首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feasibility and engineering aspects of biological sulphate reduction in gas-lift reactors were studied. Hydrogen and carbon dioxide were used as energy and carbon source. Attention was paid to biofilm formation, sulphide toxicity, sulphate conversion rate optimization, and gasliquid mass transfer limitations. Sulphate-reducing bacteria formed stable biofilms on pumice particles. Biofilm formation was not observed when basalt particles were used. However, use of basalt particles led to the formation of granules of sulphate-reducing biomass. The sulphate-reducing bacteria, grown on pumice, easily adapted to free H(2)S concentrations up to 450 mg/L. Biofilm growth rate then equilibrated biomass loss rate. These high free H(2)S concentrations caused reversible inhibition rather than acute toxicity. When free H(2)S concentrations were kept below 450 mg/L, a maximum sulphate conversion rate of 30 g SO(4) (2-)/L . d could be achieved after only 10 days of operation. Gas-to-liquid hydrogen mass transfer capacity of the reactor determined the maximum sulphate conversion rate. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
Biological sulfate reduction was studied in laboratory-scale gas-lift reactors. Synthesis gas (gas mixtures of H(2)/CO/CO(2)) was used as energy and carbon source. The required biomass retention was obtained by aggregation and immobilization on pumice particles. Special attention was paid to the effect of CO addition on the sulfate conversion rate, aggregation, and aggregate composition.Addition of 5% CO negatively affected the overall sulfate conversion rate; i.e., it dropped from 12-14 to 6-8 g SO(2-) (4)/L day. However, a further increase of CO to 10 and 20% did not further deteriorate the process. With external biomass recycling the sulfate conversion rate could be improved to 10 g SO(2-) (4)/L day. Therefore biomass retention clearly could be regarded as the rate-limiting step. Furthermore, CO affected the aggregate shape and diameter. Scanning electron microscopy (SEM) photographs showed that rough aggregates pregrown on H(2)/CO(2) changed into smooth aggregates upon addition of CO. Addition of CO also changed the aggregate Sauter mean diameter (d(32)) from 1.7 mm at 5% CO to 2.1 mm at 20% CO. After addition of CO, a layered biomass structure developed. Acetobacterium sp. were mainly located at the outside of the aggregates, whereas Desulfovibrio sp. were located inside the aggregates. (c) 1996 John Wiley & Sons, Inc.  相似文献   

3.
Two upflow sludge bed reactors (UASB) were operated for 80 days at 55 degrees C with methanol as the substrate with an organic loading rate (OLR) of about 20 g CODl(-1) per day and a hydraulic retention time (HRT) of 10 h. One UASB was operated without sulphate addition (control reactor-R1) whereas the second was fed with sulphate at a COD:SO4(2-) ratio of 10 (sulphate-fed reactor-R2), providing an influent sulphate concentration of 0.6 g l(-1). For both reactors, methanogenesis was the dominant process with no considerable accumulation of acetate. The methanol removal averaged 93% and 83% for R1 and R2, respectively, and total sulphate removal was achieved in the latter. The pathway of methanol conversion for both sludges was investigated by measuring the fate of carbon in the presence and absence of bicarbonate or specific inhibitors for a sludge sample collected at day 72. In both sludges, about 70% of the methanol was syntrophically converted to methane and/or sulphide, via the intermediate H2/CO2. A strong competition between methanogens and sulphidogens took place in the R2 sludge with half of the methanol-COD being used by methane-producing bacteria and the other half by sulphate-reducing bacteria. Acetate was not an important intermediate for both sludges, and played a slightly more important role for the sulphate-adapted sludge (R2), sustained by the higher amount of bicarbonate produced during sulphate-reduction. The pathway study indicates that, although acetate does not represent an important intermediate, the system is susceptible to its accumulation.  相似文献   

