首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Photosystem II (PSII) is a large membrane protein complex that uses light energy to convert water to molecular oxygen. This enzyme undergoes an intricate assembly process to ensure accurate and efficient positioning of its many components. It has been proposed that the Psb27 protein, a lumenal extrinsic subunit, serves as a PSII assembly factor. Using a psb27 genetic deletion strain (Deltapsb27) of the cyanobacterium Synechocystis sp. PCC 6803, we have defined the role of the Psb27 protein in PSII biogenesis. While the Psb27 protein was not essential for photosynthetic activity, various PSII assembly assays revealed that the Deltapsb27 mutant was defective in integration of the Mn(4)Ca(1)Cl(x) cluster, the catalytic core of the oxygen-evolving machinery within the PSII complex. The other lumenal extrinsic proteins (PsbO, PsbU, PsbV, and PsbQ) are key components of the fully assembled PSII complex and are important for the water oxidation reaction, but we propose that the Psb27 protein has a distinct function separate from these subunits. We show that the Psb27 protein facilitates Mn(4)Ca(1)Cl(x) cluster assembly in PSII at least in part by preventing the premature association of the other extrinsic proteins. Thus, we propose an exchange of lumenal subunits and cofactors during PSII assembly, in that the Psb27 protein is replaced by the other extrinsic proteins upon assembly of the Mn(4)Ca(1)Cl(x) cluster. Furthermore, we show that the Psb27 protein provides a selective advantage for cyanobacterial cells under conditions such as nutrient deprivation where Mn(4)Ca(1)Cl(x) cluster assembly efficiency is critical for survival.  相似文献   

3.
The determination of the structure of PSII at high resolution is required in order to fully understand its reaction mechanisms. Two-dimensional crystals of purified highly active Synechococcus elongatus PSII dimers were obtained by in vitro reconstitution. Images of these crystals were recorded by electron cryo-microscopy, and their analysis revealed they belong to the two-sided plane group p22(1)2(1), with unit cell parameters a = 121 A, b = 333 A, and alpha = 90 degrees. From these crystals, a projection map was calculated to a resolution of approximately 16 A. The reliability of this projection map is confirmed by its close agreement with the recently presented three-dimensional model of the same complex obtained by X-ray crystallography. Comparison of the projection map of the Synechococcus elongatus PSII complex with data obtained by electron crystallography of the spinach PSII core dimer reveals a similar organization of the main transmembrane subunits. However, some differences in density distribution between the cyanobacterial and higher plant PSII complexes exist, especially in the outer region of the complex between CP43 and cytochrome b(559) and adjacent to the B-helix of the D1 protein. These differences are discussed in terms of the number and organization of some of the PSII low molecular weight subunits.  相似文献   

4.
A project to investigate the supramolecular structure of photosystems was initiated, which is based on protein solubilizations by digitonin, protein separations by Blue native (BN)-polyacrylamide gel electrophoresis (PAGE) and protein identifications by mass spectrometry (MS). Under the conditions applied, nine photosystem supercomplexes could be described for chloroplasts of Arabidopsis, which have apparent molecular masses between 600 and 3200 kDa on BN gels. Identities of the supercomplexes were determined on the basis of their subunit compositions as documented by 2D BN/SDS-PAGE and BN/BN-PAGE. Two supercomplexes of 1060 and approximately 1600 kDa represent dimeric and trimeric forms of photosystem I (PSI), which include tightly bound LHCI proteins. Compared to monomeric PSI, these protein complexes are of low abundance. In contrast, photosystem II mainly forms part of dominant supercomplexes of 850, 1000, 1050 and 1300 kDa. According to our interpretation, these supercomplexes contain dimeric PSII, 1-4 LHCII trimers and additionally monomeric LHCII proteins. The 1300-kDa PSII supercomplex (containing four LHCII trimers) is partially converted into the 1000-kDa PSII supercomplex (containing two LHCII trimers) in the presence of dodecylmaltoside on 2D BN/BN gels. Analyses of peptides of the trypsinated 1300-kDa PSII supercomplex by mass spectrometry allowed to identify known subunits of the PSII core complex and additionally LHCII proteins encoded by eight different genes in Arabidopsis. Further application of this experimental approach will allow new insights into the supermolecular organization of photosystems in plants.  相似文献   

