantitative trait, and types of gene action, using two test statistics, the F of Fisher-Snedecor and the LOD score. The doubled haploid experimental design is more powerful than backcrosses while keeping actual type I errors similar to nominal ones. For the doubled haploid design, individual QTLs, showing heritabilities as low as 5% were detected in about 90% of the cases using only 250 individuals. The power to detect a given QTL is related to its contribution to the heritability of the trait. For a given nominal type I error, tests using F values are more powerful than with LOD scores. It seems that more conservative levels should be used for the LOD score in order to increase the power and obtain type I errors similar to nominal ones.  相似文献   

10.
We investigate strategies for detecting linkage of recessive and partially recessive traits, using sibling pairs and inbred individuals. We assume that a genomewide search is being conducted and that locus heterogeneity of the trait is likely. For sibling pairs, we evaluate the efficiency of different statistics under the assumption that one does not know the true degree of recessiveness of the trait. We recommend a sibling-pair statistic that is a linear compromise between two previously suggested statistics. We also compare the power of sibling pairs to that of more distant relatives, such as cousins. For inbred individuals, we evaluate the power of offspring of different types of matings and compare them to sibling pairs. Over a broad range of trait etiologies, sibling pairs are more powerful than inbred individuals, but for traits caused by very rare alleles, particularly in the case of heterogeneity, inbred individuals can be much more powerful. The models we develop can also be used to examine specific situations other than those we look at. We present this analysis in the idealized context of a dense set of highly polymorphic markers. In general, incorporation of real-world complexities makes inbred individuals, particularly offspring of distant relatives, look slightly less useful than our results imply.  相似文献   

11.
Haseman and Elston (H-E) proposed a robust test to detect linkage between a quantitative trait and a genetic marker. In their method the squared sib-pair trait difference is regressed on the estimated proportion of alleles at a locus shared identical by descent by sib pairs. This method has recently been improved by changing the dependent variable from the squared difference to the mean-corrected product of the sib-pair trait values, a significantly positive regression indicating linkage. Because situations arise in which the original test is more powerful, a further improvement of the H-E method occurs when the dependent variable is changed to a weighted average of the squared sib-pair trait difference and the squared sib-pair mean-corrected trait sum. Here we propose an optimal method of performing this weighting for larger sibships, allowing for the correlation between pairs within a sibship. The optimal weights are inversely proportional to the residual variances obtained from the two different regressions based on the squared sib-pair trait differences and the squared sib-pair mean-corrected trait sums, respectively, allowing for correlations among sib pairs. The proposed method is compared with the existing extension of the H-E approach for larger sibships. Control of the type I error probabilities for sibships of any size can be improved by using a generalized estimating equation approach and the robust sandwich estimate of the variance, or a Monte-Carlo permutation test.  相似文献   

12.
The genetic mapping of complex traits has been challenging and has required new statistical methods that are robust to misspecified models. Liang et al. proposed a robust multipoint method that can be used to simultaneously estimate, on the basis of sib-pair linkage data, both the position of a trait locus on a chromosome and its effect on disease status. The advantage of their method is that it does not require specification of an underlying genetic model, so estimation of the position of a trait locus on a specified chromosome and of its standard error is robust to a wide variety of genetic mechanisms. If multiple loci influence the trait, the method models the marginal effect of a locus on a specified chromosome. The main critical assumption is that there is only one trait locus on the chromosome of interest. We extend this method to different types of affected relative pairs (ARPs) by two approaches. One approach is to estimate the position of a trait locus yet allow unconstrained trait-locus effects across different types of ARPs. This robust approach allows for differences in sharing alleles identical-by-descent across different types of ARPs. Some examples for which an unconstrained model would apply are differences due to secular changes in diagnostic methods that can change the frequency of phenocopies among different types of relative pairs, environmental factors that modify the genetic effect, epistasis, and variation in marker-information content. However, this unconstrained model requires a parameter for each type of relative pair. To reduce the number of parameters, we propose a second approach that models the marginal effect of a susceptibility locus. This constrained model is robust for a trait caused by either a single locus or by multiple loci without epistasis. To evaluate the adequacy of the constrained model, we developed a robust score statistic. These methods are applied to a prostate cancer-linkage study, which emphasizes their potential advantages and limitations.  相似文献   

