首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Several iron-sulfur centers in the NADH-ubiquinone segment of the respiratory chain in pigeon heart mitochondria and in submitochondrial particles were analyzed by the combined application of cryogenic EPR (between 30 and 4.2 degrees K) and potentiometric titration. Center N-1 (iron-sulfur centers associated with NADH dehydrogenase are designated with the prefix "N") resolves into two single electron titratins with EM7.2 values of minus 380 plus or minus 20 mV and minus 240 plus or minus 20 mV (Centers N-1a and N-1b, respectively). Center N-1a exhibits an EPR spectrum of nearly axial symmetry with g parellel = 2.03, g = 1.94, while that of Center N-1b shows more apparent rhombic symmetry with gz = 2.03, gy = 1.94 and gx = 1.91. Center N-2 also reveals EPR signals of axial symmetry at g parallel = 2.05 and g = 1.93 and its principal signal overlaps with those of Centers N-1a and N-1b. Center N-2 can be easily resolved from N-1a and N-1b because of its high EM7.2 value (minus 20 plus or minus 20 mV). Resolution of Centers N-3 and N-4 was achieved potentiometrically in submitochondrial particles. The component with EM7.2 = minus 240 plus or minus 20 mV is defined as Center N-3 (gz = 2.10, (gz = 2.10, (gy = 1.93?), GX = 1.87); the minus 405 plus or minus 20 mV component as Center N-4 (gz = 2.11, (gy = 1.93?), gx = 1.88). At temperatures close to 4.2 degrees K, EPR signals at g = 2.11, 2.06, 2.03, 1.93, 1.90 and 1.88 titrate with EM7.2 = minus 260 plus or minus 20 mV. The multiplicity of peaks suggests the presence of at least two different iron-sulfur centers having similar EM7.2 values (minus 260 plus or minus 20 mV); HENCE, tentatively assigned as N-5 and N-6. Consistent with the individual EM7.2 values obtained, addition of succinate results in the partial reduction of Center N-2, but does not reduce any other centers in the NADH-ubiquinone segment of the respiratory chain. Centers N-2, N-1b, N-3, N-5 and N-6 become almost completely reduced in the presence of NADH, while Centers N-1a and N-4 are only slightly reduced in pigeon heart submitochondrial particles. In pigeon heart mitochondria, the EM7.2 of Center N-4 lies much closer to that of Center N-3, so that resolution of the Center N-3 and N-4 spectra is not feasible in mitochondrial preparations. EM7.2 values and EPR lineshapes for the other iron-sulfur centers of the NADH-ubiquinone segment in the respiratory chain of intact mitochondria are similar to those obtained in submitochondrial particle preparations. Thus, it can be concluded that, in intact pigeon heart mitochondria, at least five iron-sulfur centers show EM7.2 values around minus 250 mV; Center N-2 exhibits a high EM7.2 (minus 20 plus or minus 20 mV), while Center N-1a shows a very low EM7.2 (minus 380 plus or minus 20 mV).  相似文献   

2.
3.
1. The electron paramagnetic resonance spectra at 15 K of reduced membrane particles of Paracoccus denitrificans exhibit resonance signals with g values, line shapes and temperature profile which are similar to the signals of the iron-sulfur centers observed in the NADH-ubiquinone segment of mitochondrial respiratory chains. These iron-sulfur centers are reducible with NADH, NADPH as well as chemically with dithionite. 2. Sulphate-limited growth of Paracoccus denitrificans results in the loss of an electron paramagnetic resonance signal (gz approximately 2.05, gy approximately gx approximately 1.92) which has properties similar to those of iron-sulfur center 2 of the NADH dehydrogenase of mitochondrial origin. The loss of this signal is accompanied by a decrease in the NADH oxidase and NADH ferricyanide oxidoreductase activities to respectively 30 and 40% of the values found for succinate-limited growth conditions. In addition respiration in membrane particles from sulphate-limited cells loses its sensitivity to rotenone. 3. Since sulphate-limited growth of Paracoccus denitrificans induces loss of site I phosphorylation [Arch. Microbiol. (1977) 112, 25-34] these observations suggest a close correlation between site I phosphorylation, rotenone-sensitivity and the presence of an electron paramagnetic resonance signal with gz approximately 2.05 and gy approximately gx approximately 1.92.  相似文献   

