首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
薏苡胚乳细胞化的超微结构观察   总被引:6,自引:0,他引:6  
采用透射电镜对薏苡早期的胚乳细胞化进行了研究,在胚乳游离核时期,胚乳游离核及细胞质绕中央细胞分布,游离核间没有发现胚囊壁内突、成膜体等结构。胚乳细胞化过程中初始垂周壁形成过程如下:(1)胚乳细胞质中出现液泡,使细胞质和核向中央液泡推进:(2)一对相邻细胞核间液泡成对存在,且呈垂周分布,而且两液泡间的细胞质很狭窄;(3)在这狭窄的细胞质中出现成行排列的小泡;(4)小泡融合形成细胞板,细胞板悬于两液泡  相似文献   

2.
白刺胚乳早期发育的超微结构研究   总被引:2,自引:0,他引:2  
白刺(Nitraria sibirica)胚乳发育经历游离核阶段、细胞化阶段和被吸收解体阶段。游离核胚乳沿胚囊壁均匀排列为一层,胞质浓厚,其中有丰富的质体、线粒体、高尔基体、内质网和各种小泡等细胞器。珠孔区域的胚囊壁具发达的分枝状壁内突,而周缘区域的胚囊壁具间隔的钉状内突,内突周围的细胞质中具多数线粒体和小泡。胚乳细胞化时,初始垂周壁源于核有丝分裂产生的细胞板。在细胞板两端开始壁的游离生长,一端与胚囊壁相连接,另一端向心自由延伸。壁的游离生长依赖于小泡的融合。早期胚乳细胞具大液泡,具核或无核,细胞质中有大量的线粒体,质体缺乏,其壁仍由多层膜结构组成。  相似文献   

3.
The pollen tube enters the embryo sac through the crassinucellus at the micropylar end, and brings about the porogamy. The embryogeny corresponds to the Solanad type. The defference of the suspensor structure is notable by comparing it with the other genera of Zygophyllaceae that have been studied. The endosperm is of the Nuclear type. Mitosis is the main form of the free endosperm nuclei proliferation. No cell plates develop in the early free nuclear division, however, they appear in late development, without developing into the cell wall and disappear ultimately. At the late globular embryo stage, cell formation in endosperm starts first from the micropylar end. The first anticlinal walls develop from the cell plate that is initiated from tile phragmoplast as a result of normal cytokinesis. Follwing this a wall begins to grow from the base of the cell plates, the outer growing margin soon fuses with the wall of the central cell, and the inner growing margin continues to grow towards the central vacuole. The growing walls branch and eventually fuse on the side nearest the central vacuole. Thus, the first periclinal walls are initiated, and a complete endosperm cell is formed. Along with the development of embryo, cell is gradually formed in the endosperm from the micropylar end towards the chalazal end, but the chalazal endosperm is still coenocytic until the endosperm disintegrate completely. The mature seed has no endosperm.  相似文献   

4.
Endosperm development was studied in normally setting flowersand pods of soybean from anthesis to a pod length of 10–20mm. The free-nuclear stage following double fertilization istypified by loss of starch and increasing vacuolation. The cytoplasmprovides evidence of extensive metabolic activity. Wall ingrowths,already present at the micropylar end of the embryo sac wallprior to fertilization, develop along the lateral wall of thecentral cell as well as at the chalazal endosperm haustorium.Endosperm cellularization begins when the embryo has developeda distinct globular embryo proper and suspensor. Cellularizationstarts at the micropylar end of the embryo sac as a series ofantidinal walls projecting into the endosperm cytoplasm fromthe wall of the central cell. The free, growing ends of thesewalls are associated with vesicles, microtubules, and endoplasrnicreticulum. Pendinal walls that complete the compartmentalizalionof portions of the endosperm cytoplasm are initiated as cellplates formed during continued mitosis of the endosperm nuclei.Endosperm cell walls are traversed by plasmodesmata. This studywill provide a basis for comparison with endosperin from soybeanflowers programmed to abscise. Glycine max, soybean, endosperm, ovules  相似文献   

