首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the study was to investigate the correlation between myosin heavy chain (MHC) composition, lactate threshold (LT), maximal oxygen uptake VO2max, and average muscle fiber conduction velocity (MFCV) measured from surface electromyographic (EMG) signals during cycling exercise. Ten healthy male subjects participated in the study. MHC isoforms were identified from a sample of the vastus lateralis muscle and characterized as type I, IIA, and IIX. At least three days after a measure of LT and VO2max, the subjects performed a 2-min cycling exercise at 90 revolutions per minute and power output corresponding to LT, during which surface EMG signals were recorded from the vastus lateralis muscle with an adhesive electrode array. MFCV and instantaneous mean power spectral frequency of the surface EMG were estimated at the maximal instantaneous knee angular speed. Output power corresponding to LT and VO2max were correlated with percentage of MHC I (R2=0.77; and 0.42, respectively; P<0.05). MFCV was positively correlated with percentage of MHC I, power corresponding to LT and to VO2max (R2=0.84; 0.74; 0.53, respectively; P<0.05). Instantaneous mean power spectral frequency was not correlated with any of these variables or with MFCV, thus questioning the use of surface EMG spectral analysis for indirect estimation of MFCV in dynamic contractions.  相似文献   

2.
Effects of exercise on maximal instantaneous muscular power of humans   总被引:2,自引:0,他引:2  
The maximal instantaneous anaerobic power (w), as determined during a high jump off both feet on a force platform, was measured on eight subjects starting from a resting base line; a base line of steady-state cycloergometric exercise requiring 30, 50, and 70% of individual maximum O2 consumption (VO2max); and a base line of maximal and supramaximal exercise (100 and 120% of VO2max). In addition, w was also measured during the VO2 transients from rest to each of the above work loads. Blood lactate concentration ([Lab]) was determined before and 8 min after the end of each priming load. After the onset of any priming load, w decreases with time reaching in 2 min a steady level that is lower the higher the VO2. For the three lowest work rates, the steady w level is unchanged by increasing the duration of the priming exercise up to 30 min. For low work levels, the decrease of w as a function of VO2 is essentially parallel to that of estimated muscle concentration of ATP ([ATP]). For work levels greater than 60% of VO2max involving a substantial accumulation of lactate, the decrease of w becomes smaller than the estimated drop of muscle [ATP]. This finding is tentatively attributed to an increase of either the mechanical equivalent or of the velocity constant of ATP splitting brought about by the lowering of intracellular muscle pH after lactate accumulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Insights into muscle energetics during exercise (e.g., muscular efficiency) are often inferred from measurements of pulmonary gas exchange. This procedure presupposes that changes of pulmonary O2 (VO2) associated with increases of external work reflect accurately the increased muscle VO2. The present investigation addressed this issue directly by making simultaneous determinations of pulmonary and leg VO2 over a range of work rates calculated to elicit 20-90% of maximum VO2 on the basis of prior incremental (25 or 30 W/min) cycle ergometry. VO2 for both legs was calculated as the product of twice one-leg blood flow (constant-infusion thermodilution) and arteriovenous O2 content difference across the leg. Measurements were made 3-5 min after each work rate imposition to avoid incorporation of the VO2 slow component above the lactate threshold. For all 17 subjects, the slope of pulmonary VO2 (9.9 +/- 0.2 ml O2.W-1.min-1) was not different (P greater than 0.05) from that for leg VO2 (9.2 +/- 0.6 ml O2.W-1.min-1). Estimation of "delta" efficiency (i.e., delta work accomplished divided by delta energy expended, calculated from slope of VO2 vs. work rate and a caloric equivalent for O2 of 4.985 cal/ml) using pulmonary VO2 measurements (29.1 +/- 0.6%) was likewise not significantly different (P greater than 0.05) from that made using leg VO2 measurements (33.7 +/- 2.4%). These data suggest that the net VO2 cost of metabolic "support" processes outside the exercising legs changes little over a relatively broad range of exercise intensities. Thus, under the conditions of this investigation, changes of VO2 measured from expired gas reflected closely those occurring within the exercising legs.  相似文献   

