首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Supercoiled plasmid bearing two wild-type phi X origin sequences on the same strand supported the phi X A protein-dependent in vitro formation of two smaller single-stranded circles, the lengths of which were equivalent to the distance between the two origins. Additional double origin plasmids were utilized to determine whether origins defective in the initial nicking event (initiation) could support circularization (termination). In all cases tested, the presence of a mutant origin on the same strand with a wild-type origin affected the level of replication in a manner consistent with the previously determined activity of the mutant origin. When a functional mutant origin was present on the same strand as a wild-type origin, the efficiency of replication and the DNA products formed were almost identical to those of the plasmid containing two wild-type origins. Plasmid DNA bearing both a wild-type origin and a mutant origin that did not support phi X A protein binding or nicking activity, on the other hand, supported efficient DNA synthesis of only full-length circular products, indicating that the origin defective for initiation was incapable of supporting termination. In contrast, the presence of a wild-type origin and an origin that did bind the phi X A protein but was not cleaved resulted in a marked decrease in DNA synthesis along with the production of only full-length products. This suggests that the phi X A protein stalls when it encounters a sequence to which it can bind but cannot cleave. Replication of double origin plasmids containing one functional phi X origin on each strand of the supercoiled DNA was also examined. With such templates, synthesis from the wild-type origin predominated, indicating preferential cleavage of the intact origin sequence. Replication of such substrates also produced a number of aberrant structures, the properties of which suggested that interstrand exchange of the phi X A protein had occurred.  相似文献   

3.
Rep protein as a helicase combines its actions with those of gene A protein and single-stranded DNA binding protein to separate the strands of phi X174 duplex DNA and thereby can generate and advance a replication fork (Scott, J. F., Eisenberg, S., Bertsch, L. L., and Kornberg, A. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 193-197). Tritium-labeled rep protein is bound in an active gene A protein. phi X174 closed circular duplex supercoiled DNA complex in a 1:1 ratio. Catalytic separation of the strands of the duplex by rep protein, as measured by incorporation of tritium-labeled single-stranded DNA binding protein, requires ATP at a Km value of 8 microM, and hydrolyzes two molecules of ATP for every base pair melted. When coupled to replication in the synthesis of single-strand viral circles, a "looped" rolling-circle intermediate is formed that can be isolated in an active form containing gene A protein, rep protein, single-stranded DNA binding protein, and DNA polymerase III holoenzyme. Unlike the binding of rep protein to single-stranded DNA, where its ATPase activity is distributive, binding to the replicating fork is not affected by ATP, further suggesting a processive action linked to gene A protein. Limited tryptic hydrolysis of rep protein abolishes its replicative activity without affecting significantly its binding of ATP and its ATPase action on single-stranded DNA. These results augment earlier findings by describing the larger role of rep proteins as a helicase, linked in a complex ith other proteins, at the replication fork of a duplex DNA.  相似文献   

4.
With biologically active DNA of the bacteriophage phi X174, both single and double-stranded, some physico-chemical and biological parameters of the depurination reaction are studied. It is shown that in single-stranded DNA each apurinic site is lethal, while in double-stranded RFI-DNA only about 5% of these sites are lethal. Furthermore it is concluded that the apurinic sites are formed at different rates in single- and double-stranded DNA and also the conversion into breaks of the apurinic sites is different for both forms of DNA.  相似文献   

5.
The replication of bacteriophage phi X 174 replicative-form DNA has been studied by structural analysis of pulse-labeled replicative-intermediate molecules. Such intermediates were identified by pulse-labeling with [13H]thymidine and separated into four major fractions (A, B, C, and D) in a propidium diiodide-cesium chloride buoyand density gradient. Sedimentation analysis of each of these fractions suggests the following features of phi X replicative-form DNA replication in vivo. (i) At the end of one cycle of replication, one daughter replicative form (RFII) contains a nascent plus (+) strand of the unit viral length, and the other daughter RFII contains small fragments of nascent minus (-) strand. (ii) Asymmetry is also associated with production of the first supercoiled RFI after addition of pulse label in that only the minus strand becomes radioactive. (iii) A supercoiled DNA (RFI') seems to occur in vivo. This DNA is observed at a position of greater density in a propidium diiodide-cesium chloride buoyant density gradient than normal RFI. (iv) A novel DNA component is observed, at a density greater than RFI, which releases, in alkali, a plus strand longer (1.5 to 1.7 times) than the unit viral length. These results are discussed in terms of the possible sequence of events in phi X 174 replicative-form replication in vivo.  相似文献   

