首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of pipecolic hydroxamate inhibitors of MMP-13 and aggrecanase was discovered based on screening known inhibitors of TNF-alpha converting enzyme (TACE). Potency versus aggrecanase was optimized by modification of the benzyloxyarylsulfonamide group. Incorporation of geminal alkyl substitution at the 3-position of the piperidine ring improved metabolic stability, presumably by increasing steric hindrance around the metabolically labile hydroxamic acid. This modification also resulted in dramatic improvement of aggrecanase activity with a slight reduction in selectivity versus MMP-1. Synthesis, structure activity relationships, and strategies to reduce metabolic clearance are described.  相似文献   

2.
N-Hydroxy-3-hydroxy-4-arylsulfonyltetrahydropyranyl-3-carboxamides were designed as novel inhibitors of MMP-13 and aggrecanase based on known endocyclic hydroxamate inhibitors of matrix metalloproteinases. These compounds offer favorable physicochemical properties and low metabolic clearance. Synthesis and structure-activity relationships are reported.  相似文献   

3.
The matrix-degrading enzyme aggrecanase has been identified in cartilage and is largely responsible for cartilage breakdown. The present study determined the efficacy of different heparin molecular weight fractions (HMWFs) and low molecular weight heparins (LMWHs) on aggrecanase activity. Aggrecanase activity was determined using biotinylated peptide substrate, which was immobilized onto streptavidin-coated 96-well plates; aggrecanase enzyme was then added. Proteolysis of the substrate at the specific amide bond was detected using specific antibody for the neoepitope generated. HMWFs ranging from 1,700 to 12,000 Da demonstrated a concentration-dependent inhibitory efficacy of aggrecanase activity, with a Ki ranging from 5,000 nM down to 1 nM as a function of the molecular weight. The higher the molecular weight distribution, the greater the inhibitory efficacy of the heparin fragments toward aggrecanase activity. The absence or presence of antithrombin did not alter the affinity of heparin in inhibiting aggrecanase. Additionally, tissue factor pathway inhibitor at various levels did not alter the activity of aggrecanase. LMWHs demonstrated different levels of potency in inhibiting aggrecanase activity as a function of their average molecular weight distribution. Tinzaparin (average molecular weight = 6,500 Da) and enoxaparin (average molecular weight = 4,500 Da) demonstrated a Ki of 20 and 80 nM, respectively. The aggrecanase inhibitory effect of LMWH might contribute to blocking inflammation and tumor invasion by inhibiting aggrecanase activity and maintaining an intact extracellular matrix barrier.  相似文献   

4.
Aggrecanases are considered to play a key role in the destruction of articular cartilage during the progression of arthritis. Here we report that the N-terminal inhibitory domain of tissue inhibitor of metalloproteinases 3 (N-TIMP-3), but not TIMP-1 or TIMP-2, inhibits glycosaminoglycan release from bovine nasal and porcine articular cartilage explants stimulated with interleukin-1alpha or retinoic acid in a dose-dependent manner. This inhibition is due to the blocking of aggrecanase activity induced by the catabolic factors. Little apoptosis of primary porcine chondrocytes is observed at an effective concentration of N-TIMP-3. These results suggest that TIMP-3 may be a candidate agent for use against cartilage degradation.  相似文献   

5.
ADAMTS4 (aggrecanase-1) is considered to play a key role in the degradation of aggrecan in arthritides. The inhibitory activity of tissue inhibitors of metalloproteinases (TIMPs) to ADAMTS4 was examined in an assay using aggrecan substrate. Among the four TIMPs, TIMP-3 inhibited the activity most efficiently with an IC(50) value of 7.9 nM, which was at least 44-fold lower than that of TIMP-1 (350 nM) and TIMP-2 (420 nM) and >250-fold less than that of TIMP-4 (2 microM for 35% inhibition). These results suggest that TIMP-3 is a potent inhibitor against the aggrecanase activity of ADAMTS4 in vivo.  相似文献   