4.
Maximum oxygen uptake (VO2max) was measured directly and predicted from cardiac frequency measurements in 54 healthy Chilean industrial workers aged 20 to 55 years, together with assessment of their dietary intake, body composition and blood chemistry. Measurement of VO2 was performed on a motor-driven treadmill. The predicted VO2max was obtained using a cycle ergometer by two methods: 1) the Astrand-Ryhming nomogram and 2) the linear relationship between "steady state" heart rate (HR) and submaximum work, with subsequent extrapolation to "maximum" heart rate. Extrapolation of the HR/load regression line to 170 bpm permitted determination of the physical working capacity at 170 bpm (W170). VO2max for the 20-29 year group (Group I) averaged 3624 ml.min-1 and decreased to 3066 ml.min-1 in the 50-55 year group (Group IV). Lower values were obtained using the Astrand-Ryhming nomogram and HR/load regression (-15% and -9% respectively). W170 was also affected by age (Group I: 190.6 W and Group IV: 158.5 W). No significant correlation were found between VO2max and plasma variables, with the exception of cholesterol (r = 0.59). On the contrary, anthropometric variables showed significant correlations with VO2max, which permitted the prediction of VO2max using multiple regression equations. The two best correlations were: 1. VO2max = 0.800 - 0.0225.(A) +0.0189.(W)+1.26.(H) (r = 0.87; p less than 0.001) 2. VO2max = 0.996 - 0.0176.(A) + 0.025.(W) + 0.838.(H) + 0.0255.(LBM) (r = 0.88; p less than 0.001) where A = years of age; W = body weight in kg; H = height in m and LBM = lean body mass in kg.  相似文献   

5.
The present investigation deals with the effect of gonadal steroids on the oxygen consumption (through gills only) in an air breathing fish, Anabas testudineus (Bloch). A good correlation (P less than 0.05) has been established between the seasonal variations in VO2 and cyclic changes in the activity of gonads in both the sexes. Oxygen consumption in both the sexes of A. testudineus were studied for a period of fourteen months. VO2 of male Anabas remained higher as compared to female throughout the period of investigation. Statistical as well as experimental analysis of the data also indicates that the "male hormones" are much more effective in bringing about the homeostasis of oxidative metabolism as compared to "female hormone" in this fish. The treatment with testosterone brings about significant (P less than 0.001) increase in VO2 in males though the lower dose proved to be most effective. Most of the "female hormones" (progesterone, Duogynon forte and Ovocyclin) used in the present investigation seem to decrease the VO2 significantly in females. The decrease in VO2 was more pronounced at higher dosage. Two peaks of VO2--first in June/July and second in October--have also been observed in this fish. The reason for and mechanism of such change are discussed in the present investigation.  相似文献   

6.
It has been suggested that the slower O2 uptake (VO2) kinetics observed when exercise is initiated from an elevated baseline metabolic rate are linked to an impairment of muscle O2 delivery. We hypothesized that "priming" exercise would significantly reduce the phase II time constant (tau) during subsequent severe-intensity cycle exercise initiated from an elevated baseline metabolic rate. Seven healthy men completed exercise transitions to 70% of the difference between gas exchange threshold (GET) and peak VO2 from a moderate-intensity baseline (90% GET) on three occasions in each of the "unprimed" and "primed" conditions. Pulmonary gas exchange, heart rate, and the electromyogram of m. vastus lateralis were measured during all tests. The phase II VO2 kinetics were slower when severe exercise was initiated from a baseline of moderate exercise compared with unloaded pedaling (mean+/-SD tau, 42+/-15 vs. 33+/-8 s; P<0.05), but were not accelerated by priming exercise (42+/-17 s; P>0.05). The amplitude of the VO2 slow component and the change in electromyogram from minutes 2 to 6 were both significantly reduced following priming exercise (VO2 slow component: from 0.47+/-0.09 to 0.27+/-0.13 l/min; change in integrated electromyogram between 2 and 6 min: from 51+/-35 to 26+/-43% of baseline; P<0.05 for both comparisons). These results indicate that the slower phase II VO2 kinetics observed during transitions to severe exercise from an elevated baseline are not altered by priming exercise, but that the reduced VO2 slow component may be linked to changes in muscle fiber activation.  相似文献   

