首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. In most animals, females are larger than males. Paradoxically, sexual size dimorphism is biased towards males in most mammalian species. An accepted explanation is that sexual dimorphism in mammals evolved by intramale sexual selection. I tested this hypothesis in primates, by relating sexual size dimorphism to seven proxies of sexual selection intensity: operational sex ratio, mating system, intermale competition, group sex ratio, group size, maximum mating percentage (percentage of observed copulations involving the most successful male), and total paternity (a genetic estimate of the percentage of young sired by the most successful male).
  2. I fitted phylogenetic generalised least squares models using sexual size dimorphism as the dependent variable and each of the seven measures of intensity of sexual selection as independent variables. I conducted this comparative analysis with data from 50 extant species of primates, including Homo sapiens, Pan troglodytes, and Gorilla spp.
  3. Sexual dimorphism was positively related to the four measures of female monopolisation (operational sex ratio, mating system, intermale competition, and group sex ratio) and in some cases to group size, but was not associated with maximum mating percentage or total paternity. Additional regression analyses indicated that maximum mating percentage and total paternity were negatively associated with group size.
  4. These results are predicted by reproductive skew theory: in large groups, males can lose control of the sexual behaviour of the other members of the group or can concede reproductive opportunities to others. The results are also consistent with the evolution of sexual size dimorphism before polygyny, due to the effects of natural, rather than sexual, selection. In birds, the study of molecular paternity showed that variance in male reproductive success is much higher than expected by behaviour. In mammals, recent studies have begun to show the opposite trend, i.e. that intensity of sexual selection is lower than expected by polygyny.
  5. Results of this comparative analysis of sexual size dimorphism and sexual selection intensity in primates suggest that the use of intramale sexual selection theory to explain the evolution of polygyny and sexual dimorphism in mammals should be reviewed, and that natural selection should be considered alongside sexual selection as an evolutionary driver of sexual size dimorphism and polygyny in mammals.
  相似文献   

2.
Sexual selection is often considered as a critical evolutionary force promoting sexual size dimorphism (SSD) in animals. However, empirical evidence for a positive relationship between sexual selection on males and male-biased SSD received mixed support depending on the studied taxonomic group and on the method used to quantify sexual selection. Here, we present a meta-analytic approach accounting for phylogenetic non-independence to test how standardized metrics of the opportunity and strength of pre-copulatory sexual selection relate to SSD across a broad range of animal taxa comprising up to 95 effect sizes from 59 species. We found that SSD based on length measurements was correlated with the sex difference in the opportunity for sexual selection but showed a weak and statistically non-significant relationship with the sex difference in the Bateman gradient. These findings suggest that pre-copulatory sexual selection plays a limited role for the evolution of SSD in a broad phylogenetic context.  相似文献   

3.
4.
M. A. Elgar    N. Ghaffar    A. F. Read 《Journal of Zoology》1990,222(3):455-470
The degree and direction of sexual dimorphism across different species is commonly attributed to differences in the selection pressures acting on males and females. The extent of these differences is especially apparent in species that practise sexual cannibalism, where the female attempts to capture and eat a courting male. Here, we investigate the relationship between sexual dimorphism in size and leg length, sexual cannibalism and courtship behaviour in three taxonomic groups of orb-weaving spiders, using morphological data from 249 species in 36 genera. Females are larger than males in all three taxonomic groups, and males have relatively longer legs than females in both the Araneinae and Tetragnathidae. Across genera within each taxonomic group, male body size is positively correlated with both female body size and male leg length, and female body size is positively correlated with female leg length. Sexual size dimorphism is negatively correlated with relative male leg length within the Araneinae, but not within either the Tetragnathidae or the Gasteracanthinae. There was no negative correlation between sexual size dimorphism and relative female leg length in any taxonomic group. We argue that the relationship between sexual size dimorphism and relative male leg length within the Araneinae may be the result of selection imposed by sexual cannibalism by females.  相似文献   

