首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activity of a single IP administration (15 or 30 mg/Kg body weight) of vanillyl nonanoate, a simplified analog of capsiate, on ferric nitrilotriacetate (Fe-NTA)-mediated oxidative damage was investigated. A sub-lethal dose of Fe-NTA (15 mg Fe/Kg body weight) was administered IP to rats; animals were sacrificed, and kidney and plasma were collected 1 h after injection. In response to the Fe-NTA administration, a reduction of the levels of total lipids, total unsaturated fatty acids and cholesterol was observed, accompanied by a rise in the concentrations of malondialdehyde (MDA), conjugated dienes fatty acids hydroperoxides and 7-ketocholesterol in plasma and kidney 1 h after administration. A pre-treatment with synthetic capsiate (SCPT) showed remarkable protective effect on the reduction of the levels of total lipids, total unsaturated fatty acids and cholesterol, and the cellular antioxidant vitamin E, inhibiting the increase of MDA, conjugated dienes fatty acids hydroperoxides and 7-ketocholesterol in the plasma and kidney. The protective effect of SCPT and two analogues (vanillyl alcohol and vanillin) during the linoleic acid and cholesterol oxidation was investigated in in vitro systems, providing evidence of definite structure-activity relationships.  相似文献   

2.
Weaning mice were fed a diet supplemented with beef tallow (BT) or BT plus docosahexaenoic acid (DHA) containing 100 mg alpha-tocopherol/kg (alpha-Toc100) or 500 mg alpha-tocopherol/kg (alpha-Toc500) for 4 wk to modify membrane fatty acid unsaturation, and then were administered ferric nitrilotriacetate (Fe-NTA). The mortality caused by Fe-NTA was higher in the group fed the DHA (alpha-Toc100) diet than in the BT diet groups but the DHA (alpha-Toc500) diet suppressed this increase. Serum and kidney alpha-tocopherol contents were slightly influenced by the dietary fatty acids but not significantly. These results indicate that the increased unsaturation of tissue lipids enhances oxidative damage induced by Fe-NTA in mice fed DHA (alpha-Toc100) but not when additional alpha-tocopherol is supplemented. The apparent discrepancy between the observed enhancement by dietary DHA of oxidative damage and the beneficial effects of dietary DHA on the so-called free radical diseases is discussed in terms of strong bolus oxidative stress and moderate chronic oxidative stress.  相似文献   

3.
Pre-administration of alpha-tocopherol is protective against oxidative renal tubular damage and subsequent carcinogenesis by ferric nitrilotriacetate (Fe-NTA) in rats. We searched for mechanisms other than the scavenging effect of alpha-tocopherol with microarray analyses, which implicated calnexin, a chaperone for glycoproteins. Renal mRNA levels of calnexin significantly increased 3h after an injection of Fe-NTA in rats fed a standard diet whereas those fed an alpha-tocopherol-supplemented diet showed an increase prior to injection, but after injection showed a decrease in renal calnexin mRNA levels, with unaltered protein levels. In experiments using LLC-PK1 cells, addition of alpha-tocopherol was protective against oxidative stress by H2O2, concomitant with calnexin induction. Knockdown of calnexin by siRNA significantly reduced this protection. Furthermore, COS-7 cells transfected with the calnexin gene were more resistant to H2O2. Together with the fact that alpha-tocopherol induced N-acetylglucosaminyltransferase 3, our data suggest that alpha-tocopherol modifies glycoprotein metabolism partially by conferring mild ER stress. This adds another molecular mechanism of alpha-tocopherol toward cancer prevention.  相似文献   

4.
Formation of excess free radical causes cellular oxidative stress, which has been shown to be associated with a variety of pathologic conditions. While electron spin resonance (ESR) spectroscopy has been the only method to demonstrate the presence of free radicals, its application to tissue samples has been challenging. We report here the successful ESR detection in thin-sliced fresh tissues or frozen sections in a rat model. Ferric nitrilotriacetate (Fe-NTA) induces oxidative renal tubular damage that ultimately leads to high incidence of renal carcinoma in rodents. Twenty minutes after administration of 5 mg iron/kg Fe-NTA to rats, a thin-slice of the kidney was mounted on a tissue-type cell and analyzed by ESR spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). An ESR signal from alkylperoxyl radical adduct was obtained, and the signal was inversely proportional to renal alpha-tocopherol content which was modulated through diet. Furthermore, we undertook ex vivo study using frozen sections. Fe-NTA (1 mM) was added to a rat kidney frozen section for 10 min. After washing the specimen was mounted on a tissue-type cell and analyzed with ESR spin trapping using DMPO. Alkylperoxyl radical signal was dependent on thickness, incubation time and renal tissue levels of alpha-tocopherol, and was reduced by preincubation with catalase or dimethyl sulfoxide but not with alpha-tocopherol outside tissue. This versatile method facilitates identification of free radicals in pathologic conditions, and may be useful for selection of antioxidants.  相似文献   