7.
1. Resting VO2 at 22.7 degrees C was 0.217 +/- 0.007 ml O2/g/hr in Nauphoeta cinerea of 0.51 +/- 0.008 g body mass. 2. Whole animal resting metabolic rate for 11 cockroach species scaled allometrically: VO2 = 0.261 M0.776. 3. Allometry of resting VO2 among cockroach species is similar to that in vertebrates, and is consistent with models based on both "elastic similarity" and "biological similitude."  相似文献   

8.
The "slow component" of O2 uptake (VO2) kinetics during constant-load heavy-intensity exercise is traditionally thought to derive from a progressive recruitment of muscle fibers. In this study, which represents a reanalysis of data taken from a previous study by our group (Grassi B, Hogan MC, Greenhaff PL, Hamann JJ, Kelley KM, Aschenbach WG, Constantin-Teodosiu D, Gladden LB. J Physiol 538: 195-207, 2002) we evaluated the presence of a slow component-like response in the isolated dog gastrocnemius in situ (n=6) during 4 min of contractions at approximately 60-70% of peak VO2. In this preparation all muscle fibers are maximally activated by electrical stimulation from the beginning of the contraction period, and no progressive recruitment of fibers is possible. Muscle VO2 was calculated as blood flow multiplied by arteriovenous O2 content difference. The muscle fatigued (force decreased by approximately 20-25%) during contractions. Kinetics of adjustment were evaluated for 1) VO2, uncorrected for force development; 2) VO2 normalized for peak force; 3) VO2 normalized for force-time integral. A slow component-like response, described in only one muscle out of six when uncorrected VO2 was considered, was observed in all muscles when VO2/peak force and VO2/force-time were considered. The amplitude of the slow component-like response, expressed as a fraction of the total response, was higher for VO2/peak force (0.18+/-0.06, means+/-SE) and for VO2/force-time (0.22+/-0.05) compared with uncorrected VO2 (0.04+/-0.04). A progressive recruitment of muscle fibers may not be necessary for the development of the slow component of VO2 kinetics, which may be caused by the metabolic factors that induce muscle fatigue and, as a consequence, reduce the efficiency of muscle contractions.  相似文献   

9.
There are conflicting reports in the literature which imply that the decrement in maximal aerobic power experienced by a sea-level (SL) resident sojourning at high altitude (HA) is either smaller or larger for the more aerobically "fit" person. In the present study, data collected during several investigations conducted at an altitude of 4300 m were analyzed to determine if the level of aerobic fitness influenced the decrement in maximal oxygen uptake (VO2max) at HA. The VO2max of 51 male SL residents was measured at an altitude of 50 m and again at 4300 m. The subjects' ages, heights, and weights (mean +/- SE) were 22 +/- 1 yr, 177 +/- 7 cm and 78 +/- 2 kg, respectively. The subjects' VO2max ranged from 36 to 60 ml X kg -1 X min -1 (mean +/- SE = 48 +/- 1) and the individual values were normally distributed within this range. Likewise, the decrement in VO2max at HA was normally distributed from 3 ml X kg-1 X min-1 (9% VO2max at SL) to 29 ml X kg-1 X min-1 (54% VO2max at SL), and averaged 13 +/- 1 ml X kg-1 X min-1 (27 +/- 1% VO2max at SL). The linear correlation coefficient between aerobic fitness and the magnitude of the decrement in VO2max at HA expressed in absolute terms was r = 0.56, or expressed as % VO2max at SL was r = 0.30; both were statistically significant (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Selected biochemical and physiological properties of skeletal muscle were studied in light of performance capabilities in 24 elite female track athletes. The feasibility of quantifying end point histochemistry and relating oxidative staining density (reduced nicotinomide adenine dinucleotide diaphorase: NADH-D) to whole body maximal oxygen consumption (VO2 max) was also investigated, while muscle fiber types, classified according to alkaline APTase stains, were studied and related to muscle oxidative capacity (succinate dehydrogenase: SDH), VO2 max and "in vivo" torque-velocity properties. Muscle biopsies were taken from the vastus lateralis of each subject and maximal knee extensor torques were recorded at 30 degrees from full extension at four selected velocities. While results confirm earlier reports on skeletal muscle properties and performance it was concluded that end point histochemistry could be reliably quantified and that an "oxidative" stain such as NADH-D correlates extremely well with VO2 max (r = 0.86, p less than 0.001) whereas correlations between % slow twitch fibres (Alkaline ATPase stain) and VO2 max were lower (r = 0.44, p less than 0.05). Additionally, as knee extension velocity increased from 0-1.7 rad x s-1 angle specific extensor torque production did not decline as observed in vitro and pentathletes displayed significantly larger torques at all velocities when compared to the other athletes. These data confirm that while myofibrillar ATPase staining correlates with force-velocity properties of muscle, VO2 max is better correlated with quantified oxidative staining.  相似文献   