6.
The culture of bovine synovial or capsular tissue generated proteoglycan-degrading activity. When these tissues were incubated with living or dead bovine articular cartilage significantly more proteoglycan-degrading activity was revealed. The activity was present in a soluble form and required protein synthesis for its generation. The conditioned medium did not contain matrixin activity, although experiments with proteinase inhibitors suggested that the activity was due to a metalloproteinase. Western blotting of the aggrecan fragments suggested cleavage of aggrecan within the interglobular domain at the "aggrecanase" site, but not at the major matrixin site. N-terminal sequencing confirmed cleavage of aggrecan at a number of glutamyl bonds, including the aggrecanase site in the interglobular domain. We conclude that cultured synovial or capsular tissue produces soluble aggrecanase and an enzyme which releases aggrecanase from cartilage, possibly by cleavage of a chondrocyte membrane-bound form of aggrecanase.  相似文献   

7.
8.
A method was developed for generating soluble, active "aggrecanase" in conditioned media from interleukin-1-stimulated bovine nasal cartilage cultures. Using bovine nasal cartilage conditioned media as a source of the aggrecanase enzyme, an enzymatic assay was established employing purified aggrecan monomers as a substrate and monitoring specific aggrecanase-mediated cleavage products by Western analysis using the monoclonal antibody, BC-3 (which recognizes the new N terminus, ARGS, on fragments produced by cleavage between amino acid residues Glu373 and Ala374). Using this assay we have characterized cartilage aggrecanase with respect to assay kinetics, pH and salt optima, heat sensitivity, and stability upon storage. Aggrecanase activity was inhibited by the metalloprotease inhibitor, EDTA, while a panel of inhibitors of serine, cysteine, and aspartic proteinases had no effect, suggesting that aggrecanase is a metalloproteinase. Sensitivity to known matrix metalloproteinase inhibitors as well as to the endogenous tissue inhibitor of metalloproteinases, TIMP-1, further support the notion that aggrecanase is a metalloproteinase potentially related to the ADAM family or MMP family of proteases previously implicated in the catabolism of the extracellular matrix.  相似文献   

9.
In the mouse, proteolysis in the aggrecan interglobular domain is driven by ADAMTS-5, and mice deficient in ADAMTS-5 catalytic activity are protected against aggrecan loss and cartilage damage in experimental models of arthritis. Here we show that despite ablation of ADAMTS-5 activity, aggrecanolysis can still occur at two preferred sites in the chondroitin sulfate-rich region. Retinoic acid was more effective than interleukin-1alpha (IL) in promoting cleavage at these sites in ADAMTS-5-deficient cartilage. These results suggest that cleavage at preferred sites in the chondroitin sulfate-rich region is mediated by ADAMTS-4 or an aggrecanase other than ADAMTS-5. Following retinoic acid or IL-1alpha stimulation of cartilage explants, aggrecan fragments in medium and extracts contained SELE(1279) or FREEE(1467) C-terminal sequences. Some SELE(1279) and FREEE(1467) fragments were retained in the cartilage, with intact G1 domains. Other SELE(1279) fragments were released into the medium and co-migrated with the (374)ALGS neoepitope, indicating they were aggrecanase-derived fragments. In contrast none of the FREEE(1467) fragments released into the medium co-migrated with the (374)ALGS neoepitope, suggesting that, despite their size, these fragments were not products of aggrecanase cleavage in the interglobular domain. ADAMTS-5, but not ADAMTS-1, -4, or -9, was up-regulated 8-fold by retinoic acid and 17-fold by IL-1alpha treatment. The data show that whereas ADAMTS-5 is entirely responsible for cleavage in the interglobular domain, cleavage in the chondroitin sulfate-rich region is driven either by ADAMTS-4, which compensates for loss of ADAMTS-5 in this experimental system, or possibly by another aggrecanase. The data show that there are differential aggrecanase activities with preferences for separate regions of the core protein.  相似文献   