4.
1. From the 57Fe hyperfine interaction in EPR spectra of reduced submitochondrial particles from the yeast Candida utilis, grown with 57Fe, it is concluded that all Fe-S centers in these particles detectable in spectra at 35-80 K are [2Fe-2S]2-(2-; 3-) centers. These are the centers 1 of NADH and succinate dehydrogenase, the Rieske Fe-S center and possibly center 2 of succinate dehydrogenase. 2. The signals of the reduced particles detectable only at temperatures below 20 K are [4Fe-4S]2-(2-; 3-) clusters. These are the centers 2,3 and 4 of NADH dehydrogenase. 3. EPR spectra of the [2Fe-2S]3- centers of Complex I and II, but not that of Complex III, display a great inequality of the Fe nuclei in the effective hyperfine interaction in the x-y direction.  相似文献   

5.
1. EPR spectra at 9 GHz and 83 degrees K of NADH-reduced anaerobic beef-heart submitochondrial particles, prepared from mitochondria by sonication and centrifugation, contain a signal (gz equals to 2.01, gy equals to 1.94, gx equals to 1.89) due to an iron-sulphur center of the mitochondrial outer membrane. 2. The ratio of inner and outer membranes in submitochondrial particles is not greatly different from that in beef-heart mitochondria. 3. Beef-heart submitochondrial particles free from outer-membrane contamination have been prepared by free-flow electrophoresis. EPR spectra at 83 degrees K of such particles are presented.  相似文献   

6.
Two binuclear iron-sulfur clusters (designated S-1 and S-2) are present in succinate dehydrogenase in approximately equal concentration to that of flavin. The large difference in their midpoint potentials (0 and -400 mV, respectively, in the soluble enzyme) permits the acquisition of individual electron paramagnetic resonance spectra characterized by nearly identical rhombic g tensors (gz = 2.025, gy = 1.93, gx = 1.905). Spin-coupling between the two centers is manifested by broadening and splitting of spectra of reconstitutively active and inactive succinate dehydrogenase, respectively, as the temperature is lowered; relief of power saturation of Center S-1 spectra on reduction of Center S 2; and observation of half-field ("delta ms = 2") signals in the dithionite-reduced enzyme. Saturation behavior of fully reduced dehydrogenase is consistent with the presence of S-1 and S-2 at equivalent concentrations/molecule. Simulation of the spin-coupled spectra, assuming dipolar interaction, provides information on molecular structure. Electron paramagnetic resonance spectra of the enzyme in 80% dimethylsulfoxide are nearly identical to the characteristic binuclear spectra obtained with adrenodoxin. These data provide additional evidence for binuclear structure of both Center S-1 and S-2. The extremely fast relaxation of Center S-2 at low temperatures would imply either an anomalously small value of J or an alternative relaxation mechanism, possibly due to the coupling between S-1 and S-2.  相似文献   

7.
Photosynthetic reaction center of green sulfur bacteria studied by EPR   总被引:2,自引:0,他引:2  
Membrane preparations of two species of the green sulfur bacteria Chlorobium have been studied by EPR. Three signals were detected which were attributed to iron-sulfur centers acting as electron acceptors in the photosynthetic reaction center. (1) A signal from a center designated FB, (gz = 2.07, gy = 1.91, gx = 1.86) was photoinduced at 4 K. (2) A similar signal, FA (gz = 2.05, gy = 1.94, gx = 1.88), was photoinduced in addition to the FB signal upon a short period of illumination at 200 K. (3) Further illumination at 200 K resulted in the appearance of a broad feature at g = 1.78. This is attributed to the gx component of an iron-sulfur center designated FX. The designations of these signals as FB, FA, and FX are based on their spectroscopic similarities to signals in photosystem I (PS I). The orientation dependence of these EPR signals in ordered Chlorobium membrane multilayers is remarkably similar to that of their PS I homologues. A magnetic interaction between the reduced forms of FB and FA occurs, which is also very similar to that seen in PS I. However, in contrast to the situation in PS I, FA and FB cannot be chemically reduced by sodium dithionite at pH 11. This indicates redox potentials for FA and FB which are lower by at least 150 mV than their PS I counterparts. The triplet state of P840, the primary electron donor, could be photoinduced at 4 K in samples which had been preincubated with sodium dithionite and methyl viologen and then preilluminated at 200 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
EPR signals arising from at least seven iron-sulfur centers were resolved in both reconstitutively active and inactive NADH dehydrogenases, as well as in particulate NADH-UQ reductase (Complex I). EPR lineshapes of individual iron-sulfur centers in the active dehydrogenase are almost unchanged from that in Complex I. Iron-sulfur centers in the inactive dehydrogenase give broadened EPR spectra, suggesting that modification of iron-sulfur active centers is associated with loss of the reconstitutive activity of the dehydrogenase. With the reconstitutively active dehydrogenase, the Em8.0 value of Center N-2 (iron-sulfur centers associated with NADH dehydrogenase are designated with prefix N) was shifted to a more negative value than in Complex I and restored to the original value on reconstitution of the enzyme with purified phospholipids.  相似文献   

