首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Responses of the predaceous mites Phytoseiulus persimilis, Typhlodromus (=Metaseiulus) occidentalis, and Amblyseius andersoni to spatial variation in egg density of the phytophagous mite, Tetranychus urticae, were studied in the laboratory.The oligophagous predator P. persimilis showed initially a direct density dependent foraging time allocation and variation in foraging time increased with prey density. With changes in prey density due to predation, predator foraging rates (per hour) decreased with time and density dependent foraging gradually became density independence, because P. persimilis continued to respond to initial prey density, instead of the changing prey density and distribution. The consequent spatial pattern of predation by P. persimilis was density independent, although slopes of predation rate-prey density regressions increased with time.Compared with P. persimilis, the narrowly polyphagous predator T. occidentalis responded relatively slowly to the the presence or absence of prey eggs but not to prey density: the mean and variation of foraging time spent in patches with prey did not differ with prey density, but was significantly greater in patches with prey eggs than in patches without eggs. Prey density and distribution changed only slightly due to predation and overall foraging rates remained more or less constant. The consequent spatial pattern of predation by T. occidentalis was inversely density dependent. As with P. persimilis, slopes of predation rate-prey density regressions increased with time (i.e. the inverse density dependence in T. occidentalis became weaker through time).The broadly polyphagous predator A. andersoni showed density independent foraging time allocation with variation independent of prey density. With changes in prey density over time due to prey depletion, overall foraging rates decreased. The consequent spatial pattern of predation by A. andersoni also changed through time; it initially was inversely density dependent, but soon became density independent.Overall, P. persimilis and T. occidentalis spent more time in prey patches than A. andersoni, suggesting that A. andersoni tended to spend more time moving outside patches. The overall predation rates and searching efficiency were higher in P. persimilis than in A. andersoni and T. occidentalis. Predator reproduction was highest in P. persimilis, lower in T. occidentalis and the lowest A. andersoni.The differences in response to prey distribution among the three predaceous species probably reflect the evolution of these species in environments with different patterns of prey distribution. The degree of polyphagy is a major determinant of the aggregative response, but other attributes such as handling time are also important in other aspects of phytoseiid foraging behavior (e.g. searching efficiency or predation rate).  相似文献   

2.
Predator-prey populations with parasitic infection   总被引:9,自引:0,他引:9  
A predator-prey model, where both species are subjected to parasitism, is developed and analyzed. For the case where there is coexistence of the predator with the uninfected prey, an epidemic threshold theorem is proved. It is shown that in the case where the uninfected predator cannot survive only on uninfected prey, the parasitization could lead to persistence of the predator provided a certain threshold of transmission is surpassed.Support by the Central Research Fund of the University of Alberta is gratefully acknowledgedResearch partially supported by the Natural Sciences and Engineering Research Council of Canada, Grant No. NSERC A4823  相似文献   

3.
三种群食饵系统的平稳振荡   总被引:3,自引:1,他引:3  
本文研究了一类三种群周期食饵系统,并给出了其存在平稳振荡的充分条件。  相似文献   

4.
5.
A class of ordinary or integrodifferential equations describing predator-prey dynamics is considered under the assumption that the coefficients are periodic functions of time. This class is characterized by the logistic behaviour of the prey in the absence of predators and it includes the Leslie model. We show that there exists a periodic solution provided that the average of the predator's intrinsic rate of increase is greater than a critical value. We use well-known results in bifurcation theory for nonlinear eigenvalue problems, as well as an extension to the case of non-globally defined operators of some recent results on the global nature of branches of solutions.  相似文献   

6.
Post-dispersal seed predation is only one of many factors underlying plant demography and evolution. Nevertheless, the generalist feeding habits of many post-dispersal seed predators and the limited ability of plants either to compensate for or to respond to post-dispersal seed losses directly suggest that post-dispersal seed predation may have a considerable impact on plant populations. Seed predators probably have little direct influence on the demography of plants that regenerate exclusively by vegetative means or are buffered by a large active seed bank, but such species are only a minority in most plant communities.In general, ants are significant post-dispersal seed predators in arid and semi-arid ecosystems while they act mainly as seed dispersers rather than as predators in temperate ecosystems. Although studies have probably underestimated the importance of invertebrates and birds as seed predators, rodents appear to have greater potential to influence seed dynamics, and are particularly important in temperate ecosystems. For example, production of mast seed crops is more effective at satiating specialist invertebrate seed predators than generalist vertebrates, and recruitment may be limited by post-dispersal seed predation even during mast years.Both spatial variation in post-dispersal seed predation and differences in predation between species are important elements which facilitate the coexistence of different plant species. Where microsites are limiting, selective post-dispersal seed predators can influence pre-emptive competition for these microsites. Seed size determines the extent of density-dependent predation and the exploitation of buried seed. This suggests that post-dispersal seed predators may also play a role in the evolution of seed characteristics. However, conclusions regarding the ecological and evolutionary impact of post-dispersal seed predators will remain speculative without a more substantial empirical base.  相似文献   