5.
Summary Endosperm cellularization in Ranunculus sceleratus was studied in terms of the initiation of cell-wall formation in the coenocytic endosperm. The first endosperm cell walls were in an anticlinal position relative to the cell wall of the embryo sac and originated from the cell plates and not from wall ingrowths from the embryo-sac wall itself. Alveolar endosperm was formed 3 days after pollination. Microtubules were associated with the freely growing wall ends of the anticlinal walls and were observed in various orientations that generally ranged from angles of 45 ° to 90 ° to the plane of the wall. They were absent in the regions where vesicles had already fused. These microtubules may function in maintaining the growth and the direction of growth of the anticlinal wall until cellularization is completed. At the site where three neighbouring alveoli share their freely growing wall ends, remarkable configurations of microtubules were observed: in each alveolus, microtubules ran predominantly parallel to the bisector of the angle formed by the common walls. These microtubules may form a physically stable framework and maintain the direction of growth of the wall edges. It is concluded that the growing edge of the anticlinal endosperm wall and its associated microtubules are a special continuum of the original phragmoplast that gave rise to the anticlinal wall.  相似文献   

6.
Capsella embryogenesis: The suspensor and the basal cell   总被引:1,自引:1,他引:0  
Summary The suspensor and basal cell ofCapsella were examined with the electron microscope and analyzed by histochemical procedures. The suspensor cells are more vacuolate and contain more ER and dictyosomes, but fewer ribosomes and stain less intensely for protein and nucleic acids than the cells of the embryo. The end walls of the suspensor cells contain numerous plasmodesmata but there are no plasmodesmata in the walls separating the suspensor from the embryo sac. The lower suspensor cells fuse with the embryo sac wall and the lateral walls of the lower and middle suspensor cells produce finger-like projections into the endosperm. At the heart stage the suspensor cells begin to degenerate and gradually lose their ability to stain for protein and nucleic acids.The basal cell is highly vacuolate and enlarges to a size of 150 X 70. An extensive network of wall projections develops on the micropylar end wall and adjacent lateral wall. The nucleus becomes deeply lobed and suspended in a strand of cytoplasm traversing the large vacuole. The cytoplasmic matrix darkens at the late globular stage and histochemical staining for protein becomes very intense. The basal cell remains active after the suspensor cytoplasm has degenerated. It is proposed that the suspensor and basal cell function as an embryonic root in the absorption and translocation of nutriments from the integuments to the developing embryo.Research supported by NSF grant GB 3460 and NIH grant 5-RO 1-CA-03656-09.  相似文献   

7.
Polarization predicts the pattern of cellularization in cereal endosperm   总被引:6,自引:0,他引:6  
Summary The endosperm of cereal grains develops as a multinucleate mass of wall-less cytoplasm (syncytium) that lines the periphery of the central cell before becoming cellular. The pattern of initial wall formation is precisely oriented and is followed by a round of precisely oriented formative cell division that gives rise to initials for the two tissues of endosperm. The initial anticlinal walls form at boundaries of nuclear-cytoplasmic domains (NCDs) defined by radial microtubules emanating from nuclei in the syncytium. Polarized growth of the NCDs in axes perpendicular to the embryo sac wall and centripetal elongation of the anticlinal walls results in a single layer of open ended alveoli overtopped by the remaining syncytial cytoplasm. This arboreal stage, so named because the elongate nucleate columns of cytoplasm resemble an orchard of trees, predicts the division polarity of the imminent formative division. Mitosis occurs as a wave which, like polarization, moves in both directions from ventral to dorsal. Spindles are oriented parallel to the long axis of the alveoli and cell plates give rise to periclinal walls. The outer daughter nuclei (aleurone initials) are thus completely enclosed by walls and the inner nuclei (starchy endosperm initials) are in alveoli adjacent to the central vacuole.  相似文献   