6.
Evidence is presented that the gene A and A * proteins of bacteriophage phi X 174 form covalent associations with the 5' ends of the DNA molecules when superhelical phi X replicative form DNA is nicked by a combination of these proteins in vitro. This evidence is: 1, The 5' ends of the DNA molecules nicked by the gene A protein and reacted with bacterial alkaline phosphatase were protected against subsequent phosphorylation by polynucleotide kinase even after treatment of the nicked DNA with SDS and pronase followed by centrifugation on a high-salt neutral sucrose gradient. 2, Iodinated pronase-sensitive material remained attached to the nicked replicative form DNA and could not be removed by exposure to SDS or 2 M NaCl, either by sedimentation through high-salt neutral sucrose gradients, or by CsCl equilibrium centrifugation. 3, Iodinated pronase-sensitive material was detected on DNA that had been nicked during the reaction, but not on unreacted DNA. 4, Electrophoresis of the iodinated pronase-sensitive, DNA-bound material in SDS-polyacrylamide gels after DNAse digestion revealed that it was composed almost entirely polypeptides with electrophoretic mobilities similar to those of the gene A and A * proteins. We speculate that the gene * protein may be essential for normal progeny single-stranded DNA synthesis in vivo.  相似文献   

7.
An extract prepared from Escherichia coli cells infected with phi chi 174 bacteriophage was capable of incorporating dTTP into phage-specific DNAs in vitro. The synthesized DNAs were associated with proteins and sedimented with S values of 20, 50, and 90 in a sucrose gradient sedimentation. DNA isolated from 20S material was open circular replicative form (RF), DNA in 50S material was replicative-form DNA with an extended single-stranded viral DNA that ranged up to one genome in length, and DNA in 90S material consisted of circular and linear single-stranded viral DNA of full genome length and single-stranded viral DNA shorter than full genome length. Pulse and pulse-chase experiments indicated that 90S material derived from 50S material.  相似文献   

8.
Bacteriophage phi X174 viral strand DNA molecules shorter than genome length found late in the infectious cycle in Escherichia coli were 5' end labeled with 32P. Hybridization of the 32P-labeled molecules to restriction enzyme fragments of phi X replicative form DNA revealed an excess of phi X molecules whose 5' ends mapped in HaeIII fragments Z3 and Z4 in comparison with fragments Z1 and Z2. This suggests that initiation of phi X174 viral strand DNA synthesis may occur at internal sites on the complementary strand. There are several appropriately located sequences that might serve as n' (factor Y) recognition sequences and thereby facilitate discontinuous synthesis of the viral strand.  相似文献   

9.
The insertion of a particular phi X DNA sequence in the plasmid pACYC177 strongly decreased the capacity of Escherichia coli cells containing such a plasmid to propagate bacteriophage phi X174. The smallest DNA sequence tested that showed the effect was the HindII fragment R4. This fragment does not code for a complete protein. It contains the sequence specifying the C-terminal part of the gene H protein and the N-terminal part of the gene A protein, as well as the noncoding region between these genes. Analysis of cells that contain plasmids with the "reduction sequence" showed that (i) the adsorption of the phages to the host cells is normal, (ii) in a single infection cycle much less phage is formed, (iii) only 10% of the infecting viral single-stranded DNA is converted to double-stranded replicative-form DNA, and (iv) less progeny replicative form DNA is synthesized. The reduction process is phi X174 specific, since the growth of the related G4 and St-1 phages was not affected in these cells. The effect of the recombinant plasmids on infecting phage DNA shows similarity to the process of superinfection exclusion.  相似文献   

10.
A fast and simple radioimmunoassay (RIA) technique was developed for an antibody to DNA·RNA hybrid using protein A-bearing Staphylococcus aureus cells as immuno-adsorbent and a glass microfiber filter for the deparation of free antigen and antibody-antigen complex. A simple method for preparing 3H-labeled DNA·RNA hybrid using single-stranded circular DNA of viruses and Escherichia coli RNA polymerase (nucleosidetri-phosphate: RNA nucleotidyltransferase, EC 2.7.7.6) is also described. In comparison to a hybrid made of natural sequences, a synthetic homopolymer hybrid poly (A)·poly(dT) was found to be a poor competitor for the antibody by this RIA technique.  相似文献   

