首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The largest arthropod cuticular protein family, CPR, has the Rebers and Riddiford (R&R) Consensus that in an extended form confers chitin-binding properties. Two forms of the Consensus, RR-1 and RR-2, have been recognized and initial data suggested that the RR-1 and RR-2 proteins were present in different regions within the cuticle itself. Thus, RR-2 proteins would contribute to exocuticle that becomes sclerotized, while RR-1s would be found in endocuticle that remains soft. An alternative, and more common, suggestion is that RR-1 proteins are used for soft, flexible cuticles such as intersegmental membranes, while RR-2s are associated with hard cuticle such as sclerites and head capsules. We used TEM immunogold detection to localize the position of several RR-1 and RR-2 proteins in the cuticle of Anopheles gambiae. RR-1s were localized in the procuticle of the soft intersegmental membrane except for one protein found in the endocuticle of hard cuticle. RR-2s were consistently found in hard cuticle and not in flexible cuticle. All RR-2 antibodies localized to the exocuticle and four out of six were also found in the endocuticle. Hence the location of RR-1s and RR-2s depends more on properties of individual proteins than on either hypothesis.  相似文献   

2.
A cDNA library for Myzus persicae has served to identify sequences coding for cuticular proteins (CPs) with RR-1 and RR-2 consensus. Two putative CPs showed a common RR-2 chitin binding domain (CBD) but differed in their C and N terminals. Two other predicted CPs showed a typical RR-1 CBD but differed in size and sequence of the C and N terminals. An additional sequence encoding for a protein that showed terminal amino acid repeats similar to those of putative CPs from M. persicae, but lacked the R & R consensus, was also described. A comparison of the sequences obtained from the cDNA library with those attained from the genomic DNA, confirmed their identity as cuticular proteins genes. Presence of introns was revealed in the Mpcp4 and Mpcp5 genes coding for CPs with an RR-1 consensus. The Mpcp4 has a single large intron, while the Mpcp5 has two shorter ones. Introns were not found in the Mpcp2 and Mpcp3 genes encoding for CPs with RR-2 consensus. Differences were also noticed for 3' UTR and 5' UTR of both the RR-1 and RR-2 CPs. CPs genes were expressed in bacteria, and the resulting protein was identified as a CP by amino acid sequencing.  相似文献   

3.
Cuticular proteins are one of the determinants of the physical properties of cuticle. A common consensus region (extended R&R Consensus) in these proteins binds to chitin, the other major component of cuticle. We previously predicted the preponderance of beta-pleated sheet in the consensus region and proposed its responsibility for the formation of helicoidal cuticle (Iconomidou et al., Insect Biochem. Mol. Biol. 29 (1999) 285). Subsequently, we verified experimentally the abundance of antiparallel beta-pleated sheet in the structure of cuticle proteins (Iconomidou et al., Insect Biochem. Mol. Biol. 31 (2001) 877). Homology modelling of soft (RR-1) cuticular proteins using bovine plasma retinol binding protein (RBP) as a template revealed an antiparallel beta-sheet half-barrel structure as the basic folding motif (Hamodrakas et al., Insect Biochem. Molec. Biol. 32 (2002) 1577). The RR-2 proteins characteristic of hard cuticle, have a far more conserved consensus and frequently more histidine residues. Extension of modelling to this class of consensus, in this work, reveals in detail several unique features of the proposed structural model to serve as a chitin binding structural motif, thus providing the basis for elucidating cuticle's overall architecture and chitin-protein interactions in cuticle.  相似文献   

4.
CPR proteins are the largest cuticular protein family in arthropods. The whole genome sequence of Anopheles gambiae revealed 156 genes that code for proteins with the R&R Consensus and named CPRs. This protein family can be divided into RR-1 and RR-2 subgroups, postulated to contribute to different regions of the cuticle. We determined the temporal expression patterns of these genes throughout post-embryonic development by means of real-time qRT-PCR. Based on expression profiles, these genes were grouped into 21 clusters. Most of the genes were expressed with sharp peaks at single or multiple periods associated with molting. Genes coding for RR-1 and RR-2 proteins were found together in several co-expression clusters. Twenty-five genes were expressed exclusively at one metamorphic stage. Five out of six X-linked genes showed equal expression in males and females, supporting the presence of a gene dosage compensation system in A. gambiae. Many RR-2 genes are organized into sequence clusters whose members are extremely similar to each other and generally closely associated on a chromosome. Most genes in each sequence cluster are expressed with the same temporal expression pattern and at the same level, suggesting a shared mechanism to regulate their expression.  相似文献   