5.
Zolla L  Timperio AM 《Proteins》2000,41(3):398-406
In higher plants, both photosystem I (PSI) and II (PSII) consist of membrane-embedded proteins that contain more than one transmembrane alpha helix. PSI is a multiprotein complex consisting of a core complex of thirteen proteins surrounded by four different types of light harvesting antenna proteins. Up to now, the protein components of both photosystems have been characterized by SDS-PAGE and/or immunoblotting and, therefore, identification made only on the basis of electrophoretic mobility, which is sometimes not sufficient to discriminate between individual membrane proteins. This is also complicated by the fact that some proteins, such as the antenna proteins, have almost identical molecular mass and amino acid sequence, making it difficult to identify and ascertain the relative stoichiometry of the proteins. In this paper, we report the complete resolution of the antenna proteins and most of the core components of PSI from spinach, together with the identification of proteins by molecular mass, successfully deduced by the combined use of HPLC coupled on-line with a mass spectrometer equipped with an electrospray ion source (ESI-MS). The proposed RP-HPLC-ESI-MS method holds several advantages over SDS-PAGE, including better protein separation, especially for antenna proteins, mass accuracy, speed, efficiency, and the potential to reveal isomeric forms. Moreover, the molecular masses determined by HPLC-ESI-MS are in good agreement with the molecular masses of the individual components calculated on the basis of their nucleotide-derived amino acid sequences, indicating an absence of post-translational modifications in these proteins. It follows that if the method proposed is useful for these highly hydrophobic proteins, it may be of general use for any membrane proteins, where the presence of detergent for solubilization may compromise their characterization.  相似文献   

6.
The cyanobacterial small CAB-like proteins (SCPs) consist of one-helix proteins that resemble transmembrane regions of the light-harvesting proteins of plants. To determine whether these proteins are associated with protein complexes in the thylakoid membrane, an abundant member of the SCP family, ScpD, was marked with a His tag, and proteins co-isolating with His-tagged ScpD were identified. These proteins included the major Photosystem (PS) II components as well as FtsH, which is involved in degradation of the PSII complex. To ascertain specific interaction between ScpD and the PSII complex, the His-tagged protein fraction was subjected to two-dimensional blue native/SDS-PAGE. Again, PSII components were co-isolated with ScpD-His, and ScpD-His was found to interact most strongly with CP47. ScpD association was most prominent with the monomeric form of PSII, suggesting ScpD association with PSII that is repaired. Using antibodies that recognize both ScpC and ScpD, we found the ScpC protein, which is very similar in primary structure to ScpD, to also co-isolate with the PSII complex. In contrast, ScpE did not co-isolate with a major protein complex in thylakoids. A fourth member of the SCP family, ScpB, could not be immunodetected, but was found by mass spectrometry in samples co-isolating with ScpD-His. Therefore, ScpB may be associated with ScpD as well. No association between SCPs and PSI could be demonstrated. On the basis of these and other data presented, we suggest that members of the SCP family can associate with damaged PSII and can serve as a temporary pigment reservoir while PSII components are being replaced.  相似文献   

7.
The carboxyl terminus of the CP43 subunit of photosystem II (PSII) in the thermophilic cyanobacterium, Synechococcus elongatus, was genetically tagged with six consecutive histidine residues to create a metal binding site on the PSII supramolecular complex. The histidine-tagging enabled rapid isolation of an intact cyanobacterial PSII core complex from dodecyl maltoside-solubilized thylakoids by a simple one-step Ni(2+)-affinity column chromatography. The isolated core complex was in a dimeric form with a molecular mass of about 580 kDa, consisting of five major intrinsic membrane proteins (CP47, CP43, D1, D2 and cytochrome b-559), three extrinsic proteins (33 kDa, 12 kDa, and cytochrome c-550), and a few low molecular mass membrane proteins, and evolved oxygen at a rate as high as 3,400 mumol (mg Chl)-1 h-1 at 45 degrees C with ferricyanide as an electron acceptor. The core complex emitted thermoluminescence B2-, B1- and Q-bands arising from S2QB-, S3QB- and S2QA- charge recombinations at respective emission temperatures of 45, 38 and 20 degrees C, all of which were higher by about 15 degrees C as compared with those in mesophilic spinach BBY membranes. These results indicated that the isolated core complex well retained the intact properties of thermoluminescence of thermophilic cyanobacterial cells, the deeper stabilization of PSII charge pairs. The isolated complex was extremely stable in terms of both protein composition and function, exhibiting no release of extrinsic proteins, no proteolytic degradation in any of its subunits, accompanied by only a slight (less than 10%) loss in oxygen evolution, after dark-incubation at 20 degrees C for 8 d. These properties of the thermophilic PSII core complex are highly useful for various types of studies on PSII.  相似文献   

