首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A yeast mutant which accumulates precursor tRNAs.   总被引:62,自引:0,他引:62  
A K Hopper  F Banks 《Cell》1978,14(2):211-219
It has been proposed that the conditional yeast mutant ts136 is defective in the transport of mRNA from the nucleus to the cytoplasm (Hutchinson, Hartwell and McLaughlin, 1969). We have examined ts136 to determine whether it is defective in tRNA biosynthesis. At the restrictive temperature, the mutant accumulates twelve new species of RNA. These species co-migrate on polyacrylamide gels with some of the pulse-labeled precursor tRNAs. Three of the new RNAs (species 1a, 1b and 1c are large enough to contain two tandom tRNAs. Although RNAs 1a, 1b, and 1c do not contain detectable levels of modified and methylated bases, at least one of them hybridizes to DNA from an E. coli plasmid containing a yeast tRNA gene. All the remaining RNAs (2--8) contain modified and methylated bases typical of tRNA. Three of these species were tested and were found to hybridize to tRNA genes. Ribosomal RNA synthesis is also defective in ts136. It is suggested that ts136 may be defective in a nucleolytic activity, which is a prerequisite to RNA transport.  相似文献   

3.
4.
A temperature-sensitive Escherichia coli mutant, which contains a heat-labile RNase E, fails to produce 5-S rRNA at a non-permissive temperature. It accumulates a number of RNA molecules in the 4-12-S range. One of these molecules, a 9-S RNA, is a precursor to 5-S rRNA [Ghora, B. K. and Apirion, D. (1978) Cell, 15, 1055-1056]. These molecules were purified and processed in a cell-free system. Some of these RNA molecules, after processing, give rise to products the size of transfer RNA, but not to 5-S-rRNA. Further characterization of the processed products of one such precursor molecule shows that it contains tRNA1Leu and tRNA1His. RNase E is necessary but not sufficient for the processing of this molecule to mature tRNAs in vitro. The accumulation of such tRNA precursors in an RNase E mutant cell and the obligatory participation of RNase E in its processing indicate that RNase E functions in the maturation of transfer RNAs as well as of 5-S rRNA.  相似文献   

5.
Y Huang  J Mak  Q Cao  Z Li  M A Wainberg    L Kleiman 《Journal of virology》1994,68(12):7676-7683
Human immunodeficiency virus (HIV) particles produced in COS-7 cells transfected with HIV type 1 (HIV-1) proviral DNA contain 8 molecules of tRNA(3Lys) per 2 molecules of genomic RNA and 12 molecules of tRNA1,2Lys per 2 molecules of genomic RNA. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a human tRNA3Lys gene, there is a large increase in the amount of cytoplasmic tRNA3Lys per microgram of total cellular RNA, and the tRNA3Lys content in the virus increases from 8 to 17 molecules per 2 molecules of genomic RNA. However, the total number of tRNALys molecules per 2 molecules of genomic RNA remains constant at 20; i.e., the viral tRNA1,2Lys content decreases from 12 to 3 molecules per 2 molecules of genomic RNA. All detectable tRNA3Lys is aminoacylated in the cytoplasm of infected cells and deacylated in the virus. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a mutant amber suppressor tRNA3Lys gene (in which the anticodon is changed from TTT to CTA), there is also a large increase in the relative concentration of cytoplasmic tRNA3Lys, and the tRNA3Lys content in the virus increases from 8 to 15 molecules per 2 molecules of genomic RNA, with a decrease in viral tRNA1,2Lys from 12 to 5 molecules per 2 molecules of genomic RNA. Thus, the total number of molecules of tRNALys in the virion remains at 20. The alteration of the anticodon has little effect on the viral packaging of this mutant tRNA in spite of the fact that it no longer contains the modified base mcm 5s2U at position 34, and its ability to be aminoacylated is significantly impaired compared with that of wild-type tRNA3Lys. Viral particles which have incorporated either excess wild-type tRNA3Lys or mutant suppressor tRNA3Lys show no differences in viral infectivity compared with wild-type HIV-1.  相似文献   