5.
The physical properties of cuticle are determined by the structure of its two major components, cuticular proteins (CPs) and chitin, and, also, by their interactions.A common consensus region (extended R&R Consensus) found in the majority of cuticular proteins, the CPRs, binds to chitin. Previous work established that β-pleated sheet predominates in the Consensus region and we proposed that it is responsible for the formation of helicoidal cuticle. Remote sequence similarity between CPRs and a lipocalin, bovine plasma retinol binding protein (RBP), led us to suggest an antiparallel β-sheet half-barrel structure as the basic folding motif of the R&R Consensus. There are several other families of cuticular proteins. One of the best defined is CPF. Its four members in Anopheles gambiae are expressed during the early stages of either pharate pupal or pharate adult development, suggesting that the proteins contribute to the outer regions of the cuticle, the epi- and/or exo-cuticle. These proteins did not bind to chitin in the same assay used successfully for CPRs. Although CPFs are distinct in sequence from CPRs, the same lipocalin could also be used to derive homology models for one A. gambiae and one Drosophila melanogaster CPF. For the CPFs, the basic folding motif predicted is an eight-stranded, antiparallel β-sheet, full-barrel structure. Possible implications of this structure are discussed and docking experiments were carried out with one possible Drosophila ligand, 7(Z),11(Z)-heptacosadiene.  相似文献   

6.
7.
Insect cuticle is composed mainly of chitin, a polymer of N-acetylglucosamine, and chitin-binding cuticle proteins. Four major cuticle proteins, BMCP30, 22, 18, and 17, have been previously identified and purified from the larval cuticle of silkworm, B. mori. We analyzed the chitin-binding activity of BMCP30 by use of chitin-affinity chromatography. The pH optimum for the binding of BMCP30 to chitin is 6.4, which corresponds to hemolymph pH. Competition experiments using chitooligosaccharides suggested that BMCP30 recognizes 4-6 mer of N-acetylglucosamine in chitin fiber as a unit for binding. The comparison of the binding properties of BMCP30 with those of BMCP18 showed that their binding activities to chitin are similar in a standard buffer but that BMCP30 binds to chitin more stably than BMCP18 in the presence of urea. BMCPs possess the RR-1 form of the R&R consensus, about 70 amino acids region conserved widely among cuticle proteins mainly from the soft cuticle of many insect and arthropod species. Analysis of the binding activity using deletion mutants of BMCPs revealed that this type of conserved region also functions as the chitin-binding domain, similarly to the RR-2 region previously shown to confer chitin binding. Thus, the extended R&R consensus is the general chitin-binding domain of cuticle proteins in Arthropoda.  相似文献   

8.
The distributions of mRNAs for two cuticular proteins of Hyalophora cecropia were examined with RT-PCR and in situ hybridization. For major regions of larval and pupal cuticle, there was a strong correspondence between the type of cuticle and the predominant cuticular protein message found. Epidermal cells underlying soft cuticle had mRNA for HCCP12, with a RR-1 consensus attributed to soft cuticle, while the epidermal cells associated with hard cuticle had predominantly mRNA for HCCP66, a protein with the RR-2 consensus attributed to hard cuticle. Both messages were found in all areas of the pupal fore- and hind-wings, with modest area-specific difference in concentration being much less than differences in the relative abundance of these cuticular proteins.

mRNA for HCCP12 was present in imaginal discs of feeding larvae of H cecropia. Data from Bombyx mori available at SilkBase (http://www.ab.a.u-tokyo.ac.jp/silkbase/) revealed that imaginal discs from feeding larvae had abundant mRNA for RR-1 cuticular proteins, representing six distinct gene products. Only discs from spinning larvae had mRNAs that coded for RR-2 proteins arising from 10 distinct genes. Thus, lepidopteran wing imaginal discs can no longer be regarded as inactive in larval cuticle production.  相似文献   