4.
The oxidation of cyst(e)ine by mast-cell tumour P815 in culture   总被引:3,自引:3,他引:0       下载免费PDF全文
1. Mast-cell tumour P815 cells oxidize [(35)S]cyst(e)ine to (35)SO(4) (2-). 2. Addition of cysteinesulphinate or sulphite decreases the formation of (35)SO(4) (2-); at the same time [(35)S]cysteinesulphinate or (35)SO(3) (2-) accumulates. 3. Extracts of P815 cells form sulphite from cysteinesulphinate and 2-oxoglutarate. The K(m) for cysteinesulphinate is 6.35mm and that for 2-oxoglutarate is 0.165mm. 4. Extracts oxidize sulphite to sulphate. 5. No formation of hydrogen sulphide from cyst(e)ine was detectable. 6. It is concluded that P815 cells oxidize cyst(e)ine to sulphate solely via cysteinesulphinate and sulphite. 7. The concentration of the enzymes catalysing this sequence is unaltered by several variations in the conditions of growth.  相似文献   

5.
A new hybrid reactor, the upflow blanket filter (UBF), which combined on open volume in the bottom two-thirds of the reactor for a sludge blanket and submerged plastic rings (Flexiring, Koch Inc., 235 m(2)/m(3)) in the upper one-third of the reactor volume, was studied. This UBF reactor was operated at 27 degrees C at loading rates varying from 5 to 51 g chemical oxygen demand (COD)/L d with soluble sugar wastewater (2500 mg COD/L). Maximum removal rates of 34 g COD/L d and CH(4) production rates of 7 vol/vol d [standard temperature and pressure (STP)] were obtained. The biomass activity was about 1.2 g COD/g volatile suspended solids per day. Conversion (based on effluent soluble COD) was over 93% with loading rates up to 26 g COD/L d. At higher loading rates conversion decreased rapidly. The packing was very efficient in retaining biomass.  相似文献   

6.
Summary After elucidating the composition of an anaerobic bacterial enrichment culture treating sulphite evaporator condensate (SEC), an effluent in the pulp and paper industry, we built up stepwise a defined mixed culture to convert the organic constituents of SEC (acetate, methanol, furfural) to methane and CO2. In batch cultures Desulfovibrio furfuralis and Methanobacterium bryantii degraded furfural in the absence of sulphate via inter-species H2 transfer yielding 0.42 mol methane and 1.87 mol acetate/mol furfural degraded. When Methanosarcina barkeri was added to this diculture, acetate was also transformed to methane yielding 0.93 mol methane/mol acetate converted. This consortium (D. furfuralis, Methanobacterium bryantii and Methanosarcina barkeri) degraded furfural in continuous culture (fixed-bed loop reactor) to 92%, but the conversion of acetate was only 67%. The conversion of acetate could be further improved to 86% by adding 10 mm sulphate to the medium. This resulted in a space time yield of 10.9 g chemical oxygen demand (COD)/1 per day for the overall conversion. With a consortium consisting of M. barkeri, Methanobrevibacter arboriphilus, Methanosaeta concilii and D. furfuralis, a synthetic SEC could be degraded at a space time yield of 13.35 g COD/1 per day. This defined culture degraded all the constituents of SEC at an efficiency of almost 90% compared to an enrichment culture under identical conditions.Offprint requests to: U. Ney  相似文献   

7.
The competitive and syntrophic interactions between different anaerobic bacterial trophic groups in sulphate limited expanded granular sludge bed (EGSB) reactors was investigated. The outcome of competition between the sulphate-reducing, methanogenic and syntrophic populations after development in reactors at varying influent COD/SO4 (2-) ratios was examined in batch activity tests with the inclusion of specific sulphate reducing bacteria (SRB) and methane producing archaea (MPA) inhibitors. SRB species could not out-compete MPA species for acetate at influent COD/SO4 (2-) ratios as low as 2. The SRB were seen to play a more significant role in the conversion of hydrogen but did not become completely dominant. HMPA were responsible for hydrogen utilization at an influent COD/SO4 (2-) ratio of 16, and were still dominant when the ratio was reduced to 4. It was only when the COD/SO4 (2-) ratio was reduced to 2 that the HSRB assumed a more influential role. SRB species were significant in the degradation of propionate at all COD/SO4 (2-) ratios applied. Sludge samples were analysed by scanning electron microscopy (SEM), granule size distribution and fluorescent in situ hybridization (FISH), combined with confocal laser scanning microscopy (CLSM), to monitor any changes in granule morphology under the various COD/SO4 (2-) ratios imposed during the reactor trial. In situ hybridization with domain- and species-specific oligonucleotide probes demonstrated a layered architecture with an outer layer harboring mainly Eubacterial cells and an inner layer dominated by Archaeal species.  相似文献   