9.
Two N-1 type iron-sulfur clusters in NADH-ubiquinone oxidoreductase (Complex I, EC 1.6.5.3) were potentiometrically resolved: one was titrated as a component with a midpoint oxidation-reduction potential of -335 mV at pH 8.0, and with an n-value equal to one; the other as an extremely low midpoint potential component (Em 8.0 less than -500 mV). These two clusters are tentatively assigned to N-1b and N-1a, respectively. Cluster N-1b is completely reducible with NADH and has a spin concentration of about 0.8/FMN. Its EPR spectrum can be simulated as a single rhombic component with principal g values of 2.019, 1.937, and 1.922, which correspond to the Center 1 reported earlier by Orme-Johnson, N. R., Hansen, R. E., and Beinert, H. (1974) J. Biol. Chem. 249, 1922-1927. At extremely low oxidation-reduction potentials (less than -450 mV), additional EPR signals emerge with apparent g values of gz = 2.03, gy = 1.95, and gx = 1.91, which we assign to cluster N-1a. It is difficult, however, to simulate the detailed spectral line shape of this component as a single rhombic component, suggesting some degree of protein modification or interaction with a neighboring oxidation-reduction component. EPR spectra of soluble NADH dehydrogenase, containing 5-6 g atoms of non-heme iron and 5-6 mol of acid-labile sulfide/mol of FMN, were examined. Signals from at least two iron-sulfur species could be distinguished in the NADH-reduced form: one of an N-1b type spectrum; the other of a spectrum with g values of 2.045, 1.95, and 1.87 (total of about 0.5 spin equivalents/FMN). This is the first example of an N-1 type signal detected in isolated soluble NADH dehydrogenase.  相似文献   

10.
Two distinct ferredosin-type iron-sulfur centers (designated as Centers S-1 and S-2) are present in the soulble succinate dehydrogenase in approximately equivalent concentrations to that of bound flavin. Both Centers S-1 and S-2 exhibit electron paramagnetic resonance absorbance in the reduced state at the same magnetic field (gz = 2.03, gy = 1.93, and gx = 1.91) with similar line shape. Center S-2 is reducible only chemically with dithionite and remains oxidized under physiological conditions. Thus, its functional role is unknown; however, thermodynamic and EPR characterization of this iron-sulfur center has revealed important molecular events related to this dehydrogenase. The midpoint potentials of Centers S-1 and S-2 determined in the soluble succinate dehydrogenase preparations are -5 +/- 15 mV and -400 +/- 15 mV, respectively, while corresponding midpoint potentials determined in particulate preparations, such as succinate-cytochrome c reductase or succinate-ubiquinone reductase, are 0 +/- 15 mV and -260 +/- 15 mV. Reconstitution of soluble succinate dehydrogenase with the cytochrome b-c1 complex is accompanied by a reversion of the Center S-I midpoint from -400 +/- 15 mV to -250 +/- 15 mV with a concomitant restoration of antimycin A-sensitive succinate-cytochrome c reductase activity. There observations indicate that, during the reconstitution process, Center S-I is restored to its original molecular environment. In the reconstitutively active succinate dehydrogenase, the relaxation time of Center S-2 is much shorter than that of S-1, thus Center S-2 spectra are well discernible only below 20 K (at 1 milliwatt of power), while the resonance absorbance of Center S-1 is detectable at higher temperatures and readily saturates below 15 K. Over a wide temperature range the power saturation of Center S-1 resonance absorbance is relieved by Center S-2 in the paramagnetic state, and the Center S-2 central resonance absorbance is broadened by Center S-1 spins, due to a spin-spin interaction between these centers. These observations indicate an adjacent location of these centers in the enzyme molecule. In reconstitutively inactive enzymes, subtle modification of the enzyme structure appears to shift the temperature dependence of Center S-2 relaxation to the higher temperature. Thus the EPR signals of Center S-2 are also detectable at higher temperature. In this system a splitting of the central peak of the Center S-2 spectrum due to spin-spin interaction was observed at extremely low temperatures, while this was not observed in reconstitutively active enzymes or in paritculate preparations. This spin-spin interaction phenomena of inactive enzymes disappeared upon chemical reactivation with concomitant appearance of the reconstitutive activity. These observations provide a close correlation between the molecular integrity of the enzyme and its physiological function.  相似文献   