9.
Putative pro-resilins from 12 Drosophila species are compared with each other and with some pro-resilin-related proteins from other insect species, in an attempt to decide which structural features are likely to be important for the characteristic properties of resilins. The putative pro-resilins from the 12 Drosophila species are very similar; their structures are characterized by a chitin-binding R&R Consensus sequence of type RR-2, surrounded by two repeat-containing regions. The repeat-containing regions are assumed to be responsible for the long-range elasticity characteristic for resilin. Pronounced differences are present between the Drosophila pro-resilins and the resilin-like gene products present in other insect species. It is suggested that gene products, which are predicted both to be cuticular proteins and to possess long-range elasticity, should be classified as either putative pro-resilins or pro-resilin-like proteins. Gene products which are predicted to possess long-range elasticity, but do not contain a chitin-binding region, should not be classified as pro-resilin-like proteins until it has been established that they are cuticular proteins.  相似文献   

10.
A conserved domain in arthropod cuticular proteins binds chitin   总被引:4,自引:0,他引:4  
Many insect cuticular proteins include a 35-36 amino acid motif known as the R&R consensus. The extensive conservation of this region led to the suggestion that it functions to bind chitin. Provocatively, it has no sequence similarity to the well-known cysteine-containing chitin-binding domain found in chitinases and some peritrophic membrane proteins. Using fusion proteins expressed in E. coli, we show that an extended form of the R&R consensus from proteins of hard cuticles is necessary and sufficient for chitin binding. Recombinant AGCP2b, a putative cuticular protein from the mosquito Anopheles gambiae, was expressed in E. coli and the purified protein shown to bind to chitin beads. A stretch of 65 amino acids from AGCP2b, including the R&R consensus, conferred chitin binding to glutathione-S-transferase (GST). Directed mutagenesis of some conserved amino acids within this extended R&R consensus from hard cuticle eliminated chitin binding. Thus arthropods have two distinct classes of chitin binding proteins, those with the chitin-binding domain found in lectins, chitinases and peritrophic membranes (cysCBD) and those with the cuticular protein chitin-binding domain (non-cysCBD).  相似文献   

11.
Proteins were extracted from the cuticle of mid-instar nymphs of locusts, Locusta migratoria, and cockroaches, Blaberus craniifer. Seven proteins were purified from the locust extract and five from the cockroach extract, and their amino acid sequences were determined. Polyacrylamide gel electrophoresis indicates that the proteins are present only in the post-ecdysially deposited layer of the nymphal cuticles. One of the locust and one of the cockroach nymphal proteins contain a 68-residue motif, the RR-2 sequence, which has been reported for several proteins from the solid cuticles of other insect species. Two of the cockroach proteins contain a 75-residue motif, which is also present in a protein from the larval/pupal cuticle of a beetle, Tenebrio molitor, and in proteins from the exoskeletons of a lobster, Homarus americanus, and a spider, Araneus diadematus. The motif contains a variant of the Rebers-Riddiford consensus sequence, and is called the RR-3 motif. One of the locust and three of the cockroach post-ecdysial proteins contain one or more copies of an 18-residue motif, previously reported in a protein from Bombyx mori pupal cuticle. The nymphal post-ecdysial proteins from both species have features in common with pre-ecdysial proteins (pharate proteins) in cuticles destined to be sclerotised; they show little similarity to the post-ecdysial cuticular proteins from adult locusts or to proteins from soft, pliable cuticles. Possible roles for post-ecdysial cuticular proteins are discussed in relation to the reported structures.  相似文献   

