首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local adaptation is an important principle in a world of environmental change and might be critical for species persistence. We tested the hypothesis that replicated populations can attain rapid local adaptation under two varying laboratory environments. Clonal subpopulations of the cyclically parthenogenetic rotifer Brachionus calyciflorus were allowed to adapt to two varying harsh and a benign environment: a high‐salt, a food‐limited environment and untreated culture medium (no salt addition, high food). In contrast to most previous studies, we re‐adjusted rotifer density to a fixed value (two individuals per ml) every 3–4 days of unrestricted population growth, instead of exchanging a fixed proportion of the culture medium. Thus our dilution regime specifically selected for high population growth during the entire experiment and it allowed us to continuously track changes in fitness (i.e., maximum population growth under the prevailing conditions) in each population. After 56 days (43 asexual and eight sexual generations) of selection, the populations in the harsh environments showed a significant increase in fitness over time relative to the beginning compared to the population in untreated culture medium. Furthermore, the high‐salt population exhibited a significantly elevated ratio of sexual offspring from the start of the experiment, which suggested that this environment either triggered higher rates of sex or that the untreated medium and the food‐limited environment suppressed sex. In a following assay of local adaptation we measured population fitness under “local” versus “foreign” conditions (populations adapted to this environment compared to those of the other environment) for both harsh habitats. We found significantly higher fitness values for the local populations (on average, a 38% higher fitness) compared to the foreign populations. Overall, local adaptation was formed rapidly and it seemed to be more pronounced in the high‐salt treatment.  相似文献   

2.
X chromosomes mutagenized with EMS were tested for their effects on the fitness of hemizygous carriers. The tests were carried out in populations in which treated and untreated X chromosomes segregated from matings between males and attached-X females; the populations were maintained for several generations, during which time changes in the frequencies of the treated and untreated chromosomes were observed. From the rates at which the frequencies changed, the fitness effects of the treated chromosomes were determined. It was found that flies hemizygous for a mutagenized chromosome were 1.7% less fit per mM EMS treatment than those hemizygous for an untreated chromosome. Since the same flies were only 0.5% per mM less viable than their untreated counterparts, the total fitness effect of an X chromosome carrying EMS-induced mutants is three to four times greater than its viability effect. By comparing the heterozygous effect of a mutagenized X chromosome on fitness with the corresponding hemizygous effect, the dominance value for the chromosome is estimated to be about 0.25.  相似文献   

3.
Conflicts of interest between mates can promote the evolution of male traits that reduce female fitness and that drive coevolution between the sexes. The rate of adaptation depends on the intensity of selection and its efficiency, which depends on drift and genetic variability. This leads to the largely untested prediction that coevolutionary adaptations such as those driven by sexual conflict should evolve faster in large populations. We tested this using the bruchid beetle Callosobruchus maculatus, a species where harm inflicted by males is well documented. Although most experimental evolution studies remove sexual conflict, we reintroduced it in populations in which it had been experimentally removed. Both population size and standing genetic variability were manipulated in a factorial experimental design. After 90 generations of relaxed conflict (monogamy), the reintroduction of sexual conflicts for 30 generations favored males that harmed females and females that were more resistant to the genital damage inflicted by males. Males evolved to become more harmful when population size was large rather than when initial genetic variation was enriched. Our study shows that sexual selection can create conditions in which males can benefit from harming females and that selection may tend to be more intense and effective in larger populations.  相似文献   