11.
Spinach chloroplast membranes were oriented onto mylar sheets by partial dehydration, and the orientation of the magnetic axes of membrane-bound paramagnetic clusters determined by electron paramagnetic resonance (EPR) spectroscopy. Our results indicate that the reduced Rieske iron-sulfur cluster signal is of orthorhombic symmetry oriented with th gy = 1.90 axis orthogonal to the membrane plane and with the gz = 2.03 axis in the membrane plane; the gx-axis is undetectable, presumably due to its broadness. If the Rieske center is a two-iron iron-sulfur cluster, we conclude that the iron-iron axis lies in the plane of the membrane. Illumination reduces the two bound chloroplast iron-sulfur proteins known as Clusters A and B. Center A is oriented such that gx = 1.86 and gy = 1.94 lie at an angle of about 40, and gz = 2.05 is at approximately 25, to the membrane plane. There are two possible orientations of Cluster B depending on the set of g-values assigned to this cluster. For one set of g-values, gz = 2.04 and gx = 1.89 are oriented in the plane of the membrane while gy = 1.92 is orthogonal to the plane. Alternatively, gz = 2.07 and gy = 1.94 are oriented approximately 50 and 40 to the membrane plane respectively, and gx = 1.80 is in the plane of the membrane. An additional light-induced signal at g = 2.15 oriented orthogonal to the plane is currently unexplained, as are other membrane perpendicular signals seen at g = 2.3 and g = 1.73 in dark-adapted samples.  相似文献   

12.
The electron spin relaxation of iron-sulphur centres and ubisemiquinones of plant mitochondria was studied by microwave power saturation of the respective EPR signals. In the microwave power saturation technique, the experimental saturation data were fitted by a least-squares procedure to a saturation function which is characterized by the power for half-saturation (P1/2) and the inhomogeneity parameter (b). Since the theoretical saturation curves were based on a one-electron spin system, it became possible to differentiate between EPR signals of iron-sulphur centres which have similar g values but different P1/2 values. If the difference in the P1/2 values of the overlapped components was small, no significant deviation from these theoretical saturation curves was observed, as shown for the overlapped signals of centre S-3 and the Ruzicka centre of mung bean mitochondria. By contrast, the microwave power saturation data for the g = 1.93 signal (17--26 K) of Arum maculatum submitochondrial particles reduced by succinate could not be fitted using one-electron saturation curves. Reduction by NADH resulted in a stronger deviation. Since the iron-sulphur centres of Complex I were present only in an unusually low concentration in A. maculatum mitochondria, it was proposed that an iron-sulphur centre of the external NADH dehydrogenase contributes to the spectrum of centre S-1. For mung bean mitochondria, the g = 1.93 signal below 20 K could be attributed mainly to centre N-2. The microwave power saturation technique was also suitable for detecting magnetic interactions between paramagnetic centres. From the saturation data of the complex spectrum attributable to centre S-3 and an interacting ubisemiquinone pair in mung bean mitochondria (oxidized state) followed that centre S-3 has a faster electron spin relaxation than the ubisemiquinone molecules. It is noteworthy that the differences in the relaxation rates were maintained despite the interaction between centre S-3 and the ubisemiquinones. Furthermore, a relaxation enhancement was observed for centre S-1 of A. maculatum submitochondrial particles upon reduction of centre S-2 by dithionite. This indicated a magnetic interaction between centres S-1 and S-2.  相似文献   