10.
The control of chondrocyte-mediated degradation of aggrecan has been studied in rat chondrosarcoma cells and bovine cartilage explants treated with either IL-1 or retinoic acid. The capacity of glucosamine to inhibit the aggrecanase-mediated response (J. D. Sandy, D. Gamett, V. Thompson, and C. Verscharen (1998) Biochem. J. 335, 59-66) has been extended to an investigation of the effect of other hexosamines. Mannosamine inhibits the aggrecanase response to both IL-1 and RA at about one-tenth the concentration of glucosamine in both rat cell and bovine explant systems. This effect of mannosamine appears to be due to its capacity to inhibit the synthesis of glycosylphosphatidylinositol (GPI)-linked proteins by chondrocytes since the GPI synthesis inhibitor 2-deoxyfluoroglucose (2-DFG) also inhibited the aggrecanase response to IL-1b and RA in rat cells. Moreover, phosphatidylinositol-specific phospholipase C (PIPLC) treatment of rat cells markedly inhibited the aggrecanase response to IL-1b and RA. These inhibitory effects of mannosamine, 2-DFG, and PIPLC in rat cells did not appear to be due to an interference with general biosynthetic activity of the cells as measured by [3H]proline incorporation into secreted proteins. We suggest that the aggrecanase response by chondrocytes to IL-1 and RA is dependent on the activity of a GPI-anchored protein on the chondrocyte cell surface.  相似文献   

11.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

12.
A microplate assay specific for the enzyme aggrecanase   总被引:1,自引:0,他引:1  
We have identified a 41-residue peptide, bracketing the aggrecanase cleavage site of aggrecan, that serves as a specific substrate for this enzyme family. Biotinylation of the peptide allowed its immobilization onto streptavidin-coated plates. Aggrecanase-mediated hydrolysis resulted in an immobilized product that reveals an N-terminal neoepitope, recognized by the specific antibody BC-3. This assay is highly specific for aggrecanases; MMPs were inactive in this assay. Reduction of the peptide size below 30 amino acids resulted in a significant diminution of activity. Using the immobilized 41-residue peptide as a substrate, we have developed a 96-well microplate-based assay that can be conveniently used for high-throughput screening of samples for aggrecanase activity and for discovery of inhibitors of aggrecanase activity.  相似文献   

13.
We have expressed G1-G2 mutants with amino acid changes at the DIPEN(341) downward arrow(342)FFGVG and ITEGE(373) downward arrow(374)ARGSV cleavage sites, in order to investigate the relationship between matrix metalloproteinase (MMP) and aggrecanase activities in the interglobular domain (IGD) of aggrecan. The mutation DIPEN(341) to DIGSA(341) partially blocked cleavage by MMP-13 and MMP-8 at the MMP site, while the mutation (342)FFGVG to (342)GTRVG completely blocked cleavage at this site by MMP-1, -2, -3, -7, -8, -9, -13, -14. Each of the MMP cleavage site mutants, including a four-amino acid deletion mutant lacking residues ENFF(343), were efficiently cleaved by aggrecanase, suggesting that the primary sequence at the MMP site had no effect on aggrecanase activity in the IGD. The mutation (374)ARGSV to (374)NVYSV completely blocked cleavage at the aggrecanase site by aggrecanase, MMP-8 and atrolysin C but had no effect on the ability of MMP-8 and MMP-13 to cleave at the Asn(341) downward arrowPhe bond. Susceptibility to atrolysin C cleavage at the MMP site was conferred in the DIGSA(341) mutant but absent in the wild-type, (342)GTRVG, (374)NVYSV, and deletion mutants. To further explore the relationship between MMP and aggrecanase activities, sequential digest experiments were done in which MMP degradation products were subsequently digested with aggrecanase and vice versa. Aggrecanase-derived G1 domains with ITEGE(373) C termini were viable substrates for MMPs; however, MMP-derived G2 fragments were resistant to cleavage by aggrecanase. A 10-mer peptide FVDIPENFFG, which is a substrate analogue for the MMP cleavage site, inhibited aggrecanase cleavage at the Glu(373) downward arrowAla bond. This study demonstrates that MMPs and aggrecanase have unique substrate recognition in the IGD of aggrecan and suggests that sequences at the C terminus of the DIPEN(341) G1 domain may be important for regulating aggrecanase cleavage.  相似文献   