12.
The quinone-tanning hypothesis for insect cuticle sclerotization proposes that N-acylcatecholamines are oxidized by a phenoloxidase to quinones and quinone methides, which serve as electrophilic cross-linking agents to form covalent cross-links between cuticular proteins. We investigated model reactions for protein cross-linking that occurs during insect cuticle sclerotization using recombinant pupal cuticular proteins from the tobacco hornworm, Manduca sexta, fungal or recombinant hornworm laccase-type phenoloxidase, and the cross-linking agent precursor N-acylcatecholamines, N-beta-alanydopamine (NBAD) or N-acetyldopamine (NADA). Recombinant M. sexta pupal cuticular proteins MsCP36, MsCP20, and MsCP27 were expressed and purified to near homogeneity. Polyclonal antisera to these recombinant proteins recognized the native proteins in crude pharate brown-colored pupal cuticle homogenates. Furthermore, antisera to MsCP36, which contains a type-1 Rebers and Riddiford (RR-1) consensus sequence, also recognized an immunoreactive protein in homogenates of larval head capsule exuviae, indicating the presence of an RR-1 cuticular protein in a very hard, sclerotized and nonpigmented cuticle. All three of the proteins formed small and large oligomers stable to boiling SDS treatment under reducing conditions after reaction with laccase and the N-acylcatecholamines. The optimal reaction conditions for MsCP36 polymerization were 0.3mM MsCP36, 7.4mM NBAD and 1.0U/mul fungal laccase. Approximately 5-10% of the monomer reacted to yield insoluble oligomers and polymers during the reaction, and the monomer also became increasingly insoluble in SDS solution after reaction with the oxidized NBAD. When NADA was used instead of NBAD, less oligomer formation occurred, and most of the protein remained soluble. Radiolabeled NADA became covalently bound to the MsCP36 monomer and oligomers during cross-linking. Recombinant Manduca laccase (MsLac2) also catalyzed the polymerization of MsCP36. These results support the hypothesis that during sclerotization, insect cuticular proteins are oxidatively conjugated with catechols, a posttranslational process termed catecholation, and then become cross-linked, forming oligomers and subsequently polymers.  相似文献   

13.
Annotation of the Anopheles gambiae genome has revealed a large increase in the number of genes encoding cuticular proteins with the Rebers and Riddiford Consensus (the CPR gene family) relative to Drosophila melanogaster. This increase reflects an expansion of the RR-2 group of CPR genes, particularly the amplification of sets of highly similar paralogs. Patterns of nucleotide variation indicate that extensive concerted evolution is occurring within these clusters. The pattern of concerted evolution is complex, however, as sequence similarity within clusters is uncorrelated with gene order and orientation, and no comparable clusters occur within similarly compact arrays of the RR-1 group in mosquitoes or in either group in D. melanogaster. The dearth of pseudogenes suggests that sequence clusters are maintained by selection for high gene-copy number, perhaps due to selection for high expression rates. This hypothesis is consistent with the apparently parallel evolution of compact gene architectures within sequence clusters relative to single-copy genes. We show that RR-2 proteins from sequence-cluster genes have complex repeats and extreme amino-acid compositions relative to single-copy CPR proteins in An. gambiae, and that the amino-acid composition of the N-terminal and C-terminal sequence flanking the chitin-binding consensus region evolves in a correlated fashion.  相似文献   

14.
Although several insect cuticular genes and proteins are annotated and an arthropod cuticular database is available, mass spectrometrical data on cuticular proteins and their post-translational modifications are limited. Wings from Hebemoia glaucippe were analyzed by scanning electron microscopy or homogenized, proteins were extracted and run on 2DE. In-gel digestion was carried out by using trypsin, chymotrypsin and Asp-N and subsequently the resulting peptides and post-translational modifications were identified by ion trap tandem mass spectrometry (nano-LC-ESI-MS/MS; HCT). A complex wing skeleton and the cuticle of H. glaucippe were demonstrated. Cuticle protein 18.6, isoform A, pupal cuticle protein, cuticular protein CPR59A and two putative proteins, putative cuticular protein B2DBJ and putative cuticle protein CPG31 with two expression forms were identified. Two phosphorylation sites on the same peptide, T213 and S214, were identified on putative cuticle protein CPG31, quinone formation was observed at Y76 on cuticular protein CPR59A probably indicating the presence of post-translational modifications. The results may be relevant for the interpretation of mechanoelastic and physical properties of these proteins. Along with the extraordinary architecture the proteinaceous matrix is probably representing or allowing the unusual aerodynamic function of the butterfly wing. Moreover, the results may be important for mechanisms of insecticide and drought resistance.  相似文献   

