首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
阿尔兹海默病(Alzheimer's disease,AD)是一种以老年斑和神经纤维缠结为病理特征的慢性中枢性神经系统退行性疾病。在DNA编码序列不变的情况下,通过影响基因转录活性(如DNA可接触性、转录因子及调节因子的酶活性等)调控基因表达水平的表观遗传调控在疾病发生中的作用越来越受到重视。研究显示,表观遗传调控在AD病理机制中起重要作用,其中组蛋白乙酰化修饰异常可能与AD发生发展密切相关。现结合组蛋白乙酰化/去乙酰化的发生过程机制,概述组蛋白乙酰化修饰与AD发病机制相关的研究进展。  相似文献   

2.
DNA甲基化和组蛋白修饰等表观遗传机制是恶性肿瘤发生发展的重要原因之一.然而近年来研究发现,microRNA表达水平改变也参与恶性肿瘤的形成.最新研究资料揭示,表观遗传可调控microRNA表达,而一些种类的microRNA也可调节表观遗传,并且二者之间相互作用可调控组织细胞内基因表达以及诱导体内恶性肿瘤产生.研究资料还显示,表观遗传主要通过DNA甲基化、组蛋白修饰等方式调控microRNA表达,而microRNA则通过调节DNA甲基化转移酶、维持细胞中DNA甲基化水平或改变组蛋白修饰等途径调控表观遗传.对microRNA与表观遗传之间的调控关系以及在抗肿瘤领域内的应用进行全面而系统的论述.  相似文献   

3.
赖氨酸乙酰化是一种重要的翻译后修饰。细胞内的蛋白质,特别是代谢酶,广泛受乙酰化修饰的调控。乙酰化修饰由乙酰化酶和去乙酰化酶调节,对细胞的物质代谢和能量稳态进行多层次、复杂而又精细的调控。乙酰化酶和去乙酰化酶活性的发挥依赖中间代谢产物,且多种代谢物能够调控乙酰化酶和去乙酰化酶的催化活力。因此,乙酰化修饰是调控细胞代谢的重要机制。此外,乙酰化修饰能够调节自噬和营养物质感受通路,从而调控细胞的物质和能量稳态;乙酰化修饰对组蛋白的调节则能根据细胞的营养状态在表观遗传水平改变基因的表达,使细胞高效地应对不同的营养和压力状态。乙酰化修饰与代谢相关疾病的发生发展具有重要联系,对乙酰化调控的研究将极大增进人们对细胞代谢、表观遗传等生命活动的认识。  相似文献   

4.
精子发生过程中组蛋白甲基化和乙酰化   总被引:1,自引:0,他引:1  
Ge SQ  Li JZ  Zhang XJ 《遗传》2011,33(9):939-946
精子发生(Spermatogenesis)这一高度复杂的独特分化过程包括精原细胞发育为精母细胞、单倍体精细胞的形成和精子成熟,并以阶段特异性和睾丸特异性基因的表达、有丝分裂和减数分裂以及组蛋白向鱼精蛋白的转变为特征。表观遗传修饰在减数分裂重组、联会复合物的形成、姊妹染色体的结合、减数分裂后精子的变态、基因表达阻遏和异染色质形成过程中发挥着重要作用。其中具有一定组成形式、起抑制作用和/或激活作用的组蛋白甲基化和乙酰化标记,不仅保证了正确的染色体配对和二价染色体的成功分离,并且精确调节减数分裂特异性基因的适时表达。精子发生过程中组蛋白甲基化和/或乙酰化错误会直接影响表观遗传修饰的建立和维持,导致生精细胞异常甚至引发不育。文章旨在对精子发生过程中组蛋白甲基化和乙酰化表观遗传修饰的动态变化及其相关酶的调节机制进行综述,为进一步研究精子发生的表观遗传调控,预防男性不育疾病的发生提供基础资料。  相似文献   

5.
Sirtuins属于Ⅲ类组蛋白去乙酰化酶,可通过去乙酰化作用调控细胞的生存、衰老、凋亡及自噬等生理活动。最新研究发现,细胞自噬对维持细胞内稳态具有重要意义,参与调节肿瘤、心血管等多种疾病的发生和发展。Sirtuins家族中Sirt1作为研究最为广泛的组蛋白去乙酰化酶,可通过调节自噬水平改善心血管疾病。因此本文根据近几年来的研究报道,针对Sirtuins去乙酰化修饰调控的细胞自噬在心血管疾病中的作用作一概述。  相似文献   

6.
表观遗传是指在不改变DNA核苷酸序列的前提下,通过DNA甲基化、组蛋白修饰和非编码RNA等形式引起基因表达的可遗传性改变,并参与多种生命过程。最新研究发现,多种表观遗传修饰形式可影响胰腺β细胞的发育和功能,从而导致糖代谢紊乱,在糖尿病的发生发展中起到了重要的作用。现将对β细胞分化与功能中的表观遗传调控机制进行综述。  相似文献   