4.
Six replicate populations of the bacterium Escherichia coli were propagated for more than 10,000 generations in a defined environment. We sought to quantify the variation among clones within these populations with respect to their relative fitness, and to evaluate the roles of three distinct population genetic processes in maintaining this variation. On average, a pair of clones from the same population differed from one another in their relative fitness by approximately 4%. This within-population variation was small compared with the average fitness gain relative to the common ancestor, but it was statistically significant. According to one hypothesis, the variation in fitness is transient and reflects the ongoing substitution of beneficial alleles. We used Fisher's fundamental theorem to compare the observed rate of each population's change in mean fitness with the extent of variation for fitness within that population, but we failed to discern any correspondence between these quantities. A second hypothesis supposes that the variation in fitness is maintained by recurrent deleterious mutations that give rise to a mutation-selection balance. To test this hypothesis, we made use of the fact that two of the six replicate populations had evolved mutator phenotypes, which gave them a genomic mutation rate approximately 100-fold higher than that of the other populations. There was a marginally significant correlation between a population's mutation rate and the extent of its within-population variance for fitness, but this correlation was driven by only one population (whereas two of the populations had elevated mutation rates). Under a third hypothesis, this variation is maintained by frequency-dependent selection, whereby genotypes have an advantage when they are rare relative to when they are common. In all six populations, clones were more fit, on average, when they were rare than when they were common, although the magnitude of the advantage when rare was usually small (~1% in five populations and ~5% in the other). These three hypotheses are not mutually exclusive, but frequency-dependent selection appears to be the primary force maintaining the fitness variation within these experimental populations.  相似文献   

5.
C. M. Wilke  J. Adams 《Genetics》1992,131(1):31-42
It has been suggested that the primary evolutionary role of transposable elements is negative and parasitic. Alternatively, the target specificity and gene regulatory capabilities of many transposable elements raise the possibility that transposable element-induced mutations are more likely to be adaptively favorable than other types of mutations. Populations of Saccharomyces cerevisiae containing large amounts of variation for Ty1 genomic insertions were constructed, and the effects of Ty1 copy number on two components of fitness, yield and growth rate were determined. Although mean stationary phase density decreased with increased Ty1 copy number, the variance and range increased. The distributions of stationary phase densities indicate that many Ty1 insertions have negative effects on fitness, but also that some may have positive effects. To test directly for adaptively favorable Ty1 insertions, populations containing large amounts of variability for Ty1 copy number were grown in continuous culture. After 98-112 generations the frequency of clones containing zero Ty1 elements had decreased to approximately 0.0, and specific Ty1-containing clone families had predominated. Considering that most of the genetic variation in the populations was due to Ty1 transposition, and that Ty1 insertions had, on average, a negative effect on fitness, we conclude that Ty1 transposition events were directly responsible for the production of adaptive mutations in the clones that predominated in the populations.  相似文献   

6.
Sexual selection is often prevented during captive breeding in order to maximize effective population size and retain genetic diversity. However, enforcing monogamy and thereby preventing sexual selection may affect population fitness either negatively by preventing the purging of deleterious mutations or positively by reducing sexual conflicts. To better understand the effect of sexual selection on the fitness of small populations, we compared components of female fitness and the expression of male secondary sexual characters in 19 experimental populations of guppies (Poecilia reticulata) maintained under polygamous or monogamous mating regimes over nine generations. In order to generate treatments that solely differed by their level of sexual selection, the middle‐class neighbourhood breeding design was enforced in the monogamous populations, while in the polygamous populations, all females contributed similarly to the next generation with one male and one female offspring. This experimental design allowed potential sexual conflicts to increase in the polygamous populations because selection could not operate on adult‐female traits. Clutch size and offspring survival showed a weak decline from generation to generation but did not differ among treatments. Offspring size, however, declined across generations, but more in monogamous than polygamous populations. By generation eight, orange‐ and black‐spot areas were larger in males from the polygamous treatment, but these differences were not statistically significant. Overall, these results suggest that neither sexual conflict nor the purging of deleterious mutation had important effects on the fitness of our experimental populations. However, only few generations of enforced monogamy in a benign environment were sufficient to negatively affect offspring size, a trait potentially crucial for survival in the wild. Sexual selection may therefore, under certain circumstances, be beneficial over enforced monogamy during captive breeding.  相似文献   