7.
We generalise the model of [21] in which the author considered a predator-prey system with predators eating only the young ones (or eggs) of the prey species. The prime assumption of the present paper is that the birth rate (per unit individual per unit time) of predators depends not only on the current prey egg-level but also on all previous prey egg-levels. It is seen that under this assumption an otherwise stable system may be stable as well as unstable leading to the conclusion that young predation with time delay is less stable than without it. Finally for the model of [21] we prove a result which shows that large predation rates help in the co-existence of both predator and prey species.  相似文献   

8.
Theoretical work on intraguild predation suggests that if a top predator and an intermediate predator share prey, the system will be stable only if the intermediate predator is better at exploiting the prey, and the top predator gains significantly from consuming the intermediate predator. In mammalian carnivore systems, however, there are examples of top predator species that attack intermediate predator species, but rarely or never consume the intermediate predator. We suggest that top predators attacking intermediate predators without consuming them may not only reduce competition with the intermediate predators, but may also increase the vigilance of the intermediate predators or alter the vigilance of their shared prey, and that this behavioral response may help to maintain the stability of the system. We examine two models of intraguild predation, one that incorporates prey vigilance, and a second that incorporates intermediate predator vigilance. We find that stable coexistence can occur when the top predator has a very low consumption rate on the intermediate predator, as long as the attack rate on the intermediate predator is relatively large. However, the system is stable when the top predator never consumes the intermediate predator only if the two predators share more than one prey species. If the predators do share two prey species, and those prey are vigilant, increasing top predator attack rates on the intermediate predator reduces competition with the intermediate predator and reduces vigilance by the prey, thereby leading to higher top predator densities. These results suggest that predator and prey behavior may play an important dynamical role in systems with intraguild predation.  相似文献   

9.
Allee effects driven by predation   总被引:8,自引:0,他引:8  
  相似文献   

10.
11.
提出了一个具有脉冲效应的周期时滞捕食系统,运用叠合的方法研究了该系统的周期解的存在性.结论表明在一定的条件下捕食者和食饵周期变化.  相似文献   

12.
Boone MD  Semlitsch RD 《Oecologia》2003,137(4):610-616
The effect of a contaminant on a community may not be easily predicted, given that complex changes in food resources and predator-prey dynamics may result. The objectives of our study were to determine the interactive effects of the insecticide carbaryl and predators on body size, development, survival, and activity of tadpoles of the bullfrog (Rana catesbeiana). We conducted the study in cattle tank mesocosm ponds exposed to 0, 3.5, or 7.0 mg/l carbaryl, and no predators or two red-spotted newts (Notophthalmus viridescens), bluegill sunfish (Lepomis macrochirus), or crayfish (Orconectes sp.). Carbaryl negatively affected predator survival by eliminating crayfish from all ponds, and by eliminating bluegill sunfish from ponds exposed to the highest concentration of carbaryl; carbaryl exposure did not effect survival of red-spotted newts. Because crayfish were eliminated by carbaryl, bullfrogs were released from predation and survival was near that of predator controls at low concentrations of carbaryl exposure. High concentrations of carbaryl reduced tadpole survival regardless of whether predators survived carbaryl exposure or not. Presence of crayfish and newts reduced tadpole survival, while bluegill sunfish appeared to facilitate bullfrog tadpole survival. Presence of carbaryl stimulated bullfrog tadpole mass and development. Our study demonstrates that the presence of a contaminant stress can alter community regulation by releasing prey from predators that are vulnerable to contaminants in some exposure scenarios.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   

13.
Abstract Theoretical models imply that spatial scale derives its greatest importance through interactions between density-dependent processes and spatial variation in population densities and environmental variables. Such interactions cause population dynamics on large spatial scales to differ in important ways from predictions based on measurements of population dynamics at smaller scales, a phenomenon called the scale transition. These differences can account for large-scale population stability and species coexistence. The interactions between density dependence and spatial variation that lead to the scale transition can be understood by the process of non-linear averaging, which shows how variance originating on various spatial scales contributes to large-scale population dynamics. Variance originating below the scale of density dependence contributes less to the scale transition as the spatial scale of the variation declines, while variation originating on or above the scale of density dependence contributes independently of the spatial scale of the variation.  相似文献   

14.
By considering a model incorporating behavioral changes by predators and prey evolution, we demonstrate how under certain conditions apostatic predation influences the maintenance of diversity within prey populations, and among different prey species. Further, we estimate the intrinsic diversity wavelength of the system when apostasy combines with other factors to lead to nonuniform distributions of prey along aspect gradients.  相似文献   