8.
Shen JR  Kamiya N 《Biochemistry》2000,39(48):14739-14744
A photosystem II (PSII) complex highly active in oxygen evolution was purified and crystallized from a thermophilic cyanobacterium, Synechococcus vulcanus. The PSII complex in the crystals contained the D1/D2 reaction center subunits, CP47 and CP43 (two chlorophyll-binding core antenna proteins of photosystem II), cytochrome b-559 alpha- and beta-subunits, several low molecular weight subunits, and three extrinsic proteins, that is, 33 and 12 kDa proteins and cytochrome c-550. The PSII complex also retained a high rate of oxygen evolution. The apparent molecular mass of the PSII in the crystals was determined to be 580 kDa by gel filtration chromatography, indicating that the PSII crystallized is a dimer. The crystals diffracted to a maximum resolution of 3.5 A at a cryogenic temperature using X-rays from a synchrotron radiation source, SPring-8. The crystals belonged to an orthorhombic system, and the space group was P2(1)2(1)2(1) with unit cell dimensions of a = 129.7 A, b = 226.5 A, and c = 307.8 A. Each asymmetric unit contained one PSII dimer, which gave rise to a specific volume (V(M)) of 3.6 A(3)/Da based on the calculated molecular mass of 310 kDa for a PSII monomer and an estimated solvent content of 66%. Multiple data sets of native crystals have been collected and processed to 4.0 A, indicating that our crystals are suitable for structure analysis at this resolution.  相似文献   

9.
Cyanobacterial cells have two autonomous internal membrane systems, plasma membrane and thylakoid membrane. In these oxygenic photosynthetic organisms the assembly of the large membrane protein complex photosystem II (PSII) is an intricate process that requires the recruitment of numerous protein subunits and cofactors involved in excitation and electron transfer processes. Precise control of this assembly process is necessary because electron transfer reactions in partially assembled PSII can lead to oxidative damage and degradation of the protein complex. In this communication we demonstrate that the activation of PSII electron transfer reactions in the cyanobacterium Synechocystis sp. PCC 6803 takes place sequentially. In this organism partially assembled PSII complexes can be detected in the plasma membrane. We have determined that such PSII complexes can undergo light-induced charge separation and contain a functional electron acceptor side but not an assembled donor side. In contrast, PSII complexes in thylakoid membrane are fully assembled and capable of multiple turnovers. We conclude that PSII reaction center cores assembled in the plasma membrane are photochemically competent and can catalyze single turnovers. We propose that upon transfer of such PSII core complexes to the thylakoid membrane, additional proteins are incorporated followed by binding and activation of various donor side cofactors. Such a stepwise process protects cyanobacterial cells from potentially harmful consequences of performing water oxidation in a partially assembled PSII complex before it reaches its final destination in the thylakoid membrane.  相似文献   

10.
A blue-native gel electrophoresis system was combined with an in organello import assay to specifically analyse the location and assembly of two nuclear-encoded photosystem II (PSII) subunits. With this method we were able to show that initially the low molecular mass PsbW protein is not associated with the monomeric form of PSII. Instead a proportion of newly imported PsbW is directly assembled in dimeric PSII supercomplexes with very fast kinetics; its negatively charged N-terminal domain is essential for this process. The chlorophyll-binding PsbS protein, which is involved in energy dissipation, is first detected in the monomeric PSII subcomplexes, and only at later time points in the dimeric form of PSII. It seems to be bound tighter to the PSII core complex than to light harvesting complex II. These data point to radically different assembly pathways for different PSII subunits.  相似文献   

11.
The life cycle of Photosystem II (PSII) is embedded in a network of proteins that guides the complex through biogenesis, damage and repair. Some of these proteins, such as Psb27 and Psb28, are involved in cofactor assembly for which they are only transiently bound to the preassembled complex. In this work we isolated and analyzed PSII from a ΔpsbJ mutant of the thermophilic cyanobacterium Thermosynechococcus elongatus. From the four different PSII complexes that could be separated the most prominent one revealed a monomeric Psb27-Psb28 PSII complex with greatly diminished oxygen-evolving activity. The MALDI-ToF mass spectrometry analysis of intact low molecular weight subunits (<10kDa) depicted wild type PSII with the absence of PsbJ. Relative quantification of the PsbA1/PsbA3 ratio by LC-ESI mass spectrometry using (15)N labeled PsbA3-specific peptides indicated the complete replacement of PsbA1 by the stress copy PsbA3 in the mutant, even under standard growth conditions (50μmol photons m(-2) s(-1)). This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