15.
The nature of the interaction of insect cuticular proteins and chitin is unknown even though about half of the cuticular proteins sequenced thus far share a consensus region that has been predicted to be the site of chitin binding. We previously predicted the preponderance of beta-pleated sheet in the consensus region and proposed its responsibility for the formation of helicoidal cuticle (Iconomidou et al., Insect Biochem. Mol. Biol. 29 (1999) 285). Consequently, we have also verified experimentally the abundance of antiparallel beta-pleated sheet in the structure of cuticle proteins (Iconomidou et al., Insect Biochem. Mol. Biol. 31 (2001) 877). In this work, based on sequence and secondary structure similarity of cuticle proteins, and especially that of the consensus motif, to that of bovine plasma retinol binding protein (RBP), we propose by homology modelling an antiparallel beta-sheet half-barrel structure as the basic folding motif of cuticle proteins. This folding motif may provide the template for elucidating cuticle protein-chitin interactions in detail and reveal the precise geometrical formation of cuticle's helicoidal architecture. This predicted motif is another example where nature utilizes an almost flat protein surface covered by aromatic side chains to interact with the polysaccharide chains of chitin.  相似文献   

16.
The proteins in the distensible alloscutal cuticle of the blood-feeding tick, Ixodes ricinus, have been characterized by electrophoresis and chromatography, two of the proteins were purified and their total amino acid sequence determined. They show sequence similarity to cuticular proteins from the spider, Araneus diadematus, and the horseshoe crab, Limulus polyphemus, and to a lesser extent to insect cuticular proteins. They contain a conserved sequence region, which is closely related to the chitin-binding Rebers-Riddiford consensus sequence present in many insect cuticular proteins. Only a fraction of the alloscutal proteins can be readily dissolved, and the dissolved proteins are difficult to separate by electrophoresis and column chromatography. The insoluble fraction can only be dissolved after degradation to smaller peptides. The mixture of extractable proteins as well as hydrolysates of the insoluble fraction are fluorescent when exposed to ultraviolet light, and the fluorescence corresponds in excitation and emission maxima to the fluorescence of the rubber-like arthropodan protein, resilin, and to the amino acid dityrosine. Small amounts of dityrosine were obtained from ticks in the early phase of a blood meal when the cuticle weighs less than 4 mg; increasing amounts were obtained from animals in the initial period of feeding, during which the cuticular weight increases from 4 to 11 mg, whereas little increase in dityrosine content was observed during the final period of engorgement. Cuticle from fully distended ticks contains about 60-80 nmole dityrosine per tick, corresponding to 2-3 microg/mg cuticle. It is suggested that the major part of the cuticular proteins is made inextractable by cross-linking by dityrosine residues, and that dityrosine plays a role in stabilizing the cuticular structure during the extensive distension occurring during a blood meal. Small amounts of 3-monochlorotyrosine and 3,5-dichlorotyrosine were obtained from the distended tick cuticle, corresponding to chlorination of between 0.5% and 1.5% of the tyrosine residues. It is suggested that the chlorotyrosines are a side-product of oxidative processes in the cuticle.  相似文献   

17.
昆虫表皮蛋白基因研究进展   总被引:7,自引:0,他引:7  
梁欣  陈斌  乔梁 《昆虫学报》2014,57(9):1084-1093
在昆虫表皮的发生、分化和昆虫躯体外部重要部位及器官的构建中,表皮蛋白是不可或缺的组成元素。本文在简要总结了目前昆虫表皮蛋白鉴定与分类方面研究的基础上,重点对近10年来昆虫表皮蛋白基因的时空表达模式、激素及转录因子对表皮蛋白基因表达的调控、表皮蛋白基因功能的研究进展进行了综述,探讨了其在害虫防治中可能的应用前景,旨在为进一步研究昆虫表皮蛋白基因及其潜在利用价值提供参考。目前报道的昆虫表皮蛋白序列已超过1 400条,分为12个家族,如CPR, CPF, CPFL和Tweedle等。经由蜕皮激素激活的相关转录因子(如βFTZ-F1和BR-C等)作用于表皮蛋白基因上游的顺式作用元件,开启或关闭基因,以调控表皮蛋白基因的表达。表皮蛋白基因在昆虫表皮整合,体形塑造,活动能力,抗逆与抗药性,以及先天免疫等生理现象和生理过程中有不可或缺的作用。因此,如果能够通过抑制关键表皮蛋白基因的表达,或将其从基因组中删除,以阻碍昆虫的发育或扰乱昆虫的繁殖能力,或可为害虫防治策略提供参考。  相似文献   