7.
王晓铄  俞英 《遗传》2010,32(7):663-669
炎症受遗传和非遗传因素(环境或表观遗传)的共同影响, 其中表观遗传(Epigenetic)在炎症的发生发展过程中发挥重要调控作用。表观遗传修饰是指DNA序列没有改变, 而基因表达却发生了可遗传的变化, 主要包括DNA甲基化和组蛋白修饰等。表观遗传为病原微生物与炎症反应间关系的研究架起了重要桥梁。炎症反应中T辅助细胞的分化, 细胞因子、趋化因子等基因的表达都受到表观遗传的调控。文章主要综述了DNA甲基化、组蛋白修饰等对炎症尤其是乳房炎的调控机制, 并就表观遗传调控在奶牛乳房炎治疗及抗病育种中的应用前景进行了展望。  相似文献   

8.
早期胚胎发育受到表观遗传的多重级联调控.组蛋白修饰是表观遗传调控的重要组成部分,组蛋白翻译后修饰通过影响组蛋白与DNA结合的紧密程度,调控染色质状态与基因表达,参与了胚胎发育及相关疾病发生的过程.在早期胚胎发育过程中,组蛋白甲基化修饰H3K4me3, H3K27me3与H3K9me3通过协调染色质的开放与关闭参与调控发育相关基因的表达,沉默逆转录转座子以及参与经典与非经典的印记调控.早期胚胎阶段作为表观遗传重编程的关键时间窗口,在此阶段组蛋白修饰酶的表达与组蛋白修饰容易受到不良环境的影响,导致胚胎期及子代多种疾病的发生.本文详细地对组蛋白H3K4me3, H3K27me3, H3K9me3修饰在早期胚胎发育与疾病发生中的作用与功能进行了综述,为今后表观遗传学在早期胚胎发育相关疾病的干预治疗提供理论基础.  相似文献   

9.
刘辰东  杨露  蒲红州  杨琼  黄文耀  赵雪  朱砺  张顺华 《遗传》2017,39(10):888-896
DNA甲基化、组蛋白修饰和miRNA表达调控是表观遗传调控的3种重要方式,其在基因表达调控中发挥着关键作用。适当运动有益于身心健康。骨骼肌作为运动的主体组织,运动可以提高其代谢能力,改善其线粒体生物学功能,调控肌纤维类型转化,增加骨骼肌力量。近年来越来越多的研究表明,表观遗传调控在机体适应运动过程中发挥着重要作用,DNA甲基化、组蛋白修饰和miRNA表达调控等表观遗传调控方式通过调控骨骼肌基因表达来改变骨骼肌代谢能力、线粒体生物学功能和肌纤维类型,从而适应运动变化。本文对近年来运动对骨骼肌基因DNA甲基化、组蛋白修饰和相应miRNA表达调控等3种表观遗传调控方式的研究现状进行了综述,以期为进一步研究运动改善机体机能和健康提供参考。  相似文献   

10.
在植物发育过程中,除了遗传调控激活或抑制基因表达来促进植物发育过程中细胞分化外,表观遗传学是另外一个重要的、复杂的调控层面,在该过程中通过DNA特异位点的甲基化,组蛋白的翻译后修饰改变染色质的状态,进而时空性调控植物发育调控因子的表达。分化细胞提供了一个研究组蛋白密码如何影响细胞命运功能强大的系统。本研究重点综述了表观遗传调控中DNA甲基化、组蛋白甲基化及组蛋白乙酰化在植物细胞分化中的调控作用。  相似文献   

11.
Autophagy is an evolutionarily conserved catabolic process through which different components of the cells are sequestered into double-membrane cytosolic vesicles called autophagosomes, and fated to degradation through fusion with lysosomes. Autophagy plays a major function in many physiological processes including response to different stress factors, energy homeostasis, elimination of cellular organelles and tissue remodeling during development. Consequently, autophagy is strictly controlled and post-translational modifications such as phosphorylation and ubiquitination have long been associated with autophagy regulation. In contrast, the importance of acetylation in autophagy control has only emerged in the last few years. In this review, we summarize how previously identified histone acetylases and deacetylases modify key autophagic effector proteins, and discuss how this has an impact on physiological and pathological cellular processes.  相似文献   

12.
Aberrant epigenetic alterations play a decisive role in cancer initiation and propagation via the regulation of key tumor suppressor genes and oncogenes or by modulation of essential signaling pathways. Autophagy is a highly regulated mechanism required for the recycling and degradation of surplus and damaged cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy has a divergent role. For instance, autophagy elicits tumor promoting functions by facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, metastasis, and resistance to anti-cancer therapies. In addition, recent studies have demonstrated that various tumor suppressor genes and oncogenes involved in autophagy, are tightly regulated via different epigenetic modifications, such as DNA methylation, histone modifications and non-coding RNAs. The impact of epigenetic regulation of autophagy in cancer cells and CSCs is not well-understood. Therefore, uncovering the complex mechanism of epigenetic regulation of autophagy provides an opportunity to improve and discover novel cancer therapeutics. Subsequently, this would aid in improving clinical outcome for cancer patients. In this review, we provide a comprehensive overview of the existing knowledge available on epigenetic regulation of autophagy and its importance in the maintenance and homeostasis of CSCs and cancer cells.  相似文献   