15.
Summary Regional variation in the intensity of fish predation on tethered brittle stars and crabs was measured at 30–33 m depths in the rocky subtidal zone at seven sites representing coastal and offshore regions of the Gulf of Maine, USA. Analysis of covariance comparing the slopes of brittle star survivorship curves followed by multiple comparisons tests revealed five groupings of sites, with significantly greater predation rates in the two offshore than in the three coastal groups. Brittle stars tethered at the three offshore sites were consumed primarily by cod, Gadus morhua, with 60–100% prey mortality occuring in 2.5 h. In striking contrast, only 6–28% of brittle star prey was consumed in the same amount of time at the four coastal sites, which were dominated by cunner, Tautogolabrus adspersus. In several coastal trials, a majority of brittle star prey remained after 24 h. The pattern of higher predation offshore held for rock crabs as well with only 2.7% of tethered crabs consumed (n=36) at coastal sites versus 57.8% of crabs (n=64) consumed at offshore sites. Another important predatory fish, the wolffish, Anarhichas lupus, consumed more tethered crabs than brittle stars. Videos and time-lapse movies indicated that cod and wolffish were significantly more abundant at offshore than at coastal sites. Three hundred years of fishing pressure in New England has severely depleted stocks of at least one important benthic predator, the cod, in coastal waters. We speculate that this human-induced predator removal has lowered predation pressure on crabs and other large mobile epibenthos in deep coastal communities. Transect data indicate that coastal sites with few cod support significantly higher densities of crabs than offshore sites with abundant cod.  相似文献   

16.
Effects of predation on host-pathogen dynamics in SIR models   总被引:1,自引:0,他引:1  
The integration of infectious disease epidemiology with community ecology is an active area of research. Recent studies using SI models without acquired immunity have demonstrated that predation can suppress infectious disease levels. The authors recently showed that incorporating immunity (SIR models) can produce a “hump”-shaped relationship between disease prevalence and predation pressure; thus, low to moderate levels of predation can boost prevalence in hosts with acquired immunity. Here we examine the robustness of this pattern to realistic extensions of a basic SIR model, including density-dependent host regulation, predator saturation, interference, frequency-dependent transmission, predator numerical responses, and explicit resource dynamics. A non-monotonic relationship between disease prevalence and predation pressure holds across all these scenarios. With saturation, there can also be complex responses of mean host abundance to increasing predation, as well as bifurcations leading to unstable cycles (epidemics) and pathogen extinction at larger predator numbers. Firm predictions about the relationship between prevalence and predation thus require one to consider the complex interplay of acquired immunity, host regulation, and foraging behavior of the predator.  相似文献   

17.
Global stability of a predator-prey system   总被引:2,自引:0,他引:2  
In this paper we derive a result to ensure the global stability of a predator-prey system. The method used is quite general and may have applications to other situations.Works were partially supported by the National Science Council of the Republic of China  相似文献   

18.
While density-dependence is central to most theory regarding population regulation and community structure, specific mechanisms that modify its effects in the absence of changes in consumer-resources ratios (e.g., thinning) are not well understood. To determine if the threat of predation alters effects of density, we investigated the interaction between density of larval treefrogs (Hyla chrysoscelis) and the non-lethal presence of a predatory fish (Enneacanthus obesus). A significant density by fish interaction was consistent for all response variables (e.g., larval survivorship, mass, and time to metamorphosis) driven by a complete lack of density effects in the presence of predators, while predator-free tanks showed classic density-dependent responses. Given that female H. chrysoscelis strongly avoid ovipositing in ponds containing fish, certain larval adaptations are apparently not constrained by maternal behavior and suggest redundancy in response to predators. Our data suggest that non-lethal effects of predators can determine larval performance irrespective of larval density, and that the non-lethal effects of predators can be strong whether lethal effects are strong or weak.  相似文献   

19.
In this paper we derive some results to ensure the global stability of a predator-prey system. The results cover most of the models which have been proposed in the ecological literature for predator-prey systems. The first result is very geometric and it is very easy to check from the graph of prey and predator isoclines. The second one is purely algebraic, however, it covers the defects of the first one especially in dealing with Holling's type-3 functional response in some sense. We also discuss the global stability of Kolmogorov's model. Some examples are presented in the discussion section.Works partially supported by the National Science Council of the Republic of China  相似文献   

20.
Theory predicts that animals will have lower activity levels when either the risk of predation is high or the availability of resources in the environment is high. If encounter rates with predators are proportional to activity level, then we might expect predation mortality to be affected by resource availability and predator density independent of the number of effective predators. In a factorial experiment, we tested whether predation mortality of larval wood frogs, Rana sylvatica, caused by a single larval dragonfly, Anax junius, was affected by the presence of additional caged predators and elevated resource levels. Observations were consistent with predictions. The survival rate of the tadpoles increased when additional caged predators were present and when additional resources were provided. There was no significant interaction term between predator density and food concentration. Lower predation rates at higher predator density is a form of interference competition. Reduced activity of prey at higher predator density is a potential general mechanism for this widespread phenomenon. Higher predation rates at low food levels provides an indirect mechanism for density-dependent predation. When resources are depressed by elevated consumer densities, then the higher activity levels associated with low resource levels can lead to a positive association between consumer density and consumer mortality due to predation. These linkages between variation in behaviour and density-dependent processes argue that variation in behaviour may contribute to the dynamics of the populations. Because the capture rate of predators depends on the resources available to prey, the results also argue that models of food-web dynamics will have to incorporate adaptive variation in behaviour to make accurate predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号