5.
Although antiexploitation adaptations, such as cheater-detection mechanisms, have been well explored, comparatively little research has focused on identifying adaptations for exploitation. The present study had two purposes: (1) to identify observable cues that afford information about which women are sexually exploitable and (2) to test the hypothesis that men find cues to sexual exploitability sexually attractive, an adaptation that functions to motivate pursuit of accessible women. Male participants rated photographs of women who displayed varying levels of hypothesized cues to exploitability. We identified 22 cues indicative of sexual exploitability. Nineteen of these cues were correlated significantly with sexual attractiveness, supporting the central hypothesis. Results suggest that sexual attraction to exploitability cues functions to motivate men to employ exploitative strategies towards accessible targets, and contribute foundational knowledge to the diverse classes of cues that afford information about which women are and are not sexually exploitable.  相似文献   

6.
Sexual selection,sexual dimorphism and plant phylogeny   总被引:2,自引:0,他引:2  
Summary Darwin examined sexual dimorphism in animals, arguing that sexual selection was important in the evolution of such dimorphism. Sexual dimorphism in plants may have parallel causes and costs.The processes that contribute to sexual dimorphism may also lead to speciation and morphological differences among related species, as argued originally by Darwin. Where sexes are separate and dimorphism is well-developed, males of related animal species (both vertebrate and invertebrate) are often strikingly different from each other, while females may be virtually indistinguishable. A similar pattern may exist in plants: it is frequently the males (of dioecious taxa) or the male portions of the flower (in co-sexual flowers) that apparently have diversified. I suggest that the similarity of pattern may be accounted for by a similarity of process.In addition, sexual selection may have contributed to certain evolutionary trends within the angiosperms and, indeed, to angiosperm radiation.  相似文献   

7.
This paper contrasts levels of sexual size dimorphism in second metacarpal osteometric and geometric morphology in two bioculturally distinctive populations: 19th century Euro-Canadian settlers, and proto/historic central Canadian Inuit. Significant within-group sexual size dimorphism is found for all variables, though few show significant interpopulation differences. However, in every case the Euro-Canadian sample is more dimorphic than the Inuit sample. Notably, differences reside in geometric measures (total area, Imax) sensitive to variation in functional strain, and thus are interpretable in light of proximate causal models, i.e., activity profiles distinct from generalized mode of subsistence. Other proximate factors, such as nutritional stress acting to diminish Inuit sexual size dimorphism, may also play a role. However, models often cited to explain dimorphism, such as marriage practice (e.g., polygyny) or division of labor situated in mode of subsistence, do not. The higher sexual size dimorphism in the 19th century settler sample belies the notion that technological progress inevitably leads to reduced dimorphism.  相似文献   

8.
Application and comparison of sex discriminant functions in different populations led to the conclusion that a certain combination and weighting of a few sex dimorphism variables (in this study we only used craniometric variables) can give a good discrimination between male and female individuals, independent of the racial group to which this function is applied. In our study, the sex-discriminatory power of five discriminant functions which were based on different ordination and selection procedures (e.g. professional knowledge, stepwise discriminant analysis, literature) of the cranial variables is compared. These discriminant functions were applied to three different data sets, the first being skull measurements from an Amsterdam series (Europids), the second skull measurements of a Zulu series (Negrids) and the third skull measurements of a Japan series (Mongolids). Our decision as to whether a function is a good or less good sex-discriminating function is determined by the Dt values (these values give an idea about the discriminatory value of the discriminant function when applied to a new test sample), the number of variables necessary to obtain this Dt and the location of the sectioning point (i.e. comparison between the estimation of the sectioning point and the ”real” sectioning point). These discriminant functions were compared withGiles Elliot's (1962, 1963) “race-independent” sex function.  相似文献   

9.
One of the most general patterns in sexual selection is stronger selection on mating activity in males than in females. This asymmetry is thought to result from the higher energetic cost of producing one female compared to one male gamete (anisogamy). However, most studies focused on gonochoric species with strong sexual dimorphism, in which males and females are necessarily under different selection regimes. The question remains whether anisogamy alone would suffice to produce such differences. In simultaneous hermaphrodites one can compare sexual selection on the male and female functions in the absence of sexual dimorphism. Here we quantify sexual selection in the hermaphroditic freshwater snail Physa acuta under laboratory conditions. We combine exhaustive behavioral records of mating activity in mating groups and molecular paternity assignment to measure the mating success and reproductive success of 120 individuals. Our results validate the prediction of stronger selection to gain mating partners in the male than in the female function. Moreover, we did not detect cross‐sex effects on fitness, or correlations between male and female production of offspring over the course of our experiment. We conclude that with respect to sexual selection P. acuta is comparable to gonochorists, confirming that anisogamy is a sufficient explanation for the differences in sexual selection regimes between sexes.  相似文献   