8.
The structure of embryo sac, fertilization and development of embryo and endosperm in Vigina sesquipedalis (L.) Fruwirth were investigated. Pollization occures 7–10h before anthesis, and fertilization is completed 10 h after anthesis. After fertilization, wall ingrowths are formed at the micropylar and chalazal ends of the embryo sac. Embryo development conforms to the Onagrad type, and passes through 2 or more celled proembryo, long stick-shaped, globular, heart shaped, torpedo, young embryo, growing and enlarging embryo and mature embryo. Wall ingrowths are formed on the walls of basal cells and outer walls of the cells at basal region of suspenser. The suspensor remains as the seed reaches maturity. The starch grains accumulate in the cells of cotyledons by 9–16 days after anthesis, and proteins accumulate by 12–18 days after. The endosperm development follows the nuclear type. The endosperm ceils form at the micropylar end, and remain free nuclear phase at chalazal end. The outer cells are transfer cells. Those cells at the micropylar end form folded cells with wall ingrowths. At heartembryo stage, the endosperm begins to degenerate and disintegrates before the embryo matures.  相似文献   

9.
The syncytial endosperm of rice undergoes cellularization according to a regular morphogenetic plan. At 3 days after pollination (dap) mitosis in the peripheral synctium ceases. Radial systems of microtubules emanating from interphase nuclei define nuclear-cytoplasmic domains (NCDs) which develop axes perpendicular, to the embryo sac wall. Free-growing anticlinal walls between adjacent NCDs compart-mentalize the cytoplasm into open-ended alveoli which are overtopped by syncytial cytoplasm adjacent to the central vacuole. At 4 dap, mitosis resumes as a wave originating adjacent to the vascular bundle. The spindles are oriented parallel to the alveolar walls and cell plates formed in association with interzonal phragmoplasts result in periclinal walls that cut off a peripheral layer of cells and an inner layer of alveoli displaced toward the center. Polarized growth of the newly formed alveoli and elongation of the anticlinal walls occurs during interphase. The next wave of cell division in the alveoli proceeds as the first and a second cylinder of cells is cut off inside the peripheral layer. The periods of polarized growth/anticlinal wall elongation alternating with periclinal cell division are repeated 3–4 times until the grain is filled by 5 dap.  相似文献   

10.
Brown RC  Lemmon BE  Olsen OA 《The Plant cell》1994,6(9):1241-1252
An immunofluorescence study of sectioned barley endosperm imaged by confocal laser scanning microscopy provided three-dimensional data on the relationship of microtubules to the cytoplasm, nuclei, and cell walls during development from 4 to 21 days after pollination (DAP). Microtubules play an important role throughout endosperm ontogeny. The syncytium is organized into units of nuclear-cytoplasmic domains by nuclear-based radial microtubule systems that appear to control the pattern of the first anticlinal walls at 5 to 6 DAP. After 7 DAP, phragmoplasts of two origins (interzonal and cytoplasmic) guide wall formation. Large compartments formed by the "free growing" walls in association with cytoplasmic phragmoplasts formed adventitiously at interfaces of opposing microtubule systems are subsequently subdivided by interzonal phragmoplast/cell plates to give rise to the starchy endosperm. During development of the aleurone layer from 8 to 21 DAP, the microtubule cycle is typical of plant histogenesis; cortical microtubules are hooplike, and preprophase bands of microtubules predict the division plane.  相似文献   

11.
A study was made of the ontogeny of the achene of Polygonum pensylvanicum L. from fertilization to maturity. The proembryo is classified as the Polygonum Variation, Asterad Type. Cotyledons are initiated three days after anthesis, and by the fifth day procambium is present in the embryo axis. At approximately seven days after anthesis, the embryo begins to curve and occupy a marginal position in the ovary. By ten days the first foliage leaf primordium is initiated at the stem apex of the embryo. At maturity the embryo consists of two cotyledons, a plumule composed of the stem apex and one leaf primordium, and a hypocotyl with a well-developed radicle. Endosperm nuclei begin to divide before the first division of the zygote. Cell wall formation begins in the endosperm at the micropylar end of the embryo sac and proceeds toward the chalazal region. By the fifth day the endosperm is completely cellular, except for a basal projection; and a peripheral meristem has been established. At approximately ten days the peripheral meristem ceases periclinal cell division and becomes the aleurone. At the time of fertilization the ovary wall has its full complement of cell layers. The walls of the outermost cells elongate and become convoluted. Subsequent thickening and lignification of these cell walls produce the hard epicarp of the mature achene.  相似文献   