11.
This study was designed to determine whether patients with McArdle's disease, who do not increase their blood lactate levels during and after maximal exercise, have a slow "lactacid" component to their recovery O2 consumption (VO2) response after high-intensity exercise. VO2 was measured breath by breath during 6 min of rest before exercise, a progressive maximal cycle ergometer test, and 15 min of recovery in five McArdle's patients, six age-matched control subjects, and six maximal O2 consumption- (VO2 max) matched control subjects. The McArdle's patients' ventilatory threshold occurred at the same relative exercise intensity [71 +/- 7% (SD) VO2max] as in the control groups (60 +/- 13 and 70 +/- 10% VO2max) despite no increase and a 20% decrease in the McArdle's patients' arterialized blood lactate and H+ levels, respectively. The recovery VO2 responses of all three groups were better fit by a two-, than a one-, component exponential model, and the parameters of the slow component of the recovery VO2 response were the same in the three groups. The presence of the same slow component of the recovery VO2 response in the McArdle's patients and the control subjects, despite the lack of an increase in blood lactate or H+ levels during maximal exercise and recovery in the patients, provides evidence that this portion of the recovery VO2 response is not the result of a lactacid mechanism. In addition, it appears that the hyperventilation that accompanies high-intensity exercise may be the result of some mechanism other than acidosis or lung CO2 flux.  相似文献   

12.
We tested the hypothesis that heavy-exercise phase II oxygen uptake (VO(2)) kinetics could be speeded by prior heavy exercise. Ten subjects performed four protocols involving 6-min exercise bouts on a cycle ergometer separated by 6 min of recovery: 1) moderate followed by moderate exercise; 2) moderate followed by heavy exercise; 3) heavy followed by moderate exercise; and 4) heavy followed by heavy exercise. The VO(2) responses were modeled using two (moderate exercise) or three (heavy exercise) independent exponential terms. Neither moderate- nor heavy-intensity exercise had an effect on the VO(2) kinetic response to subsequent moderate exercise. Although heavy-intensity exercise significantly reduced the mean response time in the second heavy exercise bout (from 65.2 +/- 4.1 to 47.0 +/- 3.1 s; P < 0.05), it had no significant effect on either the amplitude or the time constant (from 23.9 +/- 1.9 to 25.3 +/- 2.9 s) of the VO(2) response in phase II. Instead, this "speeding" was due to a significant reduction in the amplitude of the VO(2) slow component. These results suggest phase II VO(2) kinetics are not speeded by prior heavy exercise.  相似文献   