12.
Photosystem II is a unique complex capable of absorbing light and splitting water. The complex has been thoroughly studied and to date there are more than 40 proteins identified, which bind to the complex either stably or transiently. Another special feature of this complex is the unusually high content of low molecular mass proteins that represent more than half of the proteins. In this review we summarize the recent findings on the low molecular mass proteins (<15kDa) and present an overview of the newly identified components as well. We have also performed co-expression analysis of the genes encoding PSII proteins to see if the low molecular mass proteins form a specific sub-group within the Photosystem II complex. Interestingly we found that the chloroplast-localized genes encoding PSII proteins display a different response to environmental and stress conditions compared to the nuclear localized genes. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

13.
Photosystem II (PSII) is a multiprotein complex that functions as a light-driven water:plastoquinone oxidoreductase in photosynthesis. Assembly of PSII proceeds through a number of distinct intermediate states and requires auxiliary proteins. The photosynthesis affected mutant 68 (pam68) of Arabidopsis thaliana displays drastically altered chlorophyll fluorescence and abnormally low levels of the PSII core subunits D1, D2, CP43, and CP47. We show that these phenotypes result from a specific decrease in the stability and maturation of D1. This is associated with a marked increase in the synthesis of RC (the PSII reaction center-like assembly complex) at the expense of PSII dimers and supercomplexes. PAM68 is a conserved integral membrane protein found in cyanobacterial and eukaryotic thylakoids and interacts in split-ubiquitin assays with several PSII core proteins and known PSII assembly factors. Biochemical analyses of thylakoids from Arabidopsis and Synechocystis sp PCC 6803 suggest that, during PSII assembly, PAM68 proteins associate with an early intermediate complex that might contain D1 and the assembly factor LPA1. Inactivation of cyanobacterial PAM68 destabilizes RC but does not affect larger PSII assembly complexes. Our data imply that PAM68 proteins promote early steps in PSII biogenesis in cyanobacteria and plants, but their inactivation is differently compensated for in the two classes of organisms.  相似文献   

14.
The PsbH protein belongs to a group of small protein subunits of photosystem II (PSII) complex. This protein is predicted to have a single transmembrane helix and it is important for the assembly of the PSII complex as well as for the proper function at the acceptor side of PSII. To identify the location of the PsbH subunit, the PSII complex with His-tagged PsbH protein was isolated from the cyanobacterium Synechocystis sp. PCC 6803 and labeled by Ni(2+)-nitrilo triacetic acid Nanogold. Electron microscopy followed by single particle image analysis identified the location of the labeled His-tagged PsbH protein at the periphery of the dimeric PSII complex. These results indicate that the N terminus of the PsbH protein is located at the stromal surface of the PSII complex and close to the CP47 protein.  相似文献   

15.
In Photosystem II (PSII), a high number of plastid encoded and membrane integral low molecular weight proteins smaller than 10 kDa, the proteins PsbE, F, H, I, J, K, L, M, N, Tc, Z and the nuclear encoded PsbW, X, Y1, Y2 proteins have been described. Here we show that all low molecular weight proteins of PSII already accumulate in the etioplast membrane fraction in darkness, whereas PsaI and PsaJ of photosystem I (PSI) represent the only low molecular weight proteins that do not accumulate in darkness. We found by BN‐PAGE separation of membrane protein complexes and selective MS that the accumulation of one‐helix proteins from PSII is light independent and occurs in etioplasts. In contrast, in chloroplasts isolated from light‐grown plants, low molecular weight proteins were found to specifically accumulate in PSI and II complexes. Our results demonstrate how plants grown in darkness prepare for the induction of chlorophyll dependent photosystem assembly upon light perception. We anticipate that our investigation will provide the essential means for the analysis of protein assembly in any membrane utilizing low molecular weight protein subunits.  相似文献   