12.
The ultrastructure of the mature embryo sac, the early stages of the embryo and endosperm development of common radish, Raphanur sativus was examined. The embryo sac consists of 7 cells with antipodal ceils disappeared when it matures. The egg cell is highly polarized. The wall surrounded the chalazal end of the egg cell is incomplete, showing a discontinuous structure of an electron dense material deposited intermittently in the space between the two plasma membranes of the egg cell and central cell. The synergid has filiform apparatus, rich in organelles and well developed ER. The two polar nuclei of the central cell are located near the egg apparatus because of the big vacuole, and the finger-like protrutions from the cell wall, as that in synergid, are found. The first division of the zygote occurs 4–5 days after pollination and the development of the embryo follows the Onagrad type, and the structure of the embryo cell is quite simple for containing small quantity of ER, plastids and other organelles. The primary endosperm nucleus deviates 2 days earlier than zygote. The endosperm is of nuclear-endosperm containing chloroplasts, well developed ER, and plentiful of mitochondria and golgi bodies and the nodule-like aggregation in both. the chalazal and micropylar ends of the embryo sac during the early development appeared, and cell wall starting at the micropylar end by freely-growing forms about 16 days after pollination.  相似文献   

13.
Summary The three-dimensional structure of the microtubular cytoskeleton of developing wheat endosperm was investigated immunocytochemically. Semi-thin sections were prepared from polyethylene glycol embedded ovaries. At the free-nuclear stage the endosperm cytoplasm with regularly distributed nuclei surrounded a large central vacuole and exhibited an extensive network of fluorescent labelled microtubular assemblies radiating from each nucleus. As was found in other coenocytes, this particular and nuclear-dependent cytoskeletal configuration functions in the arrangement of nuclei and in the stabilization of the nuclear positions. At the beginning of cellularization of the endosperm the formation of vacuoles altered the radiating networks. It is likely that the radiating microtubular arrays function in the formation of phragmoplasts, independent of nuclear divisions. The formation of anticlinal cell walls, giving rise to openended cell cylinders, coincides with the occurrence of phragmoplast microtubular arrays which were demonstrated during the period of cell wall elongation. The microtubular system radiating from the nuclei in these cell cylinders anchored the nuclei in stage- and locus-specific positions. During the development of aleurone and inner endosperm cells, cell morphogenesis was related to earlier demonstrated types of microtubular configurations in the cortical cytoplasm. This suggests that a general mechanism is involved.Abbreviations A alveolus - AL aleurone layer - CE central endosperm - CV central vacuole - DAP days after pollination - END endosperm - FITC fluorescein isothiocyanate - GAR-FITC goat anti-rabbit antibodies conjugated with FITC - I integument - IE PC inner epidermis pericarp - II inner integument - N nucleus - NC nucellus cells - NE nucellar epidermis - NUC nucellus - OI outer integument - PBS phosphate buffered saline - PC pericarp - PEG polyethylene glycol - V vacuole  相似文献   

14.
Embryo development of Zhangqiu green onion conforms to the Asterad type and goes through the following stages: proembryo, globular, ellipsoidal, laterally concave, stick-shaped, and curved and mature. The persistent synergid is present until the late globular stage of embryogenesis. Endosperm development of Zhangqiu green onion follows the nuclear pattern. Endosperm cell formation begins at both the micropylar end and the chalazai end of the embryo sac when the embryo is in the late globular stage. Due to the anticlinal wall formation, a layer of free nuclei becomes a layer of “open cells” which lack the inner periclinat wall. The open cells undergo cell division periclinally, and a layer of complete cells is cut off outside and a new layer of open cells inside. The subsequent cell divisions give rise to the endosperm cells centripetally until those from the opposite of the embryo sac meet. The first anticlinal walls arise from the cell plates without phragmoplasts between the free nuclei in interphase. The first periclinal walls are formed by normal cytokinesis. When a few layers of endosperm cells are formed at the micropylar end and the chalazal end of the embryo sac, free cells are present in the central vacuole.  相似文献   