13.
The mechanisms responsible for the oxygen uptake (VO2) slow component during high-intensity exercise have yet to be established. In order to explore the possibility that the VO2 slow component is related to the muscle contraction regimen used, we examined the pulmonary VO2 kinetics during constant-load treadmill and cycle exercise at an exercise intensity that produced the same level of lactacidaemia for both exercise modes. Eight healthy subjects, aged 22-37 years, completed incremental exercise tests to exhaustion on both a cycle ergometer and a treadmill for the determination of the ventilatory threshold (defined as the lactate threshold, Th1a) and maximum VO2 (VO2max). Subsequently, the subjects completed two "square-wave" transitions from rest to a running speed or power output that required a VO2 that was halfway between the mode-specific Th1a and VO2max. Arterialised blood lactate concentration was determined immediately before and after each transition. The VO2 responses to the two transitions for each exercise mode were time-aligned and averaged. The increase in blood lactate concentration produced by the transitions was not significantly different between cycling [mean (SD) 5.9 (1.5) mM] and running [5.5 (1.6) mM]. The increase in VO2 between 3 and 6 min of exercise; (i.e. the slow component) was significantly greater in cycling than in running, both in absolute terms [290 (102) vs 200 (45) ml x min(-1); P<0.05] and as a proportion of the total VO2 response above baseline [10 (3)% vs 6 (1)%; P < 0.05]. These data indicate that: (a) a VO2 slow component does exist for high-intensity treadmill running, and (b) the magnitude of the slow component is less for running than for cycling at equivalent levels of lactacidaemia. The greater slow component observed in cycling compared to running may be related to differences in the muscle contraction regimen that is required for the two exercise modes.  相似文献   

14.
We measured maximal oxygen consumption (VO(2max)) and burst speed in populations of Trinidadian guppies (Poecilia reticulata) from contrasting high- and low-predation habitats but reared in "common garden" conditions. We tested two hypothesis: first, that predation, which causes rapid life-history evolution in guppies, also impacts locomotor physiology, and second, that trade-offs would occur between burst and aerobic performance. VO(2max) was higher than predicted from allometry, and resting VO(2) was lower than predicted. There were small interdrainage differences in male VO(2max), but predation did not affect VO(2max) in either sex. Maximum burst speed was correlated with size; absolute burst speed was higher in females, but size-adjusted speed was greater in males. For both sexes, burst speed conformed to allometric predictions. There were differences in burst speed between drainages in females, but predation regime did not affect burst speed in either sex. We did not find a significant correlation between burst speed and VO(2max), suggesting no trade-off between these traits. These results indicate that predation-mediated evolution of guppy life history does not produce concomitant evolution in aerobic capacity and maximum burst speed. However, other aspects of swimming performance (response latencies or acceleration) might show adaptive divergence in contrasting predation regimes.  相似文献   

15.
We addressed two questions concerned with the metabolic cost and performance of respiratory muscles in healthy young subjects during exercise: 1) does exercise hyperpnea ever attain a "critical useful level"? and 2) is the work of breathing (WV) at maximum O2 uptake (VO2max) fatiguing to the respiratory muscles? During progressive exercise to maximum, we measured tidal expiratory flow-volume and transpulmonary pressure- (Ptp) volume loops. At rest, subjects mimicked their maximum and moderate exercise Ptp-volume loops, and we measured the O2 cost of the hyperpnea (VO2RM) and the length of time subjects could maintain reproduction of their maximum exercise loop. At maximum exercise, the O2 cost of ventilation (VE) averaged 10 +/- 0.7% of the VO2max. In subjects who used most of their maximum reserve for expiratory flow and for inspiratory muscle pressure development during maximum exercise, the VO2RM required 13-15% of VO2max. The O2 cost of increasing VE from one work rate to the next rose from 8% of the increase in total body VO2 (VO2T) during moderate exercise to 39 +/- 10% in the transition from heavy to maximum exercise; but in only one case of extreme hyperventilation, combined with a plateauing of the VO2T, did the increase in VO2RM equal the increase in VO2T. All subjects were able to voluntarily mimic maximum exercise WV for 3-10 times longer than the duration of the maximum exercise. We conclude that the O2 cost of exercise hyperpnea is a significant fraction of the total VO2max but is not sufficient to cause a critical level of "useful" hyperpnea to be achieved in healthy subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Six subjects pedaled a stationary cycle ergometer to exhaustion on three separate occasions while breathing gas mixtures of 17, 21, or 60% O2 in N2. Each subject rode for 3 min at work rates of 60, 90, 105 W, followed by 15-W increases every 3 min until exhaustion. Inspired and expired gas fractions, ventilation (V), heart rate, and blood lactate were measured. O2 uptake (VO2) and CO2 output (VCO2) were calculated for the last minute of each work rate; blood samples were drawn during the last 5 s. "Break points" for lactate, V, VCO2, V/VO2, and expired oxygen fraction (FEO2) were mathematically determined. VO2 was not significantly different at any work rate among the three different conditions. Nor did maximal VO2 differ significantly among the three treatments (P greater than 0.05). Lactate concentrations were significantly lower during hyperoxia and significantly higher during hypoxia compared with normoxia. Lactate values at exhaustion were not significantly different among the three treatments. Four subjects were able to work for a longer period of time during hyperoxic breathing. The variations in lactate accumulation as reported in this study cannot be explained on the basis of differences in VO2. The results of this research lend support to the hypothesis that differences in the performance of subjects breathing altered fractions of inspired oxygen may be caused by differences in lactate (or H+) accumulation.  相似文献   