11.
A mutant (designated mec(-)) has been isolated from Escherichia coli C which has lost DNA-cytosine methylase activity and the ability to protect phage lambda against in vivo restriction by the RII endonuclease. This situation is analogous to that observed with an E. coli K-12 mec(-) mutant; thus, the E. coli C methylase appears to have overlapping sequence specificity with the K-12 and RII enzymes; (the latter methylases have been shown previously to recognize the same sequence). Covalently closed, supertwisted double-standed DNA (RFI) was isolated from C mec(+) and C mec(-) cells infected with bacteriophage phiX174. phiX. mec(-) RFI is sensitive to in vitro cleavage by R.EcoRII and is cut twice to produce two fragments of almost equal size. In contrast, phiX.mec(+) RFI is relatively resistant to in vitro cleavage by R.EcoRII. R.BstI, which cleaves mec(+)/RII sites independent of the presence or absence of 5-methylcytosine, cleaves both forms of the RFI and produces two fragments similar in size to those observed with R. EcoRII. These results demonstrate that phiX.mec(+) RFI is methylated in vivo by the host mec(+) enzyme and that this methylation protects the DNA against cleavage by R.EcoRII. This is consistent with the known location of two mec(+)/ RII sequences (viz., [Formula: see text]) on the phiX174 map. Mature singlestranded virion DNA was isolated from phiX174 propagated in C mec(+) or C mec(-) in the presence of l-[methyl-(3)H]methionine. Paper chromatographic analyses of acid hydrolysates revealed that phiX.mec(+) DNA had a 10-fold-higher ratio of [(3)H]5-methylcytosine to [(3)H]cytosine compared to phiX.mec(-). Since phiX.mec(+) contains, on the average, approximately 1 5-methylcytosine residue per viral DNA, we conclude that methylation of phiX174 is mediated by the host mec(+) enzyme only. These results are not consistent with the conclusions of previous reports that phiX174 methylation is mediated by a phage-induced enzyme and that methylation is essential for normal phage development.  相似文献   

12.
Cloning of the phi X174 viral origin of replication into phage M13mp8 produced an M13-phi X174 chimera, the DNA of which directed efficient replicative-form----single-strand rolling-circle replication in vitro. This replication assay was performed with purified phi X174-encoded gene A protein, Escherichia coli rep helicase, single-stranded DNA-binding protein, and DNA polymerase III holoenzyme. The nicking of replicative-form I (RFI) DNA by gene A protein was essentially unaffected by the presence of UV lesions in the DNA. However, unwinding of UV-irradiated DNA by the rep helicase was inhibited twofold as compared with unwinding of the unirradiated substrate. UV irradiation of the substrate DNA caused a strong inhibition in its ability to direct DNA synthesis. However, even DNA preparations that contained as many as 10 photodimers per molecule still supported the synthesis of progeny full-length single-stranded DNA. The appearance of full-length radiolabeled products implied at least two full rounds of replication, since the first round released the unlabeled plus viral strand of the duplex DNA. Pretreatment of the UV-irradiated DNA substrate with purified pyrimidine dimer endonuclease from Micrococcus luteus, which converted photodimer-containing supercoiled RFI DNA into relaxed, nicked RFII DNA and thus prevented its replication, reduced DNA synthesis by 70%. Analysis of radiolabeled replication products by agarose gel electrophoresis followed by autoradiography revealed that this decrease was due to a reduction in the synthesis of progeny full-length single-stranded DNA. This implies that 70 to 80% of the full-length DNA products produced in this system were synthesized on molecules that carried photodimers. Thus, similarly to its activity on UV-irradiated single-stranded DNA, DNA polymerase III holenzyme can bypass pyrimidine photodimers in the more complex replicative form --->single-strand replication, which involves, in addition to the polymerizing activity, the unwinding of the duplex by the rep helicase and the participation of a more complex multiprotein replisome.  相似文献   