13.
Affected sibling pairs are often the design of choice in linkage-analysis studies with the goal of identifying the genes that increase susceptibility to complex diseases. Methods for multipoint analysis based on sibling amount of sharing that is identical by descent are widely available, for both autosomal and X-linked markers. Such methods have the advantage of making few assumptions about the mode of inheritance of the disease. However, with this approach, data from the pseudoautosomal regions on the X chromosome pose special challenges. Same-sex sibling pairs will share, in that region of the genome, more genetic material identical by descent, with and without the presence of a disease-susceptibility gene. This increased sharing will be more pronounced for markers closely linked to the sex-specific region. For the same reason, opposite-sex sibling pairs will share fewer alleles identical by descent. Failure to take this inequality in sharing into account may result in a false declaration of linkage if the study sample contains an excess of sex-concordant pairs, or a linkage may be missed when an excess of sex-discordant pairs is present. We propose a method to take into account this expected increase/decrease in sharing when markers in the pseudoautosomal region are analyzed. For quantitative traits, we demonstrate, using the Haseman-Elston method, (1) the same inflation in type I error, in the absence of an appropriate correction, and (2) the inadequacy of permutation tests to estimate levels of significance when all phenotypic values are permuted, irrespective of gender. The proposed method is illustrated with a genome screen on 350 sibling pairs affected with type I diabetes.  相似文献   

14.
R Guerra  Y Wan  A Jia  C I Amos  J C Cohen 《Human heredity》1999,49(3):146-153
Robust genetic models are used to assess linkage between a quantitative trait and genetic variation at a specific locus using allele-sharing data. Little is known about the relative performance of different possible significance tests under these models. Under the robust variance components model approach there are several alternatives: standard Wald and likelihood ratio tests, a quasilikelihood Wald test, and a Monte Carlo test. This paper reports on the relative performance (significance level and power) of the robust sibling pair test and the different alternatives under the robust variance components model. Simulations show that (1) for a fixed sample size of nuclear families, the variance components model approach is more powerful than the robust sibling pair approach; (2) when the number of nuclear families is at least approximately 100 and heritability at the trait locus is moderate to high (>0.20) all tests based on the variance components model are equally effective; (3) when the number of nuclear families is less than approximately 100 or heritability at the trait locus is low (<0. 20), on balance, the Monte Carlo test provides the best power and is the most valid. The different testing procedures are applied to determine which are able to detect the known association between low density lipoprotein cholesterol and the common genotypes at the locus encoding apolipoprotein E. Results from this application show that the robust sibling pair method may be more effective in practice than that indicated by simulations.  相似文献   

15.
Although genetic association studies using unrelated individuals may be subject to bias caused by population stratification, alternative methods that are robust to population stratification, such as family-based association designs, may be less powerful. Furthermore, it is often more feasible and less expensive to collect unrelated individuals. Recently, several statistical methods have been proposed for case-control association tests in a structured population; these methods may be robust to population stratification. In the present study, we propose a quantitative similarity-based association test (QSAT) to identify association between a candidate marker and a quantitative trait of interest, through use of unrelated individuals. For the QSAT, we first determine whether two individuals are from the same subpopulation or from different subpopulations, using genotype data at a set of independent markers. We then perform an association test between the candidate marker and the quantitative trait, through incorporation of such information. Simulation results based on either coalescent models or empirical population genetics data show that the QSAT has a correct type I error rate in the presence of population stratification and that the power of the QSAT is higher than that of family-based association designs.  相似文献   

16.
Variance components (VC) techniques have emerged as among the more powerful methods for detection of quantitative-trait loci (QTL) in linkage analysis. Allison et al. found that, with particularly marked leptokurtosis in the phenotypic distribution and moderate-to-high residual sibling correlation, maximum likelihood (ML) VC methods may produce a severe excess of type I errors. The new Haseman-Elston (NHE) method is a least-squares-based VC method for mapping of QTL in sib pairs (Elston et al.). Using simulation, we investigate the robustness of the NHE to marked nonnormality, by means of the same distributions and worst-case conditions identified by Allison et al. for the ML approach (i.e., 100 pairs; high residual sibling correlation). Results showed that, when marked nonnormality is present, the NHE can be used without severe type I error-rate inflation, even at very small alpha levels.  相似文献   

17.
The variance-components model is the method of choice for mapping quantitative trait loci in general human pedigrees. This model assumes normally distributed trait values and includes a major gene effect, random polygenic and environmental effects, and covariate effects. Violation of the normality assumption has detrimental effects on the type I error and power. One possible way of achieving normality is to transform trait values. The true transformation is unknown in practice, and different transformations may yield conflicting results. In addition, the commonly used transformations are ineffective in dealing with outlying trait values. We propose a novel extension of the variance-components model that allows the true transformation function to be completely unspecified. We present efficient likelihood-based procedures to estimate variance components and to test for genetic linkage. Simulation studies demonstrated that the new method is as powerful as the existing variance-components methods when the normality assumption holds; when the normality assumption fails, the new method still provides accurate control of type I error and is substantially more powerful than the existing methods. We performed a genomewide scan of monoamine oxidase B for the Collaborative Study on the Genetics of Alcoholism. In that study, the results that are based on the existing variance-components method changed dramatically when three outlying trait values were excluded from the analysis, whereas our method yielded essentially the same answers with or without those three outliers. The computer program that implements the new method is freely available.  相似文献   