13.
EPR characteristics of cytochrome c1, cytochromes b-565 and b-562, the iron-sulfur cluster, and an antimycin-sensitive ubisemiquinone radical of purified cytochrome b-c1 complex of Rhodobacter sphaeroides have been studied. The EPR specra of cytochrome c1 shows a signal at g = 3.36 flanked with shoulders. The oxidized form of cytochrome b-562 shows a broad EPR signal at g = 3.49, while oxidized cytochrome b-565 shows a signal at g = 3.76, similar to those of two b cytochromes in the mitochondrial complex. The distribution of cytochromes b-565 and b-562 in the isolated complex is 44 and 56%, respectively. Antimycin and 2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone (DBMIB) have little effect on the g = 3.76 signal, but they cause a slight downfield and upfield shifts of the g = 3.49 signal, respectively. 5-Undecyl-6-hydroxyl-4,7-dioxobenzothiazole (UHDBT) shifts the g = 3.49 signal downfield to g = 3.56 and sharpens the g = 3.76 signal slightly. Myxothiazol causes an upfield shift of both g = 3.49 and g = 3.76 signals. EPR characteristics of the reduced iron-sulfur cluster in bacterial cytochrome b-c1 complex are: gx = 1.8 with a small shoulder at g = 1.76, gy = 1.89 and gz = 2.02, similar to those observed with the mitochondrial enzyme. The gx = 1.8 signal decreased and the shoulder increased concurrently as the redox potential decreased, indicating that the environment of the iron-sulfur cluster is sensitive to the redox state of the complex. UHDBT sharpens the gz and and shifts it downfield from g = 2.02 to 2.03, and shifts gx upfield from g = 1.80 to 1.78. UHDBT also causes an upfield shift of gy but to a much lesser extent compared to the other two signals. Addition of DBMIB causes a downfield shift of the gy from 1.89 to 1.94 and broadens the gx signal with an upfield to g = 1.75. Myxothiazol and antimycin show little effect on the gy and gz signals, but they broaden and shift the gx signal upfield to g = 1.74. However, the myxothiazol effect is partially reversed by UHDBT. An antimycin-sensitive ubisemiquinone radical was detected in the cytochrome b-c1 complex. At pH 8.4, the antimycin-sensitive ubisemiquinone radical has a maximal concentration of 0.66 mol per mol complex at 100 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Tomoko Ohnishi 《BBA》1975,387(3):475-490
Several iron-sulfur centers in the NADH-ubiquinone segment of the respiratory chain in pigeon heart mitochondria and in submitochondrial particles were analyzed by the combined application of cryogenic EPR (between 30 and 4.2 °K) and potentiometric titration.Center N-1 (iron-sulfur centers associated with NADH dehydrogenase are designated with the prefix “N”) resolves into two single electron titrations with Em 7.2 values of ?380±20 mV and ?240±20 mV (Centers N-1a and N-1b, respectively). Center N-1a exhibits an EPR spectrum of nearly axial symmetry with g// = 2.03, g = 1.94, while that of Center N-1b shows more apparent rhombic symmetry with gz = 2.03, gy = 1.94 and gx = 1.91. Center N-2 also reveals EPR signals of axial symmetry at g// = 2.05 and g = 1.93 and its principal signal overlaps with those of Centers N-1a and N-1b. Center N-2 can be easily resolved from N-1a and N-1b because of its high Em 7.2 value (?20±20 mV).Resolution of Centers N-3 and N-4 was achieved potentiometrically in submitochondrial particles. The component with Em 7.2 = ? 240±20 mV is defined as Center N-3 (gz = 2.10, (gy = 1.93?), gx = 1.87); the ?405±20 mV component as Center N-4 (gz = 2.11, (gy = 1.93?), gx = 1.88). At temperatures close to 4.2 °K, EPR signals at g = 2.11, 2.06, 2.03, 1.93, 1.90 and 1.88 titrate with Em 7.2 = ?260±20 mV. The multiplicity of peaks suggests the presence of at least two different ironsulfur centers having similar Em 7.2 values (?260±20 mV); hence, tentatively assigned as N-5 and N-6.Consistent with the individual Em 7.2 values obtained, addition of succinate results in the partial reduction of Center N-2, but does not reduce any other centers in the NADH-ubiquinone segment of the respiratory chain. Centers N-2, N-1b, N-3, N-5 and N-6 become almost completely reduced in the presence of NADH, while Centers N-1a and N-4 are only slightly reduced in pigeon heart submitochondrial particles. In pigeon heart mitochondria, the Em 7.2 of Center N-4 lies much closer to that of Center N-3, so that resolution of the Center N-3 and N-4 spectra is not feasible in mitochondrial preparations. Em 7.2 values and EPR lineshapes for the other ironsulfur centers of the NADH-ubiquinone segment in the respiratory chain of intact mitochondria are similar to those obtained in submitochondrial particle preparations. Thus, it can be concluded that, in intact pigeon heart mitochondria, at least five iron-sulfur centers show Em 7.2 values around -250 mV; Center N-2 exhibits a high Em 7.2 (?20±20 mV), while Center N-1a shows a very low Em 7.2 (?380±20 mV).  相似文献   