15.
水稻胚囊超微结构的研究   总被引:8,自引:2,他引:8  
水稻(Oryza sativa L.)胚囊成熟时,卵细胞的合点端无细胞壁,核居细胞中部,细胞器集中在核周围,液泡分散于细胞周边区域。助细胞珠孔端有丝状器,合点端无壁,核位于细胞中部贴壁处,细胞器主要分布在珠孔端,液泡主要分布在合点端。开花前不久,一个助细胞退化。中央细胞为大液泡所占,两个极核靠近卵器而部分融合,细胞器集中在极核周围和靠近卵器处,与珠心相接的胚囊壁上有发达的内突。反足细胞多个形成群体,其增殖主要依靠无丝分裂与壁的自由生长,反足细胞含丰富活跃的细胞器,与珠心相接的壁上有发达的内突。开花后6小时双受精已完成,合子和两个助细胞合点端均形成完整壁。合子中开始形成多聚核糖体、液泡减小。退化助细胞含花粉管释放的物质,其合点端迴抱合子。极核已分裂成数个胚乳游离核,中央细胞中细胞器呈活化状态。反足细胞仍在继续增殖。讨论了卵细胞的极性、助细胞的退化、卵器与中央细胞间界壁的变化、反足细胞的分裂特点等问题。  相似文献   

16.
Summary Endosperm of the nuclear type initially develops into a large multinucleate syncytium that lines the central cell. This seemingly simple wall-less cytoplasm can, however, be highly differentiated. In developing seeds of members of the family Brassicaceae the curved postfertilization embryo sac comprises three chambers or developmental domains. The syncytium fills the micropylar chamber around the embryo, spreads as a thin peripheral layer surrounding a large central vacuole in the central chamber, and is organized into individual nodules and a large multinucleate cyst in the chalazal tip. Later in development, after the endosperm has cellularized in the micropylar and central chambers, the chalazal endosperm cyst remains syncytial and shows considerable internal differentiation. The chalazal endosperm cyst consists of a domelike apical region that is separated from the cellularized endosperm by a remnant of the central vacuole and a basal haustorial portion which penetrates the chalazal proliferative tissue atop the vascular supply. In the shallow chalazal depression ofArabidopsis thaliana, the cyst is mushroom-shaped with short tentacle-like processes penetrating the maternal tissues. The long narrow chalazal channel ofLepidium irginicum is filled by an elongate stalklike portion of the cyst. In both, the dome contains a labyrinth of endoplasmic reticulum, dictyosomes with associated vesicles, nuclei, and plastids. The basal portions, which lack the larger organelles, exhibit extensive wall ingrowths and contain parallel arrays of microtubules. The highly specialized ultrastructure of the chalazal endosperm cyst and its intimate association with degrading chalazal proliferative cells suggest an important role in loading of maternal resources into the developing seed.  相似文献   

17.
Nguyen H  Brown RC  Lemmon BE 《Protoplasma》2002,219(3-4):210-220
Summary. The micropylar chamber of the mustard Coronopus didymus is a developmental domain distinct from the contiguous central chamber and the more extreme chalazal chamber. Early in syncytial development the micropylar endosperm surrounding the embryo becomes populated with unusual fusiform to multilobed nuclei. These nuclei are sheathed by unique parallel arrays of microtubules that focus at tips of the nuclei and flare to connect with a reticulate network in the common cytoplasm. F-actin does not closely invest the nuclei but instead forms an extensive but separate cytoplasmic reticulum. When the embryo is in the early heart stage, the cytoskeleton of the endosperm undergoes a remarkable transition in preparation for cellularization. Microtubules become reorganized into radial arrays emanating from the nuclei, which themselves become spherical. Radial microtubule systems (RMSs), which replace both the parallel microtubules and the cytoplasmic reticulum, organize the common cytoplasm into evenly spaced nuclear cytoplasmic domains (NCDs). F-actin gradually becomes coaligned with the RMSs. Phragmoplasts are initiated adventitiously at the interfaces of opposing RMSs in the absence of mitosis. Cell plate deposition, which is initiated at multiple sites, results in a network of walls formed more or less simultaneously around the densely packed NCDs. The walls, which are rich in 1–3-β-glucans, join with one another and with the existing walls of both the central cell and embryo to complete cellularization in the micropylar chamber. In the adjacent central chamber where the syncytium is restricted to a thin peripheral layer by the large central vacuole, basic organization of the syncytium into NCDs is followed by alternating cycles of alveolation and periclinal cell division resulting in cellularization. Received July 19, 2001 Accepted October 16, 2001  相似文献   

