首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Vascular endothelial (VE) cadherin is the surface glycoprotein cadherin specific to the endothelium that mediates cell-cell adhesion and plays a major role in the remodeling, gating, and maturation of vascular vessels. To investigate the contribution of individual VE-cadherins to endothelial cell-cell interactions and investigate whether different classical cadherins display different kinetics and micromechanical properties, we characterize the binding properties of VE-cadherin/VE-cadherin bonds at single-molecule resolution and in living human umbilical vein endothelial cells (HUVECs). Our single-molecule force spectroscopy measurements reveal that type II VE-cadherin molecules form bonds that are less prone to rupture and display a higher tensile strength than bonds formed by classical type I neuronal (N) cadherin and epithelial (E) cadherin. The equilibrium lifetime of the VE-cadherin/VE-cadherin bond is significantly longer than formed by N-cadherin/N-cadherin bonds and E-cadherin/E-cadherin bonds. These results indicate that VE-cadherins form bonds that have kinetics and mechanical properties that are significantly different from those formed by classical type I cadherins, properties that are particularly well adapted to the barrier and adhesive functions of VE-cadherin in endothelial cell-cell junctions.  相似文献   

3.
High resolution spatial analysis of plant systems   总被引:9,自引:0,他引:9  
Analysis of organisms using techniques that provide high spatial and temporal resolution is of increasing interest in many disciplines of biomedical research. Although the examination of animal tissues has been the main focus to date, the recent development and improvement of methods for the sampling and handling of single cells and for their biochemical analysis now provide tools for investigating plant as well as animal cells.  相似文献   

4.
The fusion of human immunodeficiency virus type 1 (HIV-1) to host cells is a dynamic process governed by the interaction between glycoproteins on the viral envelope and the major receptor, CD4, and coreceptor on the surface of the cell. How these receptors organize at the virion-cell interface to promote a fusion-competent site is not well understood. Using single-molecule force spectroscopy, we map the tensile strengths, lifetimes, and energy barriers of individual intermolecular bonds between CCR5-tropic HIV-1 gp120 and its receptors CD4 and CCR5 or CXCR4 as a function of the interaction time with the cell. According to the Bell model, at short times of contact between cell and virion, the gp120-CD4 bond is able to withstand forces up to 35 pN and has an initial lifetime of 0.27 s and an intermolecular length of interaction of 0.34 nm. The initial bond also has an energy barrier of 6.7 k(B)T (where k(B) is Boltzmann's constant and T is absolute temperature). However, within 0.3 s, individual gp120-CD4 bonds undergo rapid destabilization accompanied by a shortened lifetime and a lowered tensile strength. This destabilization is significantly enhanced by the coreceptor CCR5, not by CXCR4 or fusion inhibitors, which suggests that it is directly related to a conformational change in the gp120-CD4 bond. These measurements highlight the instability and low tensile strength of gp120-receptor bonds, uncover a synergistic role for CCR5 in the progression of the gp120-CD4 bond, and suggest that the cell-virus adhesion complex is functionally arranged about a long-lived gp120-coreceptor bond.  相似文献   

5.
Studies of the diffusion of proteins and lipids in the plasma membrane of cells have long pointed to the presence of membrane domains. A major challenge in the field of membrane biology has been to characterize the various cellular structures and mechanisms that impede free diffusion in cell membranes and determine the consequences that membrane compartmentalization has on cellular biology. In this review, we will provide a brief summary of the classes of domains that have been characterized to date, focusing on recent efforts to identify the properties of lipid rafts in cells through measurements of protein and lipid diffusion.  相似文献   

6.
Analyzing natural anaerobic microbial communities is a challenge and interpretation of the respective members' performances arduous. Strict anaerobes are often slow-growing and difficult to cultivate due to their unknown physiological capacities. Additionally, abiotic micro-environmental data are difficult to assess, limiting the information on the eco-chemical background in natural environments. This review describes how qualitative and quantitative data can be obtained on anaerobic microbial communities isolated from anoxic environments and treated under laboratory conditions. It gives information on how community composition ('phylogenetic fingerprint') and community structure ('cytometric fingerprint') can be described by PCR-based and single cell-based techniques, respectively. A cell sorting step combined both approaches and enabled quantitative and more precise community resolution. The community dynamics found were swift and strong, despite low and slow changes in measured abiotic parameters. Therefore, the community structure itself mirrored variation in the constructed long term (6years) ecosystem in a most sensitive way and can be used as sensor for the ecosystems situation. New statistical tools are presented allowing suddenly changing performances of complex communities to be detected and community (in) stabilities to be monitored and/or predicted.  相似文献   

7.
8.
In this paper, impedance measurement of electrolyte-insulator-semiconductor (EIS) structure with high spatial resolution was proposed to monitor cell adhesion. The light addressing ability of this work overcomes the geometrical restrict of cell culture on conventional impedance detection devices such as interdigitated electrode (IDE) and electric cell-substrate impedance sensing (ECIS). Instead of studying cells on predetermined sites of IDE and ECIS, cells cultured anywhere on EIS sensor surface can be addressed and selected as target cells. Principle and primary models for high resolution impedance detection were described and tested by experiments. The EIS sensor was investigated in terms of its intrinsic characteristics, like impedance behavior, voltage characteristic, frequency dependency and photovoltaic effect. Optimized working condition was studied for cell experiments. Cell adhesion under treatment of 0.1% Triton X-100 was monitored using rat kidney cells as the source. Results showed good sensitivity (10% change of impedance) and resolution (40 μm) for cell adhesion impedance detection and suggested this work should be suitable for monitoring cell impedance. Further improvements on sensitivity, spatial resolution were discussed as well as the further applications for single cell monitoring and cell adhesion imaging.  相似文献   

9.
10.
Hu D  Lu HP 《Biophysical journal》2004,87(1):656-661
The T4 lysozyme enzymatic hydrolyzation reaction of bacterial cell walls is an important biological process, and single-molecule enzymatic reaction dynamics have been studied under physiological condition using purified Escherichia coli cell walls as substrates. Here, we report progress toward characterizing the T4 lysozyme enzymatic reaction on a living bacterial cell wall using a combined single-molecule placement and spectroscopy. Placing a dye-labeled single T4 lysozyme molecule on a targeted bacterial cell wall by using a hydrodynamic microinjection approach, we monitored single-molecule rotational motions during binding, attachment to, and dissociation from the cell wall by tracing single-molecule fluorescence intensity time trajectories and polarization. The single-molecule attachment duration of the T4 lysozyme to the cell wall during enzymatic reactions was typically shorter than the photobleaching time under physiological conditions. Applying single-molecule fluorescence polarization measurements to characterize the binding and motions of the T4 lysozyme molecules, we observed that the motions of wild-type and mutant T4 lysozyme proteins are essentially the same whether under an enzymatic reaction or not. The changing of the fluorescence polarization suggests that the motions of the T