18.
Taxon sampling, correlated evolution, and independent contrasts   总被引:14,自引:0,他引:14  
Independent contrasts are widely used to incorporate phylogenetic information into studies of continuous traits, particularly analyses of evolutionary trait correlations, but the effects of taxon sampling on these analyses have received little attention. In this paper, simulations were used to investigate the effects of taxon sampling patterns and alternative branch length assignments on the statistical performance of correlation coefficients and sign tests; "full-tree" analyses based on contrasts at all nodes and "paired-comparisons" based only on contrasts of terminal taxon pairs were also compared. The simulations showed that random samples, with respect to the traits under consideration, provide statistically robust estimates of trait correlations. However, exact significance tests are highly dependent on appropriate branch length information; equal branch lengths maintain lower Type I error than alternative topological approaches, and adjusted critical values of the independent contrast correlation coefficient are provided for use with equal branch lengths. Nonrandom samples, with respect to univariate or bivariate trait distributions, introduce discrepancies between interspecific and phylogenetically structured analyses and bias estimates of underlying evolutionary correlations. Examples of nonrandom sampling processes may include community assembly processes, convergent evolution under local adaptive pressures, selection of a nonrandom sample of species from a habitat or life-history group, or investigator bias. Correlation analyses based on species pairs comparisons, while ignoring deeper relationships, entail significant loss of statistical power and as a result provide a conservative test of trait associations. Paired comparisons in which species differ by a large amount in one trait, a method introduced in comparative plant ecology, have appropriate Type I error rates and high statistical power, but do not correctly estimate the magnitude of trait correlations. Sign tests, based on full-tree or paired-comparison approaches, are highly reliable across a wide range of sampling scenarios, in terms of Type I error rates, but have very low power. These results provide guidance for selecting species and applying comparative methods to optimize the performance of statistical tests of trait associations.  相似文献   

19.
Extreme discordant sibling-pair (EDSP) designs have been shown in theory to be very powerful for mapping quantitative-trait loci (QTLs) in humans. However, their practical applicability has been somewhat limited by the need to phenotype very large populations to find enough pairs that are extremely discordant. In this paper, we demonstrate that there is also substantial power in pairs that are only moderately discordant, and that designs using moderately discordant pairs can yield a more practical balance between phenotyping and genotyping efforts. The power we demonstrate for moderately discordant pairs stems from a new statistical result. Statistical analysis in discordant-pair studies is generally done by testing for reduced identity by descent (IBD) sharing in the pairs. By contrast, the most commonly-used statistical methods for more standard QTL mapping are Haseman-Elston regression and variance-components analysis. Both of these use statistics that are functions of the trait values given IBD information for the pedigree. We show that IBD sharing statistics and "trait value given IBD" statistics contribute complementary rather than redundant information, and thus that statistics of the two types can be combined to form more powerful tests of linkage. We propose a simple composite statistic, and test it with simulation studies. The simulation results show that our composite statistic increases power only minimally for extremely discordant pairs. However, it boosts the power of moderately discordant pairs substantially and makes them a very practical alternative. Our composite statistic is straightforward to calculate with existing software; we give a practical example of its use by applying it to a Genetic Analysis Workshop (GAW) data set.  相似文献   

20.
Jie Liu  Guoxian Yu  Yazhou Ren  Maozu Guo  Jun Wang 《Genomics》2019,111(5):1176-1182
Single nucleotide polymorphism (SNP) interactions can explain the missing heritability of common complex diseases. Many interaction detection methods have been proposed in genome-wide association studies, and they can be divided into two types: population-based and family-based. Compared with population-based methods, family-based methods are robust vs. population stratification. Several family-based methods have been proposed, among which Multifactor Dimensionality Reduction (MDR)-based methods are popular and powerful. However, current MDR-based methods suffer from heavy computational burden. Furthermore, they do not allow for main effect adjustment. In this work we develop a two-stage model-based MDR approach (TrioMDR) to detect multi-locus interaction in trio families (i.e., two parents and one affected child). TrioMDR combines the MDR framework with logistic regression models to check interactions, so TrioMDR can adjust main effects. In addition, unlike consuming permutation procedures used in traditional MDR-based methods, TrioMDR utilizes a simple semi-parameter P-values correction procedure to control type I error rate, this procedure only uses a few permutations to achieve the significance of a multi-locus model and significantly speeds up TrioMDR. We performed extensive experiments on simulated data to compare the type I error and power of TrioMDR under different scenarios. The results demonstrate that TrioMDR is fast and more powerful in general than some recently proposed methods for interaction detection in trios. The R codes of TrioMDR are available at: https://github.com/TrioMDR/TrioMDR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号