5.
Several studies have shown the role of thiol-rich proteins especially metallothionein (MT) in the therapeutic interventions against oxidative damage. Previously, we have provided strong evidence for the involvement of ROS in iron nitrilotriacetate (Fe-NTA)-induced renal toxicity, which may have relevance to its carcinogenicity. The purpose of this study was to evaluate the role of zinc metallothionein (Zn-MT) on the protection against Fe-NTA-induced renal oxidative damage. The results demonstrate that Zn-MT pretreatment provided protection against Fe-NTA-induced mortality in mice (40% protection). Similarly, Zn-MT pretreatment also provided protection against Fe-NTA-induced lipid peroxidation (26% inhibition, P < 0.001). It is proposed that Zn-MT protects kidney tissue against the noxious effect of Fe-NTA primarily by interference with lipid peroxides. It is concluded that Zn-MT may serve as an excellent physiological antioxidant against Fe-NTA-mediated renal oxidative damage.  相似文献   

6.
The effects of a mixture of unsaturated fatty acids (UFA) on changes in the lipid oxidation substrate, a system of natural antioxidants and the functioning of a system controlling lipid peroxidation were studied. It was shown that arachidonate induces the incorporation of fatty acids into individual lipid fractions and the dilution of lipids by UFA esters, as a result of which the relative amount of natural antioxidants diminishes. Under these conditions, the oxidative capacity of lipids decreases, which manifests itself in a reduction of the rate of natural antioxidants utilization and an increase in their number. It was shown that purposeful modification of the lipid substrate does not interfere with the interaction between individual parameters of the system controlling lipid peroxidation.  相似文献   

7.
Curcumin, a natural, biologically active compound extracted from rhizomes of Curcuma species, has been shown to act as a biological response modifier in various disorders. We have reported previously that the dietary supplementation of curcumin enhances the activities of antioxidant and phase II metabolizing enzymes in mice (M. Iqbal, S.D. Sharma, Y. Okazaki, M. Fujisawa, S. Okada, Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY mice: possible role in protection against chemical carcinogenesis and toxicity, Pharmacol and Toxicol. 92 (2003) 33_38.) and inhibits ferric nitrilotriacetate (Fe-NTA) induced oxidative injury of lipids and DNA in vitro (M. Iqbal, Y. Okazaki, S. Okada, In vitro curcumin modulates Ferric Nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H(2)O(2))-induced peroxidation of microsomal membrane lipids and DNA damage, Teratogenesis Carcinogenesis and Mutagenesis Supplement 23 (2003) 151-160.). In our present study, Fe-NTA, a known complete renal carcinogen, which generate ROS in vivo, was given intraperitoneally to mice and curcumin was tested for its ability to inhibits oxidative stress and the activity of ornithine decarboxylase (ODC) as well as histopathological changes in the kidney. Substantial changes in glutathione, antioxidant enzymes as well as changes in phase II metabolizing enzymes were observed in the kidney at 12 h after treatment with Fe-NTA (9.0 mg Fe/kg body weight). Effect of oxidative stress induced by Fe-NTA were also demonstrated by the increase in lipid peroxidation as monitored by formation of thiobarbituric acid-reactive substances and 4-hydroxy-2-nonenal (HNE)-modified proteins in kidney. Likewise, the level of protein carbonyl contents, an indicator of protein oxidation was also increased after Fe-NTA administration. However, the changes in these parameters were restored to normal in curcumin-pretreated mice. The ODC activity in the kidney was significantly increased by Fe-NTA, while the increased ODC activity induced by Fe-NTA was normalized in curcumin-pretreated mice. In addition, curcumin pretreatment almost completely prevented kidney biomolecules from oxidative damage and protected the tissue against observed histopathological alterations.  相似文献   