10.
The colder climate and disjunct distribution of nesting andforaging habitats at high elevations increases the necessityof biparental care for successful breeding in birds. If differencesin parental investment between the sexes correlate with intensityof sexual selection, the intensity of sexual selection shouldcovary with ecological factors associated with elevation. Iused sexual dimorphism as an indirect measure of intensity ofsexual selection and examined variation in sexual dimorphismin 126 extant species of cardueline finches. I controlled forphylogeny and potential confounding factors and tested the predictionthat the extent of sexual dimorphism negatively covaries withelevation of breeding. As predicted, interspecific variationin sexual dimorphism was more strongly associated with changesin elevation than with habitat, nest dispersion and placement,and migratory status. Species occupying lower elevations weremore sexually dimorphic in plumage than species at higher elevations.This variation was largely due to increased brightness of maleplumage at lower elevations. I address possible explanationsof this trend, which may include increased opportunities forextrapair fertilizations at lower elevations, an increase inthe cost of secondary sexual trait production (i.e., molt) andmaintenance at high elevations, and elevational variation inpredation pressure  相似文献   

11.
Odonata (dragonflies and damselflies) exhibit a range of sexual size dimorphism (SSD) that includes species with male-biased (males > females) or female-biased SSD (males < females) and species exhibiting nonterritorial or territorial mating strategies. Here, we use phylogenetic comparative analyses to investigate the influence of sexual selection on SSD in both suborders: dragonflies (Anisoptera) and damselflies (Zygoptera). First, we show that damselflies have male-biased SSD, and exhibit an allometric relationship between body size and SSD, that is consistent with Rensch's rule. Second, SSD of dragonflies is not different from unit, and this suborder does not exhibit Rensch's rule. Third, we test the influence of sexual selection on SSD using proxy variables of territorial mating strategy and male agility. Using generalized least squares to account for phylogenetic relationships between species, we show that male-biased SSD increases with territoriality in damselflies, but not in dragonflies. Finally, we show that nonagile territorial odonates exhibit male-biased SSD, whereas male agility is not related to SSD in nonterritorial odonates. These results suggest that sexual selection acting on male sizes influences SSD in Odonata. Taken together, our results, along with avian studies (bustards and shorebirds), suggest that male agility influences SSD, although this influence is modulated by territorial mating strategy and thus the likely advantage of being large. Other evolutionary processes, such as fecundity selection and viability selection, however, need further investigation.  相似文献   

12.
Variation in traits that are sexually dimorphic is usually attributed to sexual selection, in part because the influence of ecological differences between sexes can be difficult to identify. Sex‐limited dimorphisms, however, provide an opportunity to test ecological selection disentangled from reproductive differences between the sexes. Here, we test the hypothesis that ecological differences play a role in the evolution of body colour variation within and between sexes in a radiation of endemic Hawaiian damselflies. We analysed 17 Megalagrion damselflies species in a phylogenetic linear regression, including three newly discovered cases of species with female‐limited dimorphism. We find that rapid colour evolution during the radiation has resulted in no phylogenetic signal for most colour and habitat traits. However, a single ecological variable, exposure to solar radiation (as measured by canopy cover) significantly predicts body colour variation within sexes (female‐limited dimorphism), between sexes (sexual dimorphism), and among populations and species. Surprisingly, the degree of sexual dimorphism in body colour is also positively correlated with the degree of habitat differences between sexes. Specifically, redder colouration is associated with more exposure to solar radiation, both within and between species. We discuss potential functions of the pigmentation, including antioxidant properties that would explain the association with light (specifically UV) exposure, and consider alternative mechanisms that may drive these patterns of sexual dimorphism and colour variation.  相似文献   

13.
In the adult human innominate, pubis length and sciatic notch width are generally considered to offer the best prospect for reliable sex identification. Population variation in the extent of sexual dimorphism in these features was examined in two temporally distinct European skeletal collections of documented age and sex. (English and Dutch). A complex relationship was found to exist between pubis length and sciatic notch width with body size; these relationships differed both between the sexes and between the groups. Caution is therefore urged in the use of both metric and non-metric standards derived from one population and subsequently applied to other populations of differing origin.  相似文献   