18.
The cuticle (exoskeleton) is a characteristic structure of insects and other arthropods. It is an extracellular layer which surrounds and protects the insect, and it is composed of proteins, lipids, water molecules, phenolic materials and chitin. Four proteins isolated from the thorax and femur cuticle of pharate adult migratory locust, Locusta migratoria, have been purified by ion-exchange chromatography and reversed-phase high performance liquid chromatography (RP-HPLC). Their amino acid sequences were determined by combined use of mass spectrometry and automated Edman degradation. The cuticular extract was also separated by two-dimensional gel electrophoresis. In order to localize and identify the position of the proteins in the gel, a number of gel spots were excised and the proteins electroeluted. The molecular mass of some of the electroeluted proteins was determined by means of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) as well as by electrospray mass spectrometry (ESI-MS). Two of the sequenced proteins exist as pairs of closely related isoforms; one of the pairs contains the conserved 68-residue RR-2 motif, common for proteins from solid cuticles, and the other proteins contain the short motif Ala-Ala-Pro-Ala/Val repeatedly throughout the sequence.  相似文献   

19.
The insect cuticle is a unique material that covers the exterior of the animal as well as lining the foregut, hindgut, and tracheae. It offers protection from predators and desiccation, defines body shape, and serves as an attachment site for internal organs and muscle. It has demonstrated remarkable variations in hardness, flexibility and elasticity, all the while being light weight, which allows for ease of movement and flight. It is composed primarily of chitin, proteins, catecholamines, and lipids. Proteomic analyses of cuticle from different life stages and species of insects has allowed for a more detailed examination of the protein content and how it relates to cuticle mechanical properties. It is now recognized that several groups of cuticular proteins exist and that they can be classified according to conserved amino acid sequence motifs. We have annotated the genome of the tobacco hornworm, Manduca sexta, for genes that encode putative cuticular proteins that belong to seven different groups: proteins with a Rebers and Riddiford motif (CPR), proteins analogous to peritrophins (CPAP), proteins with a tweedle motif (CPT), proteins with a 44 amino acid motif (CPF), proteins that are CPF-like (CPFL), proteins with an 18 amino acid motif (18 aa), and proteins with two to three copies of a C-X5-C motif (CPCFC). In total we annotated 248 genes, of which 207 belong to the CPR family, the most for any insect genome annotated to date. Additionally, we discovered new members of the CPAP family and determined that orthologous genes are present in other insects. We established orthology between the M. sexta and Bombyx mori genes and identified duplication events that occurred after separation of the two species. Finally, we utilized 52 RNAseq libraries to ascertain gene expression profiles that revealed commonalities and differences between different tissues and developmental stages.  相似文献   

20.
This paper reports on the first aphids' cuticular proteins. One gene (Mpcp1) was obtained by screening a cDNA library of Myzus persicae with antibodies to a lepidopteran cuticle protein. MpCP1 presents a putative signal peptide, a central extended R&R domain, flanked by N- and C-terminal repeats of alanine, tyrosine and proline. The mRNA of Mpcp1 could be detected in a larval and in adult stages. Primers based on Mpcp1 allowed isolating and comparing cuticle protein genes from five aphid species, but not from whitefly or thrips. Comparison revealed a high degree of similarity. Data from this paper suggest that this cuticle protein family is typical and predominant to aphids. The conformation of these cuticle proteins and the significance on particular properties of aphid cuticle is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号