17.
The purpose of the present study was to comprehensively examine oxygen consumption (VO(2)) kinetics during running and cycling through mathematical modeling of the breath-by-breath gas exchange responses to moderate and heavy exercise. After determination of the lactate threshold (LT) and maximal oxygen consumption (VO(2 max)) in both cycling and running exercise, seven subjects (age 26.6 +/- 5.1 yr) completed a series of "square-wave" rest-to-exercise transitions at running speeds and cycling power outputs that corresponded to 80% LT and 25, 50, and 75%Delta (Delta being the difference between LT and VO(2 max)). VO(2) responses were fit with either a two- (LT) exponential model. The parameters of the VO(2) kinetic response were similar between exercise modes, except for the VO(2) slow component, which was significantly (P < 0.05) greater for cycling than for running at 50 and 75%Delta (334 +/- 183 and 430 +/- 159 ml/min vs. 205 +/- 84 and 302 +/- 154 ml/min, respectively). We speculate that the differences between the modes are related to the higher intramuscular tension development in heavy cycle exercise and the higher eccentric exercise component in running. This may cause a relatively greater recruitment of the less efficient type II muscle fibers in cycling.  相似文献   

18.
To determine the effects of cycle and run training on rating of perceived exertion at the lactate threshold (LT), college men completed a 40-session training program in 10 weeks (n = 6 run training, n = 5 cycle training, n = 5 controls). Pre- and post-training variables were measured during graded exercise tests on both the bicycle ergometer and treadmill. ANOVA on the pre- and post-training difference scores resulted in similar improvements in VO2max for both testing protocols, regardless of training mode. The run training group increased VO2 at the LT by 58.5% on the treadmill protocol and by 20.3% on the cycle ergometer. Cycle trainers increased VO2 LT only during cycle ergometry (+38.7%). No changes were observed in the control group. No differences for RPE at the LT were found before or after training, or between testing protocols for any group. Perception of exercise intensity at the LT ranged from "very light" to "light". The relationship between RPE and %VO2max was altered by the specific mode of training, with trained subjects having a lower RPE at a given %VO2max (no change in RPE at max.). It was concluded that RPE at the LT was not affected by training, despite the fact that after training the LT occurs at a higher work rate and was associated with higher absolute and relative metabolic and cardiorespiratory demands.  相似文献   

19.
The purpose of this study was to investigate the influence of the size of the active muscle mass on the cardiovascular response to static contraction. Twelve male subjects performed one-arm handgrip (HG), two-leg extension (LE), and a "dead-lift" maneuver (DL) in a randomly assigned order for 3 min at 30% of maximal voluntary contraction. O2 uptake (VO2), heart rate (HR), and mean intra-arterial blood pressure (MABP) were measured at rest and, in addition to absolute tension exerted, throughout contraction. There was a direct relationship between the size of the active muscle mass and the magnitude of the increases in VO2, HR, and MABP, even though all contractions were performed at the same relative intensity. Tension, VO2, HR, and MABP increased progressively from HG to LE to DL. It was concluded that at the same percentage of maximal voluntary contraction, the magnitude of the cardiovascular response to isometric exercise is directly influenced by the size of the contracting muscle mass.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号