7.
According to classical evolutionary theory, sexual recombination can generate the variation necessary to adapt to changing environments and thereby confer an evolutionary advantage of sexual over asexual reproduction. Using the green alga, Chlamydomonas reinhardtii, we investigated the effect of a single sexual episode on adaptation of heterotrophic growth on different carbon sources. In an initial mixture of isolates, sex was induced and the resulting offspring constituted the sexual populations, along with any unmated vegetative cells; the unmated mixture of isolates represented the asexual populations. Mean and variance in division rates (i.e., fitness) were measured four times during approximately 50 generations of vegetative growth in the dark on all possible combinations of four carbon sources. Consistent with effects of recombination of epistatic genes in linkage disequilibrium, sexual populations initially had a higher variance in fitness, but their mean fitness was lower than that of asexual populations, possibly due to recombinational load. Subsequently, fitness of sexual populations exceeded that of asexual ones, but finally they regained parity in both mean and variance of fitness. Although recombination was not more effective on more complex substrates, these results generally support the idea that sex can accelerate adaptation to novel environments.  相似文献   

8.
Whether sexual selection generally promotes or impedes population persistence remains an open question. Intralocus sexual conflict (IaSC) can render sexual selection in males detrimental to the population by increasing the frequency of alleles with positive effects on male reproductive success but negative effects on female fecundity. Recent modeling based on fitness landscape theory, however, indicates that the relative impact of IaSC may be reduced in maladapted populations and that sexual selection therefore might promote adaptation when it is most needed. Here, we test this prediction using bean beetles that had undergone 80 generations of experimental evolution on two alternative host plants. We isolated and assessed the effect of maladaptation on sex‐specific strengths of selection and IaSC by cross‐rearing the two experimental evolution regimes on the alternative hosts and estimating within‐population genetic (co)variance for fitness in males and females. Two key predictions were upheld: males generally experienced stronger selection compared to females and maladaptation increased selection in females. However, maladaptation consistently decreased male‐bias in the strength of selection and IaSC was not reduced in maladapted populations. These findings imply that sexual selection can be disrupted in stressful environmental conditions, thus reducing one of the potential benefits of sexual reproduction in maladapted populations.  相似文献   

9.
Theory predicts that if most mutations are deleterious to both overall fitness and condition-dependent traits affecting mating success, sexual selection will purge mutation load and increase nonsexual fitness. We explored this possibility with populations of mutagenized Drosophila melanogaster exhibiting elevated levels of deleterious variation and evolving in the presence or absence of male-male competition and female choice. After 60 generations of experimental evolution, monogamous populations exhibited higher total reproductive output than polygamous populations. Parental environment also affected fitness measures - flies that evolved in the presence of sexual conflict showed reduced nonsexual fitness when their parents experienced a polygamous environment, indicating trans-generational effects of male harassment and highlighting the importance of a common garden design. This cost of parental promiscuity was nearly absent in monogamous lines, providing evidence for the evolution of reduced sexual antagonism. There was no overall difference in egg-to-adult viability between selection regimes. If mutation load was reduced by the action of sexual selection in this experiment, the resultant gain in fitness was not sufficient to overcome the costs of sexual antagonism.  相似文献   

10.
B D Latter 《Genetics》1998,148(3):1143-1158
Multilocus simulation is used to identify genetic models that can account for the observed rates of inbreeding and fitness decline in laboratory populations of Drosophila melanogaster. The experimental populations were maintained under crowded conditions for approximately 200 generations at a harmonic mean population size of Nh approximately 65-70. With a simulated population size of N = 50, and a mean selective disadvantage of homozygotes at individual loci approximately 1-2% or less, it is demonstrated that the mean effective population size over a 200-generation period may be considerably greater than N, with a ratio matching the experimental estimate of Ne/Nh approximately 1.4. The buildup of associative overdominance at electrophoretic marker loci is largely responsible for the stability of gene frequencies and the observed reduction in the rate of inbreeding, with apparent selection coefficients in favor of the heterozygote at neutral marker loci increasing rapidly over the first N generations of inbreeding to values approximately 5-10%. The observed decline in fitness under competitive conditions in populations of size approximately 50 in D. melanogaster therefore primarily results from mutant alleles with mean effects on fitness as homozygotes of sm < or = 0.02. Models with deleterious recessive mutants at the background loci require that the mean selection coefficient against heterozygotes is at most hsm approximately 0.002, with a minimum mutation rate for a single Drosophila autosome 100 cM in length estimated to be in the range 0.05-0.25, assuming an exponential distribution of s. A typical chromosome would be expected to carry at least 100-200 such mutant alleles contributing to the decline in competitive fitness with slow inbreeding.  相似文献   