8.
Summary

Glutathione (GSH) plays several important roles in the protection of cells against oxidative damage, particularly following exposure to xenobiotics. Ferric nitrilotriacetate (Fe-NTA) is a potent depletor of GSH and also enhances tissue lipid peroxidation. In this study, we show the effect of Fe-NTA treatment on hepatic GSH and some of the glutathione metabolizing enzymes, oxidant generation and liver damage. The level of hepatic GSH and the activities of glutathione reductase, glutathione S-transferase, glutathione peroxidase, and glucose 6-phosphate dehydrogenase all decrease following Fe-NTA administration. In these parameters the maximum decrease occurred at 12 h following Fe-NTA treatment. In contrast, γ-glutamyl transpeptidase was increased at this time. Not surprisingly, the increase in the activity of γ-glutamyl transpeptidase and decreases in GSH, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and glutathione S-transferase were found to be dependent on the dose of Fe-NTA administered. Fe-NTA administration also enhances the production of H2O2 and increases hepatic lipid peroxidation. Parallel to these changes, Fe-NTA enhances liver damage as evidenced by increases in serum transaminases. Once again, the liver damage is dependent on the dose of Fe-NTA and is maximal at 12 h. Pretreatment of animals with antioxidant, butylated hydroxy anisole (BHA), protects against Fe-NTA-mediated hepatotoxicity further supporting the involvement of oxidative stress in Fe-NTA-mediated hepatic damage. In aggregate, our results indicate that Fe-NTA administration eventuates in decreased hepatic GSH, a fall in the activities of glutathione metabolizing enzymes and excessive production of oxidants, all of which are involved in the cascade of events leading to iron-mediated hepatic injury.  相似文献   

9.
The metabolic organization of a holocephalan, the spotted ratfish (Hydrolagus colliei), was assessed using measurements of key enzymes of several metabolic pathways in four tissues and plasma concentrations of free amino acids (FAA) and non-esterified fatty acids (NEFA) to ascertain if the Holocephali differ metabolically from the Elasmobranchii since these groups diverged ca. 400 Mya. Activities of carnitine palmitoyl transferase indicate that fatty acid oxidation occurs in liver and kidney but not in heart or white muscle. This result mirrors the well-established absence of lipid oxidation in elasmobranch muscle, and more recent studies showing that elasmobranch kidney possesses a capacity for lipid oxidation. High activities in oxidative tissues of enzymes of ketone body metabolism, including D-beta-hydroxybutyrate dehydrogenase, indicate that, like elasmobranchs, ketone bodies are of central importance in spotted ratfish. Like many carnivorous fishes, enzyme activities demonstrate that amino acids are metabolically important, although the concentration of plasma FAA was relatively low. NEFA concentrations are lower than in teleosts, but higher than in most elasmobranchs and similar to that in some "primitive" ray-finned fishes. NEFA composition is comparable to other marine temperate fishes, including high levels of n-6 and especially n-3 polyunsaturated fatty acids. The metabolic organization of the spotted ratfish is similar to that of elasmobranchs: a reduced capacity for lipid oxidation in muscle, lower plasma NEFA levels, and an emphasis on ketone bodies as oxidative fuel. This metabolic strategy was likely present in the common chondrichthyan ancestor, and may be similar to the ancestral metabolic state of fishes.  相似文献   

10.
Abstract

Several studies have shown the role of thiol-rich proteins especially metallothionein (MT) in the therapeutic interventions against oxidative damage. Previously, we have provided strong evidence for the involvement of ROS in iron nitrilotriacetate (Fe-NTA)-induced renal toxicity, which may have relevance to its carcinogenicity. The purpose of this study was to evaluate the role of zinc metallothionein (Zn-MT) on the protection against Fe-NTA-induced renal oxidative damage. The results demonstrate that Zn-MT pretreatment provided protection against Fe-NTA-induced mortality in mice (40% protection). Similarly, Zn-MT pretreatment also provided protection against Fe-NTA-induced lipid peroxidation (26% inhibition, P < 0.001). It is proposed that Zn-MT protects kidney tissue against the noxious effect of Fe-NTA primarily by interference with lipid peroxides. It is concluded that Zn-MT may serve as an excellent physiological antioxidant against Fe-NTA-mediated renal oxidative damage.  相似文献   