14.
ADAMTS-4 (aggrecanase-1) is a glutamyl endopeptidase capable of generating catabolic fragments of aggrecan analogous to those released from articular cartilage during degenerative joint diseases such as osteoarthritis. Efficient aggrecanase activity requires the presence of sulfated glycosaminoglycans attached to the aggrecan core protein, implying the contribution of substrate recognition/binding site(s) to ADAMTS-4 activity. In this study, we developed a sensitive fluorescence resonance energy transfer peptide assay with a K(m) in the 10 microm range and utilized this assay to demonstrate that inhibition of full-length ADAMTS-4 by full-length TIMP-3 (a physiological inhibitor of metalloproteinases) is enhanced in the presence of aggrecan. Our data indicate that this interaction is mediated largely through the binding of glycosaminoglycans (specifically chondroitin 6-sulfate) of aggrecan to binding sites in the thrombospondin type 1 motif and spacer domains of ADAMTS-4 to form a complex with an improved binding affinity for TIMP-3 over free ADAMTS-4. The results of this study therefore indicate that the cartilage environment can modulate the function of enzyme-inhibitor systems and could have relevance for therapeutic approaches to aggrecanase modulation.  相似文献   

15.
Erosion of cartilage is a major feature of joint diseases, i.e., osteoarthritis and rheumatoid arthritis, which leads with time to a loss of joint function. Proteolytic cleavage of the aggrecan core protein is a key event in the progress of these joint diseases. Aggrecan degradation has been believed to be mediated by a putative proteinase, aggrecanase. We identified aggrecanase activity in conditioned medium from explant culture of bovine nasal cartilage stimulated by retinoic acid. The activity was partially purified more than 10,000-fold. The enzyme cleaves at the aggrecanase site (Glu(373)-Ala(374)) but not at the MMP site (Asn(341)-Phe(342)) in the interglobular domain of the aggrecan. It also cleaves at Glu(1971)-Leu(1972), which is located in the gap region in the chondroitin sulfate attachment region prior to the aggrecanase site. The enzyme is a typical Ca(2+)-dependent metalloproteinase with a unique salt-dependency and is inhibited by several hydroxamate-based inhibitors for matrix metalloproteinases. Heparin and chondroitin sulfate inhibited the enzyme in a dose-dependent manner, suggesting that the large carbohydorate in aggrecan is important for substrate recognition by aggrecanase.  相似文献   

16.
Aggrecanase cleavage at the Glu(373)-Ala(374) site in the interglobular domain of the cartilage proteoglycan aggrecan is a key event in arthritic diseases. The observation that substrates representing only the aggrecanase cleavage site are not catabolized efficiently by aggrecanase prompted us to investigate the requirement of aggrecanase for additional structural elements of its substrate other than the actual cleavage site. Based on the recombinant substrate rAgg1mut we constructed deletion mutants with successively truncated N- or C-termini of the interglobular domain. Catabolism by aggrecanase activities induced in rat chondrosarcoma cells, porcine chondrocytes, and by human recombinant ADAMTS4 showed a gradually decreasing catabolism of progressively shortened, N-terminal deletion mutants of the substrate rAgg1mut. A reduction to 32 amino acids N-terminal to the aggrecanase site resulted in a decrease of at least 42% of aggrecanase cleavage products as compared with the wild-type substrate. When only 16 amino acids preceded the Glu(373)-Ala(374) site, aggrecanase cleavage was completely inhibited. In contrast, C-terminal deletions did not negatively affect aggrecanase cleavage up to the reduction to 13 amino acids C-terminal to the cleavage site. Unlike aggrecanase(s), membrane type 1-matrix metalloprotease (MT1-MMP), able to cleave rAgg1mut both at the aggrecanase and the MMP site, was insensitive to N-terminal deletions regarding aggrecanase cleavage, indicating that the importance of the N-terminus is characteristic for aggrecanase(s). Taken together, the results demonstrate that the amino-terminus of rAgg1mut, containing the MMP site, plays an important role for efficient cleavage by aggrecanase(s), possibly by serving as a further site of interaction between the enzyme and its substrate.  相似文献   