11.
Hill JA  Otto SP 《Genetics》2007,175(3):1419-1427
In facultatively sexual species, lineages that reproduce asexually for a period of time can accumulate mutations that reduce their ability to undergo sexual reproduction when sex is favorable. We propagated Saccharomyces cerevisiae asexually for approximately 800 generations, after which we measured the change in sexual fitness, measured as the proportion of asci observed in sporulation medium. The sporulation rate in cultures propagated asexually at small population size declined by 8%, on average, over this time period, indicating that the majority of mutations that affect sporulation rate are deleterious. Interestingly, the sporulation rate in cultures propagated asexually at large population size improved by 11%, on average, indicating that selection on asexual function effectively eliminated most of the mutations deleterious to sporulation ability. These results suggest that pleiotropy between mutations' effects on asexual fitness and sexual fitness was predominantly positive, at least for the mutations accumulated in this experimental evolution study. A positive correlation between growth rate and sporulation rate among lines also provided evidence for positive pleiotropy. These results demonstrate that, at least under certain circumstances, selection acting on asexual fitness can help to maintain sexual function.  相似文献   

12.

Background  

Outcrossing between populations can exert either positive or negative effects on offspring fitness. Cyclically parthenogenetic rotifers, like other continental zooplankters, show high genetic differentiation despite their high potential for passive dispersal. Within this context, the effects of outcrossing may be relevant in modulating gene flow between populations through selection for or against interpopulation hybrids. Nevertheless, these effects remain practically unexplored in rotifers. Here, the consequences of outcrossing on the rotifer Brachionus plicatilis were investigated. Cross-mating experiments were performed between a reference population and three alternative populations that differed in their genetic distance with regard to the former. Two offspring generations were obtained: F1 and BC ('backcross'). Fitness of the outcrossed offspring was compared with fitness of the offspring of the reference population for both generations and for three different between-population combinations. Four fitness components were measured throughout the rotifer life cycle: the diapausing egg-hatching proportion, clone viability (for the clones originating from diapausing eggs), initial net growth rate R for each viable clone, and the proportion of male-producing clones. Additionally, both the parental fertilisation proportion and a compound fitness measure, integrating the complete life cycle, were estimated.  相似文献   

13.
The selective history of a population can influence its subsequent evolution, an effect known as historical contingency. We previously observed that five of six replicate populations that were evolved in a glucose‐limited environment for 2000 generations, then switched to lactose for 1000 generations, had higher fitness increases in lactose than populations started directly from the ancestor. To test if selection in glucose systematically increased lactose evolvability, we started 12 replay populations—six from a population subsample and six from a single randomly selected clone—from each of the six glucose‐evolved founder populations. These replay populations and 18 ancestral populations were evolved for 1000 generations in a lactose‐limited environment. We found that replay populations were initially slightly less fit in lactose than the ancestor, but were more evolvable, in that they increased in fitness at a faster rate and to higher levels. This result indicates that evolution in the glucose environment resulted in genetic changes that increased the potential of genotypes to adapt to lactose. Genome sequencing identified four genes—iclR, nadR, spoT, and rbs—that were mutated in most glucose‐evolved clones and are candidates for mediating increased evolvability. Our results demonstrate that short‐term selective costs during selection in one environment can lead to changes in evolvability that confer longer term benefits.  相似文献   