6.
Ribonucleases O and Q, the two putative nucleolytic activities which we detected previously in the crude extract from a thermosensitive ribonuclease P mutant (TS241) of Escherichia coli and which were shown to function in the processing of tRNA precursors in vitro, were partially purified from the 1000000 x g supernatant fraction of E. coli Q13. In the course of purification of these enzymes, the total RNAs synthesized in the thermosensitive mutant at the restrictive temperature were used as the substrates and the activities were identified from disappearance or alteration of specific tRNA precursor molecules in polyacrylamide gel electrophoresis. The purified ribonuclease O preparation cleaved specifically the multimeric tRNA precursors at the spacer regions. The purified ribonuclease Q preparation removed, in accordance with the definition of this enzyme, extra nucleotides from the 3'-terminal ends of monomeric tRNA precursors. Some properties of these two nucleases were investigated. In addition to these nucleases, another exonuclease (tentatively designated ribonuclease Y) and ribonuclease P, a well-characterized endonuclease, were also purified. The sequential mode of the processing of tRNA precursors, originally observed in the cleavage reactions with the crude extracts in vitro, was supported by studies with the purified enzyme preparations.  相似文献   

7.
Precursor molecules for Escherichia coli tRNAs that accumulated in a temperature-sensitive mutant defective in tRNA synthesis (TS709) were investigated. More than 20 precursors were purified by two-dimensional polyacrylamide gel electrophoresis. The purified molecules were analyzed by RNA fingerprint analysis and/or in vitro processing after treatment with E. coli cell-free extracts. The molecular sizes of most of the precursors identified were in the range of 4 to 5 S RNAs, although several larger ones were also detected. Fingerprint analysis revealed that the precursors generally differ from the corresponding mature tRNAs in the 5′ termini, having extra nucleotides. Thus, the genetic block in TS709 was shown to affect the trimming of the 5′ side of tRNA by impairing the function of RNAase P. Although this mutant had been isolated as a conditional mutant defective in the synthesis of su+ 3 tRNA1Tyr, the synthesis of many tRNA species was affected at high temperature. On the basis of their mode of maturation in vivo, the precursor molecules were discussed as intermediates in tRNA biosynthesis in E. coli. Accumulation of these intermediates was accounted for as a common feature of E. coli mutants defective in RNAase P function.  相似文献   

8.
alpha-Amanitin acts in vitro and in vivo as a selective inhibitor of nucleoplasmic RNA polymerases. Treatment of mice with low doses of alpha-amanitin causes the following changes in the synthesis, maturation and nucleocytoplasmic transfer of liver RNA species. 1. The synthesis of the nuclear precursor of mRNA is strongly inhibited and all electrophoretic components are randomly affected. The labelling of cytoplasmic mRNA is blocked. These effects may be correlated with the rapid and lasting inhibition of nucleoplasmic RNA polymerase. 2. The synthesis and maturation of the nuclear precursor of rRNA is inhibited within 30min. (a) The initial effect is a strong (about 80%) inhibition of the early steps of 45S precursor rRNA maturation. (b) The synthesis of 45S precursor rRNA is also inhibited and the effect increases from about 30% at 30min to more than 70% at 150min. (c) The labelling of nuclear and cytoplasmic 28S and 18S rRNA is almost completely blocked. The labelling of nuclear 5S rRNA is inhibited by about 50%, but that of cytoplasmic 5S rRNA is blocked. (d) The action of alpha-amanitin on the synthesis of precursor rRNA cannot be correlated with the slight gradual decrease of nucleolar RNA polymerase activity (only 10-20% inhibition at 150min). (e) The inhibition of precursor rRNA maturation and synthesis precedes the ultrastructural lesions of the nucleolus detected by standard electron microscopy. 3. The synthesis of nuclear 4.6S precursor of tRNA is not affected by alpha-amanitin. However, the labelling of nuclear and cytoplasmic tRNA is decreased by about 50%, which indicates an inhibition of precursor tRNA maturation. The results of this study suggest that the synthesis and maturation of the precursor of rRNA and the maturation of the precursor of tRNA are under the control of nucleoplasmic gene products. The regulator molecules may be either RNA or proteins with exceedingly fast turnover.  相似文献   