11.
Ye SF  Ichimura K  Wakame K  Ohe M 《Life sciences》2003,74(5):593-602
Active Hexose Correlated Compound (AHCC), an extract derived from fungi of Basidiomycetes family has been shown to act as a biological response modifier in various disorders. In our present study, ferric nitrilotriacetate (Fe-NTA), which generates hydroxyl radicals in vivo, was given intraperitoneally to rats and AHCC was tested for its ability to suppress oxidative stress and the activity of ornithine decarboxylase (ODC) in the liver and kidney. Substantial increments in glutathione-related enzymes including glutathione reductase, glutathione peroxidase activity as well as oxidized glutathione contents were shown in the liver at 12 h after treatment with Fe-NTA (7.5 mg Fe/kg body weight). Effects of oxidative stress induced by Fe-NTA were also demonstrated by the increase in serum lipid peroxidation, aminotransferases and urinary 8-hydroxy-2'-deoxyguanosine. However, the increases in these parameters were restored to normal in AHCC-pretreated rats. The ODC activity in the liver and kidney was significantly increased by Fe-NTA, while the increased ODC activity induced by Fe-NTA was normalized in AHCC-pretreated rats. These results suggest AHCC acts as a potent antioxidant and protects against disorders induced by oxidative stresses.  相似文献   

12.
Oxidative DNA damage and its repair in primary rat hepatocyte cultures was investigated following 4 h of incubation with the toxic iron chelate, ferric nitrilotriacetate (Fe-NTA), in the presence or absence of the potent protective flavonoid myricetin (25-50-100 microM). Seven DNA base oxidation products were quantified in DNA extracts by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring mode. Concomitantly, DNA repair capacity of hepatocytes was estimated by the release of oxidized-base products into culture media, using the same GC-MS method. A genotoxic effect of Fe-NTA (100 microM) in hepatocytes was evidenced by a severe increase in DNA oxidation over basal levels, with accumulation in cellular DNA of five oxidation products derived from both purines and pyrimidines. This prooxidant effect of iron was also noted by an induction of lipid peroxidation, estimated by free malondialdehyde production. Addition of increasing concentrations of myricetin (25-50-100 microM) simultaneously with iron prevented both lipid peroxidation and accumulation of oxidation products in DNA. Moreover, as an activation of DNA repair pathways, myricetin stimulated the release of DNA oxidation bases into culture media, especially of purine-derived oxidation products. This removal of highly mutagenic oxidation products from DNA of hepatocytes might correspond to an activation of DNA excision-repair enzymes by myricetin. This was verified by RNA blot analysis of DNA polymerase beta gene expression which was induced by myricetin in a dose-dependent manner. This represented a novel and original mechanism of cytoprotection by myricetin against iron-induced genotoxicity via stimulation of DNA repair processes. Since iron-induced DNA damage and inefficient repair in hepatocytes could be related to genotoxicity and most probably to hepatocarcinogenesis, modulation of these processes in vitro by myricetin might be relevant in further prevention of liver cancer derived from iron overload pathologies.  相似文献   

13.
Direct effects of ferric nitrilotriacetate (Fe-NTA) on normal rat liver epithelial cells (RL34) in serum-free culture were studied. More than 10 micrograms/ml iron of Fe-NTA was cytotoxic and the cytotoxicity was prevented by adding apotransferrin into culture medium. Also, bovine serum albumin (BSA), which is known to bind Fe-NTA, was found to promote the cytotoxicity, while fatty acids-free BSA (F-BSA) prevented it. This result indicates that fatty acids rather than albumin promote Fe-NTA cytotoxicity.  相似文献   

14.
Ferritin and haemosiderin were shown, by the measurement of malondialdehyde production and loss of polyunsaturated fatty acids, to stimulate lipid peroxidation in liposomes. At pH 7.4 ascorbate was additionally required to achieve peroxidation; however, peroxidation occurred at pH 4.5 in the presence of iron-proteins alone. The damage was completely inhibited by the incorporation of chain-breaking antioxidants (alpha-tocopherol and butylated hydroxytoluene) into the liposomes. Metal chelators (desferrioxamine and EDTA) also completely inhibited lipid peroxidation. These and further results indicate that, at pH 4.5, even in the absence of a reducing agent, iron is released from haemosiderin and can mediate oxidative damage to a lipid membrane.  相似文献   