14.
Evidence for temperature adaptation in Daphnia magna was inferred from variation in the shape of temperature reaction norms for somatic growth rate, a fitness‐related trait. Ex‐ephippial clones from eight populations across Europe were grown under standardized conditions after preacclimation at five temperatures (17–29 °C). Significant variation for grand mean growth rates occurred both within populations (among clones) and between populations. Genetic variation for reaction norm shape was found within populations, with temperature‐dependent trade‐offs in clone relative fitness. However, the population average responses to temperature were similar, following approximately parallel reaction norms. The among‐population variation is not evidence for temperature adaptation. Lack of temperature adaptation at the population level may be a feature of intermittent populations where environmentally terminated diapause can entrain the planktonic stage of the life‐history within a similar range of temperatures.  相似文献   

15.
We measured the mean fitness of populations of Chlamydomonas reinhardtii maintained in the laboratory as obligately sexual or asexual populations for about 100 sexual cycles and about 1000 asexual generations. Sexuality (random gamete fusion followed by meiosis) is expected to reduce mutational load and increase mean fitness by combining deleterious mutations from different lines of descent. We found no evidence for this process of mutation clearance: the mean fitness of sexual populations did not exceed that of asexual populations, whether measured through competition or in pure culture. We found instead that sexual progeny suffer an immediate loss in fitness, and that sexual lines maintain genetic variance for fitness. We suggest that sexual populations at equilibrium with selection in a benign environment may be mixtures of several or many epistatic genotypes with nearly equal fitness. Recombination between these genotypes reduces mean fitness and creates genetic variance for fitness. This may provide fuel for continued selection should the environment change.  相似文献   

16.
Two populations of Escherichia coli, each initiated with a single clone containing a derivative of the plasmid pBR322, were maintained for long periods in glucose-limited continuous culture. In both populations, after an extensive number of generations had elapsed, clones were isolated in which the transposon Tn3 from the plasmid had integrated into the bacterial chromosome. In both cases examined, the transpositions were shown to increase relative fitness approximately 6-7%, in the environment in which the populations were maintained. The loci of integration were mapped to approximately 13.2 min (population 1) and approximately 32.8 min (population 2).  相似文献   

17.
Asexual reproduction avoids the costs associated with sex, predicting that invading asexual clones can quickly replace sexual populations. Daphnia pulex populations in the Great Lakes area are predominately asexual, but the elimination of sexual populations by invading clones is poorly understood. Asexual clones were detected at low frequency in one rare sexual population in 1995, with some increase in frequency during 2003 and 2004. However, these clones remained at low frequency during further yearly sampling (2005–2013) with no evidence that the resident sexual population was in danger of elimination. There was evidence for hybridization between rare males produced by asexual clones and sexual females with the potential to produce new asexual genotypes and spread the genetic factors for asexuality. In a short-term laboratory competition experiment, the two most common asexual clones did not increase in frequency relative to a genetically diverse sexual population due in part to a greater investment in diapausing eggs that trades-off current population growth for increased contribution to the egg bank. Our results suggest that a successful invasion can be prolonged, requiring a combination of clonal genotypes with high fitness, persistence of clones in the egg bank and negative factors affecting the sexual population such as inbreeding depression resulting from population bottlenecks.  相似文献   

18.
MUTATIONAL MELTDOWN IN LABORATORY YEAST POPULATIONS   总被引:5,自引:0,他引:5  
Abstract.— In small or repeatedly bottlenecked populations, mutations are expected to accumulate by genetic drift, causing fitness declines. In mutational meltdown models, such fitness declines further reduce population size, thus accelerating additional mutation accumulation and leading to extinction. Because the rate of mutation accumulation is determined partly by the mutation rate, the risk and rate of meltdown are predicted to increase with increasing mutation rate. We established 12 replicate populations of Saccharomyces cerevisiae from each of two isogenic strains whose genomewide mutation rates differ by approximately two orders of magnitude. Each population was transferred daily by a fixed dilution that resulted in an effective population size near 250. Fitness declines that reduce growth rates were expected to reduce the numbers of cells transferred after dilution, thus reducing population size and leading to mutational meltdown. Through 175 daily transfers and approximately 2900 generations, two extinctions occurred, both in populations with elevated mutation rates. For one of these populations there is direct evidence that extinction resulted from mutational meltdown: Extinction immediately followed a major fitness decline, and it recurred consistently in replicate populations reestablished from a sample frozen after this fitness decline, but not in populations founded from a predecline sample. Wild‐type populations showed no trend to decrease in size and, on average, they increased in fitness.  相似文献   