8.
Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment   总被引:1,自引:0,他引:1  
Rice straw is a lignocellulosic biomass that constitutes a renewable organic substance and alternative source of energy; however, its structure confounds the liberation of monosaccharides. Pretreating rice straw using a TiO(2)/UV system facilitated its hydrolysis with Accellerase 1000(?), suggesting that hydroxyl radicals (OH·) from the TiO(2)/UV system could degrade lignin and carbohydrates. TiO(2)/UV pretreatment was an essential step for conversion of hemicellulose to xylose; optimal conditions for this conversion were a TiO(2) concentration of 0.1% (w/v) and an irradiation time of 2 h with a UV-C lamp at 254 nm. After enzymatic hydrolysis, the sugar yields from rice straw pretreated with these parameters were 59.8 ± 0.7% of the theoretical for glucose (339 ± 13 mg/g rice straw) and 50.3 ± 2.8% for xylose (64 ± 3 mg/g rice straw). The fermentation of enzymatic hydrolysates containing 10.5 g glucose/L and 3.2 g xylose/L with Pichia stipitis produced 3.9 g ethanol/L with a corresponding yield of 0.39 g/g rice straw. The maximum possible ethanol conversion rate is 76.47%. TiO(2)/UV pretreatment can be performed at room temperature and atmospheric pressure and demonstrates potential in large-scale production of fermentable sugars.  相似文献   

9.
The transport of sulphate and sulphite in rat liver mitochondria   总被引:4,自引:2,他引:4       下载免费PDF全文
1. The mechanism of sulphite and sulphate permeation into rat liver mitochondria was investigated. 2. Extramitochondrial sulphite and sulphate elicit efflux of intramitochondrial phosphate, malate, succinate and malonate. The sulphate-dependent effluxes and the sulphite-dependent efflux of dicarboxylate anions are inhibited by butylmalonate, phenylsuccinate and mersalyl. Inhibition of the phosphate efflux produced by sulphite is caused by mersalyl alone and by N-ethylmaleimide and butylmalonate when present together. 3. External sulphite and sulphate cause efflux of intramitochondrial sulphate, and this is inhibited by butylmalonate, phenylsuccinate and mersalyl. 4. External sulphite and sulphate do not cause efflux of oxoglutarate or citrate. 5. Mitochondria swell when suspended in an iso-osmotic solution of ammonium sulphite; this is not inhibited by N-ethylmaleimide or mersalyl. 6. Low concentrations of sulphite, but not sulphate, produce mitochondrial swelling in iso-osmotic solutions of ammonium malate, succinate, malonate, sulphate, or phosphate in the presence of N-ethylmaleimide. 7. It is concluded that both sulphite and sulphate may be transported by the dicarboxylate carrier of rat liver mitochondria and also that sulphite may permeate by an additional mechanism; the latter may involve the permeation of sulphurous acid or SO(2) or an exchange of the sulphite anion for hydroxyl ion(s).  相似文献   