15.
When human plasma was exposed to the hydrophilic radical initiator, AAPH, (-)-epigallocatechin-(3)-gallate (EGCG) dose-dependently inhibited the aqueous compartment oxidation (IC(50)=0.72 microM) (monitored by DCFH oxidation) and spared the lipophilic antioxidants, alpha-tocopherol, and carotenoids, but not ascorbic acid. When radicals were selectively induced in the lipid compartment by the lipophilic radical initiator, MeO-AMVN, EGCG spared alpha-tocopherol, but not carotenoids and inhibited the lipid compartment oxidation (monitored by BODIPY 581/591) with a potency lower than that found in the aqueous compartment (IC(50)=4.37 microM). Our results indicate that EGCG, mainly localized in the aqueous compartment, effectively quenches aqueous radical species, thus limiting their diffusion into the lipid compartment and preventing lipid-soluble antioxidant depletion. Further, ESR experiments confirmed that EGCG recycled alpha-tocopherol through a H-transfer mechanism at the aqueous/lipid interface affording an additional protective mechanism to the lipid compartment of plasma.  相似文献   

16.
Dietary iron may contribute to colon cancer risk via production of reactive oxygen species (ROS). The aim of the study was to determine whether physiological ferric/ferrous iron induces oxidative DNA damage in human colon cells. Therefore, differentiated human colon tumour cells (HT29 clone 19A) were incubated with ferric-nitrilotriacetate (Fe-NTA) or with haemoglobin and DNA breaks and oxidised bases were determined by microgelelectrophoresis. The effects of Fe-NTA were measured with additional H(2)O(2) (75microM) and quercetin (25-100microM) treatment. Analytic detection of iron in cell cultures, treated with 250microM Fe-NTA for 15 min to 24h, showed that 48.02+/-5.14 to 68.31+/-2.11% were rapidly absorbed and then detectable in the cellular fraction. Fe-NTA (250-1000microM) induced DNA breaks and oxidised bases, which were enhanced by subsequent H(2)O(2) exposure. Simultaneous incubation of HT29 clone 19A cells with Fe-NTA and H(2)O(2) for 15 min, 37 degrees C did not change the effect of H(2)O(2) alone. The impact of Fe-NTA and H(2)O(2)-induced oxidative damage is reduced by the antioxidant quercetin (75-67% of H(2)O(2)-control). Haemoglobin was as effective as Fe-NTA in inducing DNA damage. From these results we can conclude that iron is taken up by human colon cells and participates in the induction of oxidative DNA damage. Thus, iron or its capacity to catalyse ROS-formation, is an important colon cancer risk factor. Inhibition of damage by quercetin reflects the potential of antioxidative compounds to influence this risk factor. Quantitative data on the genotoxic impact of ferrous iron (e.g. from red meat) relative to the concentrations of antioxidants (from plant foods) in the gut are now needed to determine the optimal balance of food intake that will reduce exposure to this type of colon cancer risk factor.  相似文献   

17.
R Nordmann  C Ribière  H Rouach 《Enzyme》1987,37(1-2):57-69
Lipoperoxidation, a degradative process of membranous polyunsaturated fatty acids, has been suggested to represent an important mechanism in the pathogenesis of ethanol toxicity on the liver and possibly also on the brain. Catalysis by transition metals, especially iron, is involved in the biosynthesis of free radicals contributing to lipid peroxidation. Although the exact nature of the redox-active iron implicated in this catalysis is still unknown, it has been well established that lipid peroxidation can be prevented in vitro by iron chelators such as desferrioxamine. Deprivation of redox-active iron through desferrioxamine inhibits by about 50% the microsomal oxidation of ethanol in vitro and reduces very significantly in vivo the overall ethanol elimination rate in rats. Administration of desferrioxamine together with ethanol also reduces the ethanol-induced disturbances in the antioxidant defense mechanisms of the hepatocyte. It also reduces in mice both the severity of physical dependence on ethanol and lethality following the acute administration of a narcotic dose of ethanol. Chronic overloading of rats with iron results, on the opposite, in an increased rate of ethanol elimination, although alcohol dehydrogenase and catalase activities are reduced and cytochrome P-450 depleted in the liver of such iron-overloaded animals. The magnitude of the ethanol-induced increase in lipid peroxidation and decrease in the major membranous antioxidant, alpha-tocopherol, is exacerbated in iron-overloaded rats. Several disturbances of iron metabolism have been reported in human alcoholics. Their contribution to ethanol toxicity appears very likely in the case of hepatic siderosis associated with alcohol abuse. Ethanol could however disturb iron metabolism even in the absence of gross abnormalities of the total iron stores. It is suggested that ethanol intoxication could increase cellular redox-active iron, thus contributing to an enhanced steady-state concentration of reactive-free radicals. This oxidative stress would lead to lipoperoxidative damage and cellular injury.  相似文献   