17.
Aggrecanase activities of ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteinases were measured with a recombinant aggrecan fragment and two monoclonal antibodies. Recombinant human aggrecan interglobular domain was first incubated in the presence of ADAMTS enzymes. The aggrecan peptide with the N-terminal sequence ARGSVIL released upon hydrolysis was then quantified in an enzyme-linked immunosorbent assay (ELISA) with an anti-neoepitope antibody specific for the N-terminal ARGSVIL sequence and a second anti-aggrecan peptide antibody. For higher sensitivity of the assay, P1-P5 residues of the aggrecanase site within the aggrecan substrate were changed by in vitro mutagenesis. Specific activities of recombinant truncated ADAMTS1 and ADAMTS4 estimated with authentic aggrecan interglobular domain amounted to 2.4 +/- 0.4 and 21.7 +/- 9.5 nmoles hydrolyzed substrate/min.mg, respectively. The values were 10.3 +/- 5.1 and 151.5 +/- 93.5 nmoles/min.mg for hydrolysis of the modified substrate. The aggrecanase activity assay can be used for (1) kinetic characterization of aggrecanase activities of human and animal ADAMTS, (2) screening of inhibitors for aggrecan hydrolyzing ADAMTS, and (3) estimation of aggrecanase activities in biological samples.  相似文献   

18.
Aggrecanases are ADAMTS (a disintegrin and metalloproteinase with thrombospondin type I motifs) proteases capable of primary (patho)physiological cleavage at specific Glu-Xaa bonds within the core protein of the hyaluronan-binding proteoglycan aggrecan. Accumulating evidence suggests that regulation of the activity of one such aggrecanase, ADAMTS-4 (or Aggrecanase-1), involves post-translational C-terminal processing (truncation) which modulates both glycosaminoglycan (GAG)-binding affinity and enzymatic activity. In the present study, we compared the effects of C-terminal truncation on the GAG-binding properties and aggrecanase activity of ADAMTS-5 (Aggrecanase-2) relative to three other ADAMTS family members, ADAMTS-9, ADAMTS-16 and ADAMTS-18. Full-length recombinant human ADAMTS-5 (M(r) approximately 85 kDa; ADAMTS-5p85) underwent autolytic cleavage during expression by CHO/A2 cells, and co-purified with C-terminally truncated (tr) isoforms of M(r) approximately 60 kDa (ADAMTS-5p60 and M(r) approximately 45 kDa (ADAMTS-5p45). All three ADAMTS-5 isoforms bound to sulfated GAGs (heparin and chondroitin sulfate (CS)). An ADAMTS-5p45 structural mimetic, terminating at Phe628 and comprising the catalytic domain, disintegrin-like domain and thrombospondin type I repeat (TSR)-1 domain (designated trADAMTS-5F628), also bound to heparin, and exhibited potent aggrecanase activity toward cleavage sites both in the aggrecan CS-2-attachment region (at Glu1771-Ala1772) and in the interglobular domain (at Glu373-Ala374). Further truncation (deletion of the TSR-1 domain) of ADAMTS-5 significantly reduced aggrecanase activity, although appreciable GAG (heparin)-binding affinity was maintained. Other TSR-1 domain-bearing truncated ADAMTS constructs demonstrating either positive GAG-binding ability (trADAMTS-9F649) or negligible GAG-affinity (trADAMTS-16F647 and trADAMTS-18F650) displayed comparably low aggrecanase activities. Thus, the presence of TSR-1 on truncated ADAMTSs appears to be necessary, but not sufficient, for effective aggrecanase-mediated catalysis of target Glu-Xaa bonds. Similarly, GAG-binding ability, irrespective of the presence of a TSR-1 domain, does not necessarily empower truncated ADAMTSs with proficient aggrecanase activity.  相似文献   