13.
The coronavirus disease 2019 (COVID-19) pandemic has become the most serious global public health issue in the past two years, requiring effective therapeutic strategies. This viral infection is a contagious disease caused by new coronaviruses (nCoVs), also called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autophagy, as a highly conserved catabolic recycling process, plays a significant role in the growth and replication of coronaviruses (CoVs). Therefore, there is great interest in understanding the mechanisms that underlie autophagy modulation. The modulation of autophagy is a very complex and multifactorial process, which includes different epigenetic alterations, such as histone modifications and DNA methylation. These mechanisms are also known to be involved in SARS-CoV-2 replication. Thus, molecular understanding of the epigenetic pathways linked with autophagy and COVID-19, could provide novel therapeutic targets for COVID-19 eradication. In this context, the current review highlights the role of epigenetic regulation of autophagy in controlling COVID-19, focusing on the potential therapeutic implications.  相似文献   

14.
15.
Autophagy is a nonspecific bulk degradation pathway for long-lived cytoplasmic proteins, protein complexes, or damaged organelles. This process is also a major degradation pathway for many aggregate-prone, disease-causing proteins associated with neurodegenerative disorders, such as mutant huntingtin in Huntington's disease. In this review, we discuss factors regulating the degradation of mutant huntingtin by autophagy. We also report the growing list of new drugs/pathways that upregulate autophagy to enhance the clearance of this mutant protein, as autophagy upregulation may be a tractable strategy for the treatment of Huntington's disease.  相似文献   

16.
细胞自噬是进化上高度保守的细胞分解代谢途径. 在代谢应激下激活,产生双层膜结构的自噬小体,将胞浆内受损细胞器和蛋白质包裹、转运至溶酶体降解,维持细胞内环境平衡,是一种典型的细胞质量控制机制.目前,经典自噬通路中的主要蛋白质已经明确.但代谢应激信号的输入引起这些蛋白质怎样的活性和功能变化,这些变化对自噬产生怎样的影响,却是知之甚少.本文从翻译后修饰角度对代谢应激状态下自噬过程中相关蛋白质的调节进行综述,有助于深入了解自噬过程.  相似文献   

17.
18.
19.
Autophagy is a major intracellular process for the degradation of cytosolic macromolecules and organelles in the lysosomes or vacuoles for the purposes of regulating cellular homeostasis and protein and organelle quality control. In complex metazoan organisms, autophagy is highly engaged during the immune responses through interfaces either directly with intracellular pathogens or indirectly with immune signalling molecules. Studies over the last decade or so have also revealed a number of important ways in which autophagy shapes plant innate immune responses. First, autophagy promotes defence‐associated hypersensitive cell death induced by avirulent or related pathogens, but restricts unnecessary or disease‐associated spread of cell death. This elaborate regulation of plant host cell death by autophagy is critical during plant immune responses to the types of plant pathogens that induce cell death, which include avirulent biotrophic pathogens and necrotrophic pathogens. Second, autophagy modulates defence responses regulated by salicylic acid and jasmonic acid, thereby influencing plant basal resistance to both biotrophic and necrotrophic pathogens. Third, there is an emerging role of autophagy in virus‐induced RNA silencing, either as an antiviral collaborator for targeted degradation of viral RNA silencing suppressors or an accomplice of viral RNA silencing suppressors for targeted degradation of key components of plant cellular RNA silencing machinery. In this review, we summarize this important progress and discuss the potential significance of the perplexing role of autophagy in plant innate immunity.  相似文献   

20.
自噬是细胞重要的自我保护机制,多种伤害性刺激激活的自噬具有维持细胞稳态和正常功能的作用.此外,自噬还参与调控恶性肿瘤、动脉粥样硬化等多种疾病的发生发展过程.体内细胞处于复杂的力学微环境中,力学刺激参与调控细胞自噬,如压力可诱导心肌细胞的自噬、牵张力调控运动系统多种细胞的自噬、流体剪切力可激活血管内皮细胞和肿瘤细胞的自噬.力学刺激诱导的细胞自噬依赖众多信号通路.细胞骨架作为重要的调节因子,不仅参与细胞力学信号转导,同时可参与调控细胞自噬.因此,细胞骨架与力学刺激诱导的细胞自噬密切相关.本文结合最新的研究成果,综述力学刺激对细胞自噬的影响及其分子机制,以期为研究力学刺激对细胞生物学行为的影响提供新的视角,进而为相关疾病的治疗提供新思路和分子靶点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号