19.
The mutational adaptation of E. coli to low glucose concentrations was studied in chemostats over 280 generations of growth. All members of six independent populations acquired increased fitness through the acquisition of mutations at the mgl locus, increasing the binding protein-dependent transport of glucose. These mutations provided a strong fitness advantage (up to 10-fold increase in glucose affinity) and were present in most isolates after 140 generations. mgl constitutivity in some isolates was caused by base substitution, short duplication, small deletion and IS1 insertion in the 1041 bp gene encoding the repressor of the mgl system, mglD (galS). But an unexpectedly large proportion of mutations were located in the short mgl operator sequence (mglO), and the majority of mutations were in mglO after 280 generations of selection. The adaptive mglO substitutions in several independent populations were at exactly the positions conserved in the two 8 bp half-sites of the mgl operator, with the nature of the base changes also completely symmetrical. Either mutations were directed to the operator or the particular operator mutations had a selective advantage under glucose limitation. Indeed, isolates carrying mglO mutations showed greater rates of transport for glucose and galactose at low concentrations than those carrying mglD null mutations. mglO mutations avoid cross-talk by members of the GalR-Lacl repressor family, reducing transporter expression and providing a competitive advantage in a glucose-limited environment. Another interesting aspect of these results was that each adapted population acquired multiple mgl alleles, with several populations containing at least six different mgl-regulatory mutations co-existing after 200 generations. The diversity of mutations in the mglO/mglD region, generally in combination with mutations at other loci regulating glucose uptake (malT, mlc, ptsG), provided evidence for multiple clones in each population. Increased fitness was accompanied by the generation of genetic diversity and not the evolution of a single winner clone, as predicted by the periodic selection model of bacterial populations.  相似文献   

20.
Earth's biodiversity is undergoing mass extinction due to anthropogenic compounding of environmental, demographic and genetic stresses. These different stresses can trap populations within a reinforcing feedback loop known as the extinction vortex, in which synergistic pressures build upon one another through time, driving down population viability. Sexual selection, the widespread evolutionary force arising from competition, choice and reproductive variance within animal mating patterns could have vital consequences for population viability and the extinction vortex: (a) if sexual selection reinforces natural selection to fix ‘good genes’ and purge ‘bad genes’, then mating patterns encouraging competition and choice may help protect populations from extinction; (b) by contrast, if mating patterns create load through evolutionary or ecological conflict, then population viability could be further reduced by sexual selection. We test between these opposing theories using replicate populations of the model insect Tribolium castaneum exposed to over 10 years of experimental evolution under monogamous versus polyandrous mating patterns. After a 95‐generation history of divergence in sexual selection, we compared fitness and extinction of monogamous versus polyandrous populations through an experimental extinction vortex comprising 15 generations of cycling environmental and genetic stresses. Results showed that lineages from monogamous evolutionary backgrounds, with limited opportunities for sexual selection, showed rapid declines in fitness and complete extinction through the vortex. By contrast, fitness of populations from the history of polyandry, with stronger opportunities for sexual selection, declined slowly, with 60% of populations surviving by the study end. The three vortex stresses of (a) nutritional deprivation, (b) thermal stress and (c) genetic bottlenecking had similar impacts on fitness declines and extinction risk, with an overall sigmoid decline in survival through time. We therefore reveal sexual selection as an important force behind lineages facing extinction threats, identifying the relevance of natural mating patterns for conservation management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号