18.
The responses to oxidative stress induced by chronic exercise (8-wk treadmill running) or acute exercise (treadmill running to exhaustion) were investigated in the brain, liver, heart, kidney, and muscles of rats. Various biomarkers of oxidative stress were measured, namely, lipid peroxidation [malondialdehyde (MDA)], protein oxidation (protein carbonyl levels and glutamine synthetase activity), oxidative DNA damage (8-hydroxy-2'-deoxyguanosine), and endogenous antioxidants (ascorbic acid, alpha-tocopherol, glutathione, ubiquinone, ubiquinol, and cysteine). The predominant changes are in MDA, ascorbic acid, glutathione, cysteine, and cystine. The mitochondrial fraction of brain and liver showed oxidative changes as assayed by MDA similar to those of the tissue homogenate. Our results show that the responses of the brain to oxidative stress by acute or chronic exercise are quite different from those in the liver, heart, fast muscle, and slow muscle; oxidative stress by acute or chronic exercise elicits different responses depending on the organ tissue type and its endogenous antioxidant levels.  相似文献   

19.
Intraperitoneal (IP) injection of ferric nitrilotriacetate (Fe-NTA) to rats and mice results in iron-induced free radical injury and cancer in kidneys. We sought to clarify the exact localization of acute oxidative damage in Fe-NTA-induced nephrotoxicity by performing immunogold light and electron microscopic (EM) techniques using an antibody against 4-hydroxy-2-nonenal (HNE)-modified proteins. Biochemical assays were done to provide complementary quantitative data. Renal accumulation of lipid peroxidation-derived aldehydes, such as malondialdehyde (MDA) and 4-hydroxy-2-alkenals (4-HDA), increased in parallel with protein carbonyl content, an indicator of protein oxidation, 30 min after administration of Fe-NTA. Immunogold light microscopy showed that HNE-modified proteins increased at 30 min with positivity localized to proximal tubular cells. Immunogold EM demonstrated that HNE-modified proteins were mainly in the mitochondria and nuclei of the proximal tubular epithelium. The intensity of labeling at both the light and EM levels increased together with levels of biochemically measured lipid peroxidation products and protein carbonyl content. Our data suggest that the mechanism of acute nephrotoxicity of Fe-NTA involves mitochondrial and nuclear oxidative damage, findings that may help to define the mechanisms of iron-induced cell injury.  相似文献   

20.
Oxidative damage and stress response from ochratoxin a exposure in rats   总被引:5,自引:0,他引:5  
Ochratoxin A (OTA) is a mycotoxin found in some cereal and grain products.It is a potent renal carcinogen in male rats, although its mode of carcinogenic action is not known. Oxidative stress may play a role in OTA-induced toxicity and carcinogenicity.In this study, we measured several chemical and biological markers that are associated with oxidative stress response to determine if this process is involved in OTA-mediated toxicity in rats. Treatment of male rats with OTA (up to 2 mg/ 24 h exposure) did not increase the formation of biomarkers of oxidative damage such as the lipid peroxidation marker malondialdehyde in rat plasma, kidney, and liver, or the DNA damage marker 8-oxo-7,8-dihydro-2' deoxyguanosine in kidney DNA. However, OTA treatment (1 mg/kg) did result in a 22% decrease in alpha-tocopherol plasma levels and a 5-fold increase in the expression of the oxidative stress responsive protein haem oxygenase-1, specifically in the kidney. The selective alteration of these latter two markers indicates that OTA does evoke oxidative stress, which may contribute at least in part to OTA renal toxicity and carcinogenicity in rats during long-term exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号