14.
Seabirds exhibit a range of sexual size dimorphism (SSD) that includes both male-biased (males>females) and female-biased SSD (males相似文献   

15.
匡先钜  戈峰  薛芳森 《昆虫学报》2015,58(3):351-360
体型是昆虫基本的形态特性,它会影响到昆虫几乎所有的生理和生活史特性。同种昆虫不同地理种群在体型上常表现出明显的渐变,导致这些渐变的环境因素包括温度、湿度、光照、寄主植物、种群密度等,并且多种环境因素也会对昆虫种群内个体体型产生影响。雌雄个体的体型存在差异,称性体型二型性。性体型二型性也显示了地理差异。这些差异形成的途径已经得到详细的分析,其形成机制导致多个假说的提出,这些假说又在多种昆虫中得到验证。本文从同一种昆虫不同种群间、同一种群内、雌雄虫个体间3个水平,对种内昆虫体型变异的方式,影响昆虫种群间体型变异和种群内昆虫体型的变异的环境因素,以及昆虫性体型二型性及其地理变异的现象等方面的研究进行了综述,并对未来的相关研究提供了建议。  相似文献   

16.
Sexual size dimorphism and sexual selection in turtles (order testudines)   总被引:5,自引:0,他引:5  
Summary This paper combines published and original data on sexual size dimorphism, reproductive behavior, and habitat types in turtles. Our major finding is that observed patterns of sexual size dimorphism correlate with habitat type and male mating strategy. (1) In most terrestrial species, males engage in combat with each other. Males typically grow larger than females. (2) In semiaquatic and bottom-walking aquatic species, male combat is less common, but males often forcibly inseminate females. As in terrestrial species, males are usually larger than females. (3) In truly aquatic species, male combat and forcible insemination are rare. Instead, males utilize elaborate precoital displays, and female choice is highly important. Males are usually smaller than females.We interpret these correlations between sexual behavior and size dimorphism in terms of sexual selection theory: males are larger than females when large male size evolves as an adaptation to increase success in male combat, or to enable forcible insemination of females. In contrast, males are usually smaller than females where small size in males evolves to increase mobility (and hence, ability to locate females), or because selection for increased fecundity may result in increased female size. In turtle species with male combat or forcible insemination, the degree of male size superiority increases with mean species body size.  相似文献   

17.
18.
Sexual dimorphism in body size and shape in animals is normally linked to sexual selection mechanisms that modify the morphological properties of each sex. However, sexual dimorphism of ecologically relevant traits may be amplified by natural selection and result in the ecological segregation of both sexes. In the present study, we investigated patterns of sexual dimorphism of morphological traits relevant for locomotion in two lacertid lizards, Podarcis bocagei and Podarcis carbonelli, aiming to identify ontogenetic sources of variation. We analysed trunk and limb variation in relation to total body size, as well as the covariation of different traits, aiming to shed light on the proximate causation of adult sexual dimorphism. We find that, although immatures are generally monomorphic, adult females have a longer trunk, and adult males have longer fore and hind limbs. Both sexes differ substantially with respect to their growth trajectories and relationships between traits, whereas, in some cases, there are signs of morphological constraints delimiting the observed patterns. Because of the direct connection between limb size/shape and locomotor performance, which is relevant both for habitat use and escape from predators, the observed patterns of sexual dimorphism are expected to translate into ecological differences between both sexes. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 530–543.  相似文献   

19.
Summary The presence and extent of sexual dimorphisms in body form (size and shape) of adult macroteiid lizards were investigated. Males were significantly larger than females in the temperate species, Cnemidophorus tigris, and in the tropical species, Ameiva ameiva and C. ocellifer. Young adult C. tigris males grew faster than young adult females within and between reproductive seasons. Adult males of all species had larger heads than adult females of the same body size; this difference increased with body size. Moreover, male C. tigris were heavier than females of the same snout-vent length. The causes and consequences of the sexual dimorphisms were also examined. The possible causes of body size are especially numerous, and distinguishing the relative influences of the various causal selection factors on body size is problematical. Nevertheless, observational field data were used to tentatively conclude that intrasexual selection was the cause of larger body size of C. tigris males relative to females because (1) larger males won in male aggressive interactions, (2) the winning males gained access to more females by repelling competitors and by female acceptance, (3) larger males consequently had higher reproductive success, and (4) other hypothetical causes of larger male size were unsupported.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号