15.
The energy coupled NADH-ubiquinone (Q) oxidoreductase segment of the respiratory chain of Escherichia coli GR19N has been studied by EPR spectroscopy. Previously Matsushita et al. [(1987) Biochemistry 26, 7732-7737] have demonstrated the presence of two distinct NADH-Q oxidoreductases in E. coli membrane particles and designated them NADH dh I and NADH dh II. Although both enzymes oxidize NADH, only NADH dh I is coupled to the formation of the H+ electrochemical gradient. In addition to NADH, NADH dh I oxidizes nicotinamide hypoxanthine dinucleotide (deamino-NADH), while NADH dh II does not. In membrane particles we have detected EPR signals arising from four low-potential iron-sulfur clusters, one binuclear, one tetranuclear, and two fast spin relaxing g perpendicular = 1.94 type clusters (whose cluster structure has not yet been assigned). The binuclear cluster, temporarily designated [N-1]E, shows an EPR spectrum with gx,y,z = 1.92, 1.935, 2.03 and the Em7.4 value of -220 mV (n = 1). The tetranuclear cluster, [N-2]E, elicits a spectrum with gx,y,z = 1.90, 1.91, 2.05 and an Em7.4 of -240 mV (n = 1). These two clusters have been shown to be part of the NADH dh I complex by stability and inhibitor studies. When stored at 4 degrees C, both clusters are extremely labile as is the deamino-NADH-Q oxidoreductase activity. Addition of deamino-NADH in the presence of piericidin A results in nearly full reduction of [N-2]E within 17 s. In membrane particles pretreated with piericidin A, the cluster [N-1]E is only partly reducible by deamino-NADH and shows an altered line shape.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1.Upon addition of sulphide to oxidized cytochrome c oxidase, a low-spin heme sulphide compound is formed with an EPR signal at gx = 2.54, gy = 2.23 and gz = 1.87. Concomitantly with the formation of this signal the EPR-detectable low-spin heme signal at g = 3 and the copper signal near g = 2 decrease in intensity, pointing to a partial reduction of the enzyme by sulphide. 2. The addition of sulphide to cytochrome c oxidase, previously reduced in the presence of azide or cyanide, brings about a disappearance of the azido-cytochrome c oxidase signal at gx = 2.9, gy = 2.2, and gz = 1.67 and a decrease of the signal at g = 3.6 of cyano-cytochrome c oxidase. Concomitantly the sulphide-induced EPR signal is formed. 3. These observations demonstrate that azide, cyanide and sulphide are competitive for an oxidized binding site on cytochrome c oxidase. Moreover, it is shown that the affinity of cyanide and sulphide for this site is greater than that of azide.  相似文献   

17.
1. Measurements were made at 12 degrees K of the electron-paramagnetic-resonance (e.p.r.) spectra of submitochondrial particles from Candida utilis cells grown under conditions that alter the amount of the mitochondrial NADH dehydrogenase (EC 1.6.99.3). 2. Iron-limited growth decreases the extent of iron-sulphur e.p.r. signals to undetectable values that are less than 1 percent of those normally found with glycerol-limited growth. 3. Small but significant signals attributable to the NADH dehydrogenase were detected in submitochondrial particles from sulphate-limited cells. 4. Measurements made on submitochondrial particles prepared from these and other phenotypically modified cells lead us to conclude that the presence of low-temperature e.p.r.-detectable iron-sulphur centres attributable to the NADH dehydrogenase are necessary but not sufficient for the coupling of ATP synthesis to the NADH dehydrogenase reaction in the mitochondrial membrane of C. utilis. 6. The amplitude of the g=2.01 signal observed in non-reduced submitochondrial particles is approximately tenfold diminished by iron limitation but not significantly altered by sulphate limitation.  相似文献   