13.
The influence of a C----G transversion at position 1 of the 30-base pair replication origin of bacteriophage phi X174 replicative form I DNA (phi X RFI) was examined in the RF----single-stranded circular DNA replication pathway catalyzed by the combined action of the purified phi X A protein, the Escherichia coli DNA polymerase III holoenzyme, rep helicase, and single-stranded DNA binding protein (Eisenberg, S., Scott, J.F., and Kornberg, A. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 1594-1597; Reinberg, D., Zipursky, S.L., and Hurwitz, J. (1981) J. Biol. Chem. 256, 13143-13151). RFI DNA containing this transversion was cleaved to RFII by the phi X A protein as effectively as DNA containing the wild-type origin. The altered duplex DNA, however, supported replication at a slower rate (3- to 4-fold) than the wild-type DNA due to a defect in the termination and reinitiation reactions catalyzed by the phi X A protein. This defect resulted in the accumulation of DNA products containing long single strands covalently joined to the mutant DNA. These single strands were susceptible to nuclease S1 and exonuclease VII attack. The defect in the template DNA containing C----G transversion was not corrected when this mutant origin was placed on the same strand with a wild-type origin. This double-origin DNA was also replicated poorly and led to the accumulation of large products, in contrast to the products formed with RFI DNA containing two wild-type 30-base pair replication origins on the same strand.  相似文献   

14.
We have studied the replication of φX174 DNA in Escherichia coli infected with various amber mutants (cistrons I to VII) of φX. Previous research showing that some of these mutants are able to form replicative form (RF) DNA but are unable to produce net amounts of viral progeny single-stranded DNA has been confirmed and extended. Evidence is presented that a defect in any one of four viral cistrons prevents the asymmetric replication of the RF to produce progeny viral DNA. At least four virus-coded proteins, three of which are part of the mature virion, must be present before single-stranded DNA synthesis can even be initiated; the possibility that single-stranded DNA is made and then degraded or converted to RF is eliminated. Mutants in one cistron (II) do permit the asymmetric replication of RF at late times, but the displaced viral strand is incorporated into a defective particle and subsequently may be partially degraded. Both RFI (superhelix) and RFII are present in roughly comparable amounts throughout the normal latent period in infections with wild-type phage or any of the phage mutants.  相似文献   

15.
An M13 phage deletion mutant, M13 delta E101, developed as a vector for selecting DNA sequences that direct DNA strand initiation on a single-stranded template, has been used for cloning restriction enzyme digests of phi X174 replicative-form DNA. Initiation determinants, detected on the basis of clear-plaque formation by the chimeric phage, were found only in restriction fragments containing the unique effector site in phi X174 DNA for the Escherichia coli protein n' dATPase (ATPase). Furthermore, these sequences were functional only when cloned in the orientation in which the phi X174 viral strand was joined to the M13 viral strand. A 181-nucleotide viral strand fragment containing this initiation determinant confers a phi X174-type complementary-strand replication mechanism on M13 chimeras. The chimeric phage is converted to the parental replicative form in vivo by a mechanism resistant to rifampin, a specific inhibitor of the normal RNA polymerase-dependent mechanism of M13. In vitro, the chimeric single-stranded DNA promotes the assembly of a functional multiprotein priming complex, or primosome, identical to that utilized by intact phi X174 viral strand DNA. Chimeric phage containing the sequence complementary to the 181-nucleotide viral strand sequence shows no initiation capability, either in vivo or in vitro.  相似文献   

16.
The single-stranded packaged genome (ssDNA) of bacteriophage phi X174 is shown by Raman spectroscopy to lack both the ordered phosphodiester backbone and base stacking, which are demonstrated for unpackaged, protein-free ssDNA. In solutions of moderate ionic strength, unpackaged ssDNA contains 36 +/- 7% of deoxyribosyl phosphate groups with conventional B-type backbone geometry [i.e., gauche- and trans orientations, respectively, for the 5'O-P (alpha) and 3'O-P (zeta) torsions], indicative of hairpin formation and intramolecular base pairing. Additionally, the bases of unpackaged ssDNA are extensively stacked. Estimates from Raman band hypochromic effects indicate that unpackaged ssDNA contains approximately 70% of the maximal base stacking exhibited in the linear, double-stranded, replicative form III of phi X174 DNA. Conversely, for the packaged phi X174 genome, ordered (B-type) phosphodiester groups are not present, and only 40% of the base stacking in RFIII DNA is observed. These results are interpreted as evidence that the substantial hairpin-forming potential of ssDNA is eliminated by specific and extensive ssDNA-protein interactions within the phi X174 virion. Comparison of the present results with studies of other packaged single-stranded nucleic acids suggests that proteins of the capsid shell (gpF + gpG + gpH) do not fully account for the conformational constraints imposed on ssDNA of phi X174. Accordingly, we propose a model for ssDNA packaging in which the small basic gpJ protein, which is packaged along with the genome, is involved stoichiometrically in binding to the ssDNA (approximately 90 nucleotides per subunit). The proposed gpJ-DNA interactions could prevent helical hairpin formation, restrict base stacking, and disfavor fortuitous base pairing within the capsid. The present analysis is based upon use of model nucleic acids of known conformation for calibration of the Raman intensity in the region 810-860 cm-1 in terms of specific secondary structures. The calibration curve allows quantitative determination of the percentage of ssDNA nucleotides for which the 5'O-P-O3' group is configured (g-,t) as in the B-form of DNA. The method proposed here is analogous to that employed by Thomas and Hartman (1973) for ssRNA and should be applicable to single-stranded DNA and to partially denatured forms of double- and multiple-stranded DNAs.  相似文献   