16.
17.
Photosystem II (PSII) is a large membrane protein complex that performs the water oxidation reactions of photosynthesis in cyanobacteria, algae, and plants. The unusual redox reactions in PSII often lead to damage, degradation, and reassembly of this molecular machine. To identify novel assembly factors, high sensitivity proteomic analysis of PSII purified from the cyanobacterium Synechocystis sp. PCC 6803 was performed. This analysis identified six PSII-associated proteins that are encoded by an operon containing nine genes, slr0144 to slr0152. This operon encodes proteins that are not essential components of the PSII holocomplex but accumulate to high levels in pre-complexes lacking any of the lumenal proteins PsbP, PsbQ, or PsbV. The operon contains genes with putative binding domains for chlorophylls and bilins, suggesting these proteins may function as a reservoir for cofactors needed during the PSII lifecycle. Genetic deletion of this operon shows that removal of these protein products does not alter photoautotrophic growth or PSII fluorescence properties. However, the deletion does result in decreased PSII-mediated oxygen evolution and an altered distribution of the S states of the catalytic manganese cluster. These data demonstrate that the proteins encoded by the genes in this operon are necessary for optimal function of PSII and function as accessory proteins during assembly of the PSII complex. Thus, we have named the products of the slr0144-slr0152 operon Pap (Photosystem II assembly proteins).  相似文献   

18.
The membrane protein components of photosystem I (PSI) and II (PSII) from different species were prefractionated by liquid extraction and sucrose gradient ultracentrifugation and subsequently analyzed by reversed-phase high-performance liquid chromatography-electrospray ionization-mass spectrometry (RP-HPLC-ESI-MS) using poly-(styrene-divinylbenzene)-based monolithic capillary columns. The analytical method was shown to be very flexible and enabled the identification of antenna proteins as well as most of the proteins of the reaction center from PSI and PSII in various plant species with few RP-HPLC-ESI-MS analyses necessitating only minor adaptations in the gradients of acetonitrile in 0.05% aqueous trifluoroacetic acid. The membrane proteins, ranging in molecular mass (Mr) from 4196 (I protein) to more than 80,000 (PSI A/B) as well as isoforms were identified on the basis of their intact Mr and comparison with Mr deduced from known DNA or protein sequences. High quality mass spectra enabled the identification and quantitation of the nonphosphorylated and phosphorylated reaction center subunits D1, D2, and CP43 of PSII, containing five to seven membrane-spanning alpha-helices. Because of its high flexibility and suitability for proteins having a very wide range of Mr and hydrophobicities, the method is generally applicable to the analysis of complex mixtures of membrane proteins.  相似文献   

19.
Photosystem II (PSII) performs one of the key reactions on our planet: the light-driven oxidation of water. This fundamental but very complex process requires PSII to act in a highly coordinated fashion. Despite detailed structural information on the fully assembled PSII complex, the dynamic aspects of formation, processing, turnover, and degradation of PSII with at least 19 subunits and various cofactors are still not fully understood. Transient complexes are especially difficult to characterize due to low abundance, potential heterogeneity, and instability. Here, we show that Psb27 is involved in the assembly of the water-splitting site of PSII and in the turnover of the complex. Psb27 is a bacterial lipoprotein with a specific lipid modification as shown by matrix-assisted laser-desorption ionization time of flight mass spectrometry. The combination of HPLC purification of four different PSII subcomplexes and (15)N pulse label experiments revealed that lipoprotein Psb27 is part of a preassembled PSII subcomplex that represents a distinct intermediate in the repair cycle of PSII.  相似文献   

20.
In higher plants, thylakoid membrane protein complexes show lateral heterogeneity in their distribution: photosystem (PS) II complexes are mostly located in grana stacks, whereas PSI and adenosine triphosphate (ATP) synthase are mostly found in the stroma-exposed thylakoids. However, recent research has revealed strong dynamics in distribution of photosystems and their light harvesting antenna along the thylakoid membrane. Here, the dark-adapted spinach (Spinacia oleracea L.) thylakoid network was mechanically fragmented and the composition of distinct PSII-related proteins in various thylakoid subdomains was analyzed in order to get more insights into the composition and localization of various PSII subcomplexes and auxiliary proteins during the PSII repair cycle. Most of the PSII subunits followed rather equal distribution with roughly 70% of the proteins located collectively in the grana thylakoids and grana margins; however, the low molecular mass subunits PsbW and PsbX as well as the PsbS proteins were found to be more exclusively located in grana thylakoids. The auxiliary proteins assisting in repair cycle of PSII were mostly located in stroma-exposed thylakoids, with the exception of THYLAKOID LUMEN PROTEIN OF 18.3 (TLP18.3), which was more evenly distributed between the grana and stroma thylakoids. The TL29 protein was present exclusively in grana thylakoids. Intriguingly, PROTON GRADIENT REGULATION5 (PGR5) was found to be distributed quite evenly between grana and stroma thylakoids, whereas PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) was highly enriched in the stroma thylakoids and practically missing from the grana cores. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号