18.
Oriented multilayers made from beef heart and yeast mitochondria and submitochondrial particles were studied using electron paramagnetic resonance. EPR signals from membrane-bound iron-sulfur clusters and from a spin-coupled ubiquinone pair are highly orientation dependent, implying that these redox centers are fixed in the membrane at definite angles relative to the membrane plane. Typically the iron-iron axis (gz) of the binuclear iron-sulfur clusters is in the membrane plane. This finding is discussed in terms of the protein structure. The tetranuclear iron-sulfur clusters can have their gz axis either perpendicular or parallel to the membrane plane, but intermediate orientation was not observed.  相似文献   

19.
The heterodimeric hemoprotein SoxXA, essential for lithotrophic sulfur oxidation of the aerobic bacterium Paracoccus pantotrophus, was examined by a combination of spectroelectrochemistry and EPR spectroscopy. The EPR spectra for SoxXA showed contributions from three paramagnetic heme iron centers. One highly anisotropic low-spin (HALS) species (gmax = 3.45) and two "standard" cytochrome-like low-spin heme species with closely spaced g-tensor values were identified, LS1 (gz = 2.54, gy = 2.30, and gx = 1.87) and LS2 (gz = 2.43, gy = 2.26, and gx = 1.90). The crystal structure of SoxXA from P. pantotrophus confirmed the presence of three heme groups, one of which (heme 3) has a His/Met axial coordination and is located on the SoxX subunit [Dambe et al. (2005) J. Struct. Biol. 152, 229-234]. This heme was assigned to the HALS species in the EPR spectra of the isolated SoxX subunit. The LS1 and LS2 species were associated with heme 1 and heme 2 located on the SoxA subunit, both of which have EPR parameters characteristic for an axial His/thiolate coordination. Using thin-layer spectroelectrochemistry the midpoint potentials of heme 3 and heme 2 were determined: Em3 = +189 +/- 15 mV and Em2 = -432 +/- 15 mV (vs NHE, pH 7.0). Heme 1 was not reducible even with 20 mM titanium(III) citrate. The Em2 midpoint potential turned out to be pH dependent. It is proposed that heme 2 participates in the catalysis and that the cysteine persulfide ligation leads to the unusually low redox potential (-436 mV). The pH dependence of its redox potential may be due to (de)protonation of the Arg247 residue located in the active site.  相似文献   

20.
Electronic absorption and electron paramagnetic resonance (EPR) spectroscopic examinations revealed that a freshly prepared cytochrome c peroxidase (CCP) contains a penta-coordinated high spin ferric protoheme group. The penta-coordinated high spin state of fresh CCP is maintained in a remarkably wide range of pH (4-8). The freezing of fresh CCP induces the reversible coordination of an internal strong field ligand to the heme iron to form a hexa-coordinated low spin compound, which shows EPR extrema at gx = 2.70, gy = 2.20 and gz = 1.78. In the presence of glycerol the freezing-induced artifacts are eliminated and the fresh enzyme exhibits an EPR spectrum of rhombically distorted axial symmetry with EPR extrema at gx = 6.4, gy = 5.3, and gz = 1.97 at 10 K, characteristic of the penta-coordinated high spin enzyme. Upon aging CCP is converted to a hexa-coordinated high spin state due to the coordination of an internal weak field ligand to the heme iron. This conversion is accelerated at acidic pH values, and its reversibility varies from fully reversible to irreversible depending on the degree of enzyme aging. The aging-induced hexa-coordinated CCP is unreactive with hydrogen peroxide and exhibits an EPR spectrum of purely axial symmetry with extrema at g = 6 and g = 2 and an electronic absorption spectrum with an intensified Soret band at 408 nm (epsilon 408 nm = 120 mM-1 cm-1) and a blue-shifted charge-transfer band at 620 nm. Spectroscopic properties of different coordination and spin states of fresh and aged CCPs are compiled in order to formulate a generalized spectroscopic characterization of penta- and hexa-coordinated high spin ferric hemoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号