19.
Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing   总被引:10,自引:0,他引:10  
ADAMTS-4 (a disintegrin and metalloprotease with thrombospondin motifs) is a multidomain metalloproteinase belonging to the reprolysin family. The enzyme cleaves aggrecan core protein at several sites. Here we report that the non-catalytic ancillary domains of the enzyme play a major role in regulating aggrecanase activity, with the C-terminal spacer domain masking the general proteolytic activity. Expressing a series of domain deletion mutants in mammalian cells and examining their aggrecan-degrading and general proteolytic activities, we found that full-length ADAMTS-4 of 70 kDa was the most effective aggrecanase, but it exhibited little activity against the Glu(373)-Ala(374) bond, the site originally characterized as a signature of aggrecanase activity. Little activity was detected against reduced and carboxymethylated transferrin (Cm-Tf), a general proteinase substrate. However, it readily cleaved the Glu(1480)-Gly(1481) bond in the chondroitin sulfate-rich region of aggrecan. Of the constructed mutants, the C-terminal spacer domain deletion mutant more effectively hydrolyzed both the Glu(373)-Ala(374) and Glu(1480)-Gly(1481) bonds. It also revealed new activities against Cm-Tf, fibromodulin, and decorin. Further deletion of the cysteine-rich domain reduced the aggrecanase activity by 80% but did not alter the activity against Cm-Tf or fibromodulin. Further removal of the thrombospondin type I domain drastically reduced all tested proteolytic activities, and very limited enzymatic activity was detected with the catalytic domain. Full-length ADAMTS-4 binds to pericellular and extracellular matrix, but deletion of the spacer domain releases the enzyme. ADAMTS-4 lacking the spacer domain has promiscuous substrate specificity considerably different from that previously reported for aggrecan core protein. Finding of ADAMTS-4 in the interleukin-1alpha-treated porcine articular cartilage primarily as a 46-kDa form suggests that it exhibits a broader substrate spectrum in the tissue than originally considered.  相似文献   

20.
Aggrecanases have been characterized as proteinases that cleave the Glu373-Ala374 bond of the aggrecan core protein, and they are multidomain metalloproteinases belonging to the ADAMTS (adamalysin with thrombospondin type 1 motifs) family. The first aggrecanases discovered were ADAMTS-4 (aggrecanase 1) and ADAMTS-5 (aggrecanase 2). They contain a zinc catalytic domain followed by non-catalytic ancillary domains, including a disintegrin domain, a thrombospondin domain, a cysteine-rich domain, and a spacer domain. In the case of ADAMTS-5, a second thrombospondin domain follows the spacer domain. We previously reported that the non-catalytic domains of ADAMTS-4 influence both its extracellular matrix interaction and proteolytic abilities. Here we report the effects of these domains of ADAMTS-5 on the extracellular matrix interaction and proteolytic activities and compare them with those of ADAMTS-4. Although the spacer domain was critical for ADAMTS-4 localization in the matrix, the cysteine-rich domain influenced ADAMTS-5 localization. Similar to previous reports of other ADAMTS family members, very little proteolytic activity was detected with the ADAMTS-5 catalytic domain alone. The sequential inclusion of each carboxyl-terminal domain enhanced its activity against aggrecan, carboxymethylated transferrin, fibromodulin, decorin, biglycan, and fibronectin. Both ADAMTS-4 and -5 had a broad optimal activity at pH 7.0-9.5. Aggrecanolytic activities were sensitive to the NaCl concentration, but activities on non-aggrecan substrates, e.g. carboxymethylated transferrin, were not affected. Although ADAMTS-4 and ADAMTS-5 had similar general proteolytic activities, the aggrecanase activity of ADAMTS-5 was at least 1,000-fold greater than that of ADAMTS-4 under physiological conditions. Our studies suggest that ADAMTS-5 is a major aggrecanase in cartilage metabolism and pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号