9.
Previous studies of hisW mutants of Salmonella typhimurium have led to the suggestion that such strains are defective in tRNA maturation. (J. E. Brenchley and J. Ingraham, J. Bacteriol. 114:528-536, 1973). In this study, we report that one hisW strain is defective in the accumulation of all stable RNA species. Polyacrylamide gel electrophoresis of radiolabeled RNA indicated tha at the nonpermissive temperature (20 degrees C) all stable RNa species in the cold-sensitive hisW3333 mutant were synthesized and rapidly degraded. We propose that the cold sensitivity of this strain is caused by such a restriction in stable RNA accumulation at low temperature. In vitro and in vivo studies demonstrated that the RNA degraded in this strain was synthesized de novo and was not preexisting RNA. Furthermore, physiological and genetic recovery from the cold-sensitive hisW phenotype resulted in relatively normal RNA synthesis and accumulation. Thus, the RNA alterations observed in this strain were not explained by defects in a tRNA modification enzyme. Rather, these findings suggest the existence of defective RNA processing and that a control mechanism for the overall synthesis or accumulation of stable RNA species is altered in the hisW3333 mutant.  相似文献   

10.
Improved system for capillary microinjection into living cells   总被引:15,自引:0,他引:15  
The effect of inhibition of protein synthesis on the synthesis and processing of low molecular weight RNA (LMW RNA) hs been studied on CHO-tsH1, a mutant cell line in which protein synthesis is rapidly inhibited at non-permissive temperature by inactivation of the enzyme leucyl-tRNA synthetase. The increase in temperature results in an increase in uridine uptake and in the specific activity of UTP pool which is probably not related to the mutation. We report in this paper that there is no significant alteration in the synthesis of LMW RNA (including 5S ribosomal RNA (rRNA) and tRNA) except for the inhibition of synthesis of nucleolar RNA species A. Since, in a previous paper, it has been shown that the processing of preribosomal nucleolar RNA does not proceed at 39.5 degrees C in CHO-tsH1 cells, these results are consistent with the hypothesis that nucleolar RNA species A is involved in the processing of rRNA depends on its synthesis and maturation.  相似文献   

11.
α-Amanitin acts in vitro and in vivo as a selective inhibitor of nucleoplasmic RNA polymerases. Treatment of mice with low doses of α-amanitin causes the following changes in the synthesis, maturation and nucleocytoplasmic transfer of liver RNA species. 1. The synthesis of the nuclear precursor of mRNA is strongly inhibited and all electrophoretic components are randomly affected. The labelling of cytoplasmic mRNA is blocked. These effects may be correlated with the rapid and lasting inhibition of nucleoplasmic RNA polymerase. 2. The synthesis and maturation of the nuclear precursor of rRNA is inhibited within 30min. (a) The initial effect is a strong (about 80%) inhibition of the early steps of 45S precursor rRNA maturation. (b) The synthesis of 45S precursor rRNA is also inhibited and the effect increases from about 30% at 30min to more than 70% at 150min. (c) The labelling of nuclear and cytoplasmic 28S and 18S rRNA is almost completely blocked. The labelling of nuclear 5S rRNA is inhibited by about 50%, but that of cytoplasmic 5S rRNA is blocked. (d) The action of α-amanitin on the synthesis of precursor rRNA cannot be correlated with the slight gradual decrease of nucleolar RNA polymerase activity (only 10–20% inhibition at 150min). (e) The inhibition of precursor rRNA maturation and synthesis precedes the ultrastructural lesions of the nucleolus detected by standard electron microscopy. 3. The synthesis of nuclear 4.6S precursor of tRNA is not affected by α-amanitin. However, the labelling of nuclear and cytoplasmic tRNA is decreased by about 50%, which indicates an inhibition of precursor tRNA maturation. The results of this study suggest that the synthesis and maturation of the precursor of rRNA and the maturation of the precursor of tRNA are under the control of nucleoplasmic gene products. The regulator molecules may be either RNA or proteins with exceedingly fast turnover.  相似文献   