18.
The structure of embryo sac before and after fertilization, embryo and endosperm development and transfer cell distribution in Phaseolus radiatus were investigated using light and transmission electron microscopy. The synergids with distinct filiform apparatus have a chalazal vacuole, numerous mitochondria and ribosomes. A cell wall exists only around the micropylar half of the synergids. The egg cell has a chalazally located nucleus, a large micropylar vacuole and several small vacuoles. Mitochondria and plasrids with starch grains are abundant. No cell wall is present at its chalazal end. There are no plasma membranes between the egg and central cell in several places. The zygote has a complete cell wall, abundant mitochondria and plastids containing starch grains. Both degenerated and persistent synergids migh.t serve as a nutrient supplement to proembryo. The wall ingrowths occur in the central cell, basal cell, inner integumentary cells, suspensor cells and endosperm cells. These transfer cells may contribute to embryo nutrition at different developmental stages of embryo.  相似文献   

19.
The ultrastructure of synergids of watermelon (Citrullus Lanatus L.) was investigated using transmission electron microscopy at following stages of embryo sacs: 1. Unpollination, on the first flowering day. 2. Unpollination, on 2nd day after anthesis (DAA). 3. Fertilization, on DAA 2. The synergids with distinct filiform apparatus at the micropylar end have abundant organelle, such as mitochondria, endoplasmic reticulum, and plastids in cytoplasm, which indicate that they are active on the first flowering day. No wall is present at the chalazal part of synergid, and there are some flocculent materials and vesicles in the spaces of cytoplasma membranes among synergid, egg cell and central cell in embryo sacs at the first and the second stages. On DAA 2, in unpollinated embryo sacs, the central large vacuole of synergid is divided into several smaller ones and the starch grains decrease in cytoplasm. There is no newly synthesized wall at the chalazal end of persistent synergid in fertilized embryo sacs. The contents of degenerated synergid, in the form of electron dense granules, are located in the wide space among central cell, zygote and persistent synergid, and some of them migrate into central cell through cytoplasma membrane. Therefore, it is deduced that the contents of synergid might serve as a nutrient supplement to the development of endosperm, but not embryo.  相似文献   

20.
The ovule is anatropous and bitegmic. The nuceIlar cells have disorganized except the chalazal proliferating tissue. The curved embryo sac comprises an egg apparatus and a central cell with two palar nuclei and wall ingrowths on its micropylar lateral wall. The antipodal cells disappear. Embryo development is of the Onagrad type. The filament suspensor grows to a length of 785 μm and degenerats at tarpedo embryo stage. The basal cell produces wall ingrowths on the micropylar end wall and lateral wall. The cells of mature embryo contain many globular protein bodies, 2.5–7.5 μm in diameter, composed of high concentration of protein and phytin, insoluble polysaccharide and lipid. The cells, except procambium, also contain many small starch grains. Some secretory cavities scattered in the ground tissue have liquidlike granules composed of protein, ploysacchaide and lipid. Endosperm development follows the nuclear pattern. At the late heart embryo stage, the endosperm around the embryo and the upper suspensor and the peripheral endosperm of the basal region of the U-shaped embryo sac becomes cellular. The endosperm at micropylar and chalazal ends remains free nuclear phase until the late bended cotyledon stage. Wall ingrowths at both micropylar and chalazal end wall and lateral wall of the embryo sac become more massive during endosperm development. Wall ingrowths also occur on the outer walls of the outer layer endosperm cells at both ends and lateral region of the embryo sac. When the embryo matures, many layers of chalazal endosperm ceils including 2–4 layers of transfer cells, a few of micropylar endosperm cells and 1–5 layers of peripheral endosperm cells are present. The nutrients of the embryo and endosperm at different stages of development are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号