10.
Prosopis juliflora (Mesquite) is a raw material for long-term sustainable production of cellulosics ethanol. In this study, we used acid pretreatment, delignification and enzymatic hydrolysis to evaluate the pretreatment to produce more sugar, to be fermented to ethanol. Dilute H(2)SO(4) (3.0%,v/v) treatment resulted in hydrolysis of hemicelluloses from lignocellulosic complex to pentose sugars along with other byproducts such as furfural, hydroxymethyl furfural (HMF), phenolics and acetic acid. The acid pretreated substrate was delignified to the extent of 93.2% by the combined action of sodium sulphite (5.0%,w/v) and sodium chlorite (3.0%,w/v). The remaining cellulosic residue was enzymatically hydrolyzed in 0.05 M citrate phosphate buffer (pH 5.0) using 3.0 U of filter paper cellulase (FPase) and 9.0 U of beta-glucosidase per mL of citrate phosphate buffer. The maximum enzymatic saccharification of cellulosic material (82.8%) was achieved after 28 h incubation at 50 degrees C. The fermentation of both acid and enzymatic hydrolysates, containing 18.24 g/L and 37.47 g/L sugars, with Pichia stipitis and Saccharomyces cerevisiae produced 7.13 g/L and 18.52 g/L of ethanol with corresponding yield of 0.39 g/g and 0.49 g/g, respectively.  相似文献   

11.
水稻-褐飞虱-拟水狼蛛食物链的定量研究   总被引:3,自引:2,他引:3  
应用荧光物质稀土元素铕示踪法对水稻褐飞虱拟水狼蛛食物链进行了定量分析研究。所施荧光物质的三种浓度20 mg/L、50 mg/L和100 mg/L 均为有效浓度,对水稻生长无可见的影响,孕穗期、抽穗期、乳熟期和黄熟期四个生育期水稻、褐飞虱和拟水狼蛛的荧光物含量均随所施荧光物质浓度的增高而增高。褐飞虱对不同生育期水稻的取食量依次为抽穗期>孕穗期>乳熟期>黄熟期,分别为每克褐飞虱生物量在24 h内摄食水稻17.5910 g, 17.4510 g, 13.8290 g和8.7070 g。拟水狼蛛对褐飞虱的捕食量为乳熟期>孕穗期>抽穗期>黄熟期,分别为每克拟水狼蛛生物量24 h捕食褐飞虱3.6380 g, 3.0830 g, 3.0770和2.8000 g。根据田间调查数据换算为每头拟水狼蛛捕食褐飞虱在孕穗期、抽穗期、乳熟期和黄熟期分别为11头、11头、13头和10头。  相似文献   

12.
13.
The successful bioremediation of a phenolic wastewater by Trametes versicolor was found to be dependent on a range of factors including: fungal growth, culture age and activity and enzyme (laccase) production. These aspects were enhanced by the optimisation of the growth medium used and time of addition of the pollutant to the fungal cultures. Different media containing 'high' (20 g/L), 'low' (2 g/L) and 'sufficient' (10 g/L) concentrations of carbon and nitrogen sources were investigated. The medium containing both glucose and peptone at 10 g/L resulted in the highest Growth Related Productivity (the product of specific yield and micro) of laccase (1.46 Units of laccase activity)/gram biomass/day and was used in all further experiments. The use of the guaiacol as an inducer further increased laccase activity 780% without inhibiting growth; similarly the phenolic effluent studied boosted activity almost 5 times. The timing of the addition of the phenolic effluent was found to have important consequences in its removal and at least 8 days of prior growth was required. Under these conditions, 0.125 g phenol/g biomass and 0.231 g o-cresol/g biomass were removed from solution per day.  相似文献   

14.
The photosynthetic performance of a helical tubular photobioreactor ("Biocoil"), incorporating the filamentous cyanobacterium Spirulina platensis, was investigated. The photobioreactor was constructed in a cylindrical shape (0.9 m high) with a 0.25-m(2)basal area and a photostage comprising 60 m of transparent PVC tubing of 1.6-cm inner diameter (volume = 12.1 L). The inner surface of the cylinder (area = 1.32 m(2)) was illuminated with cool white fluorescent lamps; the energy input of photosynthetically active radiation(PAR, 400 to 700 nm) into the photobioreactor was 2920 kJ per day. An air-lift system ncorporating 4%CO(2) was used to circulate the growth medium in the tubing. The maximum productivity achieved in batch culture was 7.18 g dry biomass per day [0.51 g . d biomass/L . day, or 5.44 g . d biomass/m(2)(inner surface of cylindrical shape)/day] which corresponded to a photosynthetic (PAR) efficiency of 5.45%. The CO(2) was efficiently removed from the gaseous stream; monitoring the CO(2) the outlet and inlet gas streams showed a 70% removal of CO(2) from the inlet gas over an 8-h period with almost maximum growth rate. (c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
《Process Biochemistry》1999,34(4):407-416
In an ethanol-fed expanded-granular-sludge-blanket (EGSB) reactor at 33°C, 80–90% of the sulphate load was removed at a rate of 4 g S/l d, provided that at least 6 g chemical oxygen demand (COD) per g sulphate-sulphur was supplied. The reactor started up in a matter of days. Gradually decreasing the ethanol to sulphate ratio (R) to about stoichiometry, resulted in 60–70% sulphate removal at rates of 7 g S/l d. Similar tendencies were observed with ethylene glycol as sole carbon and energy source. Total COD removal never reached more than 70–75%. This was related to a rather high biomass washout. The sulphate removal efficiency decrease when R was set at levels below 6, apparently because sulphate reducing bacteria (SRB) could not compete with methane producing bacteria (MPB) for acetate produced from the substrate dosed. Thermophilic operation at 55°C, after a stepwise increase in the reactor temperature over a period of 23 days, did not favour acetotrophic sulphate reduction. Yet, operation at 48°C and subsequently returning the temperature to 33°C clearly enhanced acetate conversion by SRB. In the case of an electron donor price of 0.035–0.075 USD/kg COD, the cost for operation at R=6 was found to be competitive to that at stoichiometry, i.e. R=2, provided the biogas produced was effectively used.  相似文献   

16.
Ethanol was produced using the simultaneous saccharification and fermentation (SSF) method with macroalgae polysaccharide from the seaweed Saccharina japonica (Sea tangle, Dasima) as biomass. The seaweed was dried by hot air, ground with a hammer mill and filtered with a 200-mesh sieve prior to pretreatment. Saccharification was carried out by thermal acid hydrolysis with H(2)SO(4) and the industrial enzyme, Termamyl 120 L. To increase the yield of saccharification, isolated marine bacteria were used; the optimal saccharification conditions were 10% (w/v) seaweed slurry, 40 mM H(2)SO(4) and 1 g dcw/L isolated Bacillus sp. JS-1. Using this saccharification procedure, the reducing sugar concentration and viscosity were 45.6 ± 5.0 g/L and 24.9 cp, respectively, and the total yield of the saccharification with optimal conditions and S. japonica was 69.1%. Simultaneous saccharification and fermentation was carried out for ethanol production. The highest ethanol concentration, 7.7 g/L (9.8 ml/L) with a theoretical yield of 33.3%, was obtained by SSF with 0.39 g dcw/L Bacillus sp. JS-1 and 0.45 g dcw/L of the yeast, Pichia angophorae KCTC 17574.  相似文献   

17.
As an alternative to the current disposal technologies for waste sulfuric acid, a new combination of recycling processes was developed. The strong acid (H(2)SO(4)) is biologically converted with the weak acid (CH(3)COOH) into two volatile weak acids (H(2)S, H(2)CO(3)) by sulfate-reducing bacteria. The transformation is possible without prior neutralization of the sulfuric acid. The microbially mediated transformation can be followed by physiochemical processes for the further conversion of the H(2)S.The reduction of sulfate to H(2)S is carried out under carbon-limited conditions at pH 7.5 to 8.5. A fixed-bed biofilm column reactor is used in conjunction with a separate gas-stripping column which was installed in the recycle stream. Sulfate, total sulfide, and the carbon substrate (in most cases acetate) were determined quantitatively. H(2)S and CO(2) are continually removed by stripping with N(2). Optimal removal is achieved under pH conditions which are adjusted to values below the pK(a)-values of the acids. The H(2)S concentration in the stripped gas was 2% to 8% (v/v) if H(2)SO(4) and CH(3)COOH are fed to the recycle stream just before the stripping column.Microbiol conversion rates of 65 g of sulfate reduced per liter of bioreactor volume per day are achieved and bacterial conversion efficiencies for sulfate of more than 95% can be maintained if the concentration of undissociated H(2)S is kept below 40 to 50 mg/L. Porous glass spheres, lava beads, and polyurethane pellets are useful matrices for the attachment of the bacterial biomass. Theoretical aspects and the dependence of the overall conversion performance on selected process parameters are illustrated in the Appendix to this article. (c) 1993 John Wiley & Sons, Inc.  相似文献   

18.
This paper reviews the operation of a full-scale, fixed-bed digester treating a citric acid production wastewater with a COD: sulphate ratio of 3–4 : 1. Support matrix pieces were removed from the digester at intervals during the first 5 years of operation in order to quantify the vertical distribution of biomass within the digester. Detailed analysis of the digester biomass after 5 years of operation indicated that H2 and propionate-utilising SRB had outcompeted hydrogenophilic methanogens and propionate syntrophs. Acetoclastic methanogens were shown to play the dominant role in acetate conversion. Butyrate and ethanol-degrading syntrophs also remained active in the digester after 5 years of operation.Laboratory-scale hybrid reactor treatment at 55 °C of a diluted molasses influent, with and without sulphate supplementation, showed that the reactors could be operated with high stability at volumetric loading rates of 24 kgCOD.m-3.d-1 (12 h HRT). In the presence of sulphate (2 g/l-1; COD/sulphate ratio of 6 : 1), acetate conversion was severely inhibited, resulting in effluent acetate concentrations of up to 4000 mg.l-1.  相似文献   

19.
A Monod model has been used to describe the steady state characteristics of the acclimated mesophilic hydrogenotrophic methanogens in experimental chemostat reactors. The bacteria were fed with mineral salts and specific trace metals and a H(2)/CO(2) supply was used as a single limited substrate. Under steady state conditions, the growth yield ( [Formula: see text] ) reached 11.66 g cells per mmol of H(2)/CO(2) consumed. The daily cells generation average was 5.67 x 10(11), 5.25 x 10(11), 4.2 x 10(11) and 2.1 x 10(11) cells/l-culture for the dilutions 0.071/d, 0.083/d, 0.1/d and 0.125/d, respectively. The maximum specific growth rate (mu(max)) and the Monod half-saturation coefficient (K(S)) were 0.15/d and 0.82 g/L, respectively. Using these results, the reactor performance was simulated. During the steady state, the simulation predicts the dependence of the H(2)/CO(2) concentration (S) and the cell concentration (X) on the dilution rate. The model fitted the experimental data well and was able to yield a maximum methanogenic activity of 0.24 L CH(4)/g VSS.d. The dilution rate was estimated to be 0.1/d. At the dilution rate of 0.14/d, the exponential cells washout was achieved.  相似文献   

20.
Experiments were conducted to delineate the applicability and limitations of biologically active Fe(0) barriers to remove nitrate under various geochemical and hydraulic conditions. Microcosm studies showed that, while no Fe(0) treatment was needed to remove nitrate from a high-carbon soil, adding Fe(0) to a low-carbon soil supplemented the electron donor pool and enhanced nitrate removal. Montmorillonite, an acidic aluminosilicate mineral, enhanced Fe(0) corrosion and nitrate removal (from about 1 to 3 mg/L NO3-N per day), and reduced the transient accumulation of nitrite. Combining autotrophic denitrifiers (e.g., Paracoccus denitrificans) with Fe(0) significantly reduced the amount of nitrite eluted from aquifer columns, from up to 7 to less than 1 mg/L NO2∼-N. Bacteria were observed to preferentially colonize the Fe(0) surface, which produces cathodic H2 when corroded by water. The preferential colonization of Fe(0) suggests that hydrogenotrophic consortia are likely to develop around Fe(0) walls to exploit cathodic depolarization as a metabolic niche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号