17.
18.
H P Vosberg  F Eckstein 《Biochemistry》1977,16(16):3633-3640
We have synthesized fd and phi X174DNA in the presence of 2'-deoxyadenosine 5'-O-(1-thiotriphosphate) (dATP alpha S) and the corresponding phosphorothioate derivatives of dCTP and dTTP using ether-permeabilized E. coli cells or crude cell extracts of E. coli DNA polymerase I. Reaction rates of enzymes involved in the formation or breakdown of DNA are decreased in the presence of phosphorothioates. The amount of label incorporated with [35S]dATP alpha S suggests that the dAMP has been completely substituted by 2'-deoxyadenosine 5'-0-phosphorothioate (dAMPS). The substituted DNAs have the same sedimentation coefficients, similar buoyant density, infectivity, and thermal stability as the unsubstituted DNAs. The procedure therefore allows specific modification at the 5' position of dA, dC, or dT in the DNA. In view of the recent demonstration of specific binding of Pt2+ complexes to the phosphorothioate analogue of poly[r(A-U)] (Strothkamp, K.G., and Lippard, S.J. (1976), Proc. Natl. Acad. Sci. U.S.A. 73, 2536), the synthesis of phosphorothioate containing DNA may be of use for DNA sequencing by electron microscopy.  相似文献   

19.
Incubation of phi X174 replication form I DNA with the A* protein of phi X174 in the presence of MN2+ results in the formation of three different types of DNA molecules: open circular form DNA (RFII), linear form DNA (RFIII) and the relaxed covalently closed form DNA (RFIV). The RFII and RFIII DNAs are shown to be A* protein-DNA complexes by electron microscopy using the protein labeling technique of Wu and Davidson (1). The linear double-stranded RFIII DNA molecule carries at one end a covalently attached A* protein whereas at the other end of the molecule the single-stranded termini are covalently linked to each other. The structure of the RFIII DNA shows its way of formation. The described properties of the A* protein indicate the way the larger A protein functions in the termination step of the rolling-circle type of phi X174 DNA replication.  相似文献   

20.
Analysis of the bacteriophage phi X174 eclipse period in terms of Arrhenius kinetic theory suggests the following hypothesis: mutants should exist with two concomitant physiological characteristics as their phenotype. These are an eclipse rate lower than that of the wild type at permissive temperatures for plaque formation and an eclipse rate too low at lower temperatures to permit plaque development. Thus, enrichment of a mutagenized virus population for mutants that fail to eclipse during a short period at permissive temperatures should yield eclipse mutants with the cold-sensitive (cs; nonpermissive temperature, 25 degrees C), and not the temperature-sensitive (ts; nonpermissive temperature, 42 degrees C), plaque phenotype. In several trials, the frequency of the cs phenotype in the population increased from less than 0.2% to between 2 and 4% after the enrichment step, whereas the frequency of the ts phenotype remained unchanged (less than 0.2%). Moreover, 80% of these cs mutants have eclipse rates that are 3- to 40-fold lower than that of the wild type at both 37 degrees C and 25 degrees C. The successful application of the Arrhenius theory to phi X eclipse may provide insights into the molecular mechanism whereby the phi X174 genome is delivered into the host cell. Since the eclipse kinetics of other nonenveloped viruses are similar to those of phi X174, kinetic theory may be broadly applicable in the selection and characterization of viral eclipse mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号