12.
Modifying RNA enzymes are highly specific for substrate-rRNA or tRNA-and the target position. In Escherichia coli, there are very few multisite acting enzymes, and only one rRNA/tRNA dual-specificity enzyme, pseudouridine synthase RluA, has been identified to date. Among the tRNA-modifying enzymes, the methyltransferase responsible for the m(2)A synthesis at purine 37 in a tRNA set still remains unknown. m(2)A is also present at position 2503 in the peptidyl transferase center of 23S RNA, where it is introduced by RlmN, a radical S-adenosyl-L-methionine (SAM) enzyme. Here, we show that E. coli RlmN is a dual-specificity enzyme that catalyzes methylation of both rRNA and tRNA. The ΔrlmN mutant lacks m(2)A in both RNA types, whereas the expression of recombinant RlmN from a plasmid introduced into this mutant restores tRNA modification. Moreover, RlmN performs m(2)A(37) synthesis in vitro using a tRNA chimera as a substrate. This chimera has also proved useful to characterize some tRNA identity determinants for RlmN and other tRNA modification enzymes. Our data suggest that RlmN works in a late step during tRNA maturation by recognizing a precise 3D structure of tRNA. RlmN inactivation increases the misreading of a UAG stop codon. Since loss of m(2)A(37) from tRNA is expected to produce a hyperaccurate phenotype, we believe that the error-prone phenotype exhibited by the ΔrlmN mutant is due to loss of m(2)A from 23S rRNA and, accordingly, that the m(2)A2503 modification plays a crucial role in the proofreading step occurring at the peptidyl transferase center.  相似文献   

13.
14.
15.
16.
17.
In the present paper the results of enzymatic synthesis of yeast tRNA1Val fragments have been summarized. It is shown that complex use of nucleolytic enzymes is a convenient and effective method of synthesis of the defined sequence oligoribonucleotides. The consecutive use of different nucleolytic enzymes (ribonucleases with different substrate specificity and polynucleotide phosphorylase) and RNA ligase has permitted to obtain various fragments (or their analogs) of T psi-loop, D-arm, anticodon arm and acceptor stem. Some fragments containing modified nucleosides such as tetranucleotide GpDpCpGp (fragment 15-18), octanucleotide GpUpCpUpApGpDpC (analog of fragment 10-17), nonanucleotide GpTpUpCpGpApUpCpC (analog of T psi-loop), decanucleotide psi pCpUpGpCpUpUpIpApC (analog of fragment 27-36), hexanucleotide CpApCpGpCpA (fragment 36-41) and others were synthesized.  相似文献   

18.

Background  

The hypothesis that both mitochondrial (mt) complementary DNA strands of tRNA genes code for tRNAs (sense-antisense coding) is explored. This could explain why mt tRNA mutations are 6.5 times more frequently pathogenic than in other mt sequences. Antisense tRNA expression is plausible because tRNA punctuation signals mt sense RNA maturation: both sense and antisense tRNAs form secondary structures potentially signalling processing. Sense RNA maturation processes by default 11 antisense tRNAs neighbouring sense genes. If antisense tRNAs are expressed, processed antisense tRNAs should have adapted more for translational activity than unprocessed ones. Four tRNA properties are examined: antisense tRNA 5′ and 3′ end processing by sense RNA maturation and its accuracy, cloverleaf stability and misacylation potential.  相似文献   

19.
HisU mutants of Salmonella typhimurium are depressed in the histidine operon since they have lower intracellular concentration of histidyl-tRNAHis. In this paper we present evidences showing that a strain carrying a hisU mutation (hisUl206) is altered in a nucleolytic enzyme involved in tRNA maturation process. The analysis of several hisU mutants indicates that hisU region of bacterial genome may account for more than one function involved in tRNA biosynthesis.  相似文献   

20.
Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNASer-Met. To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNASer-Met, suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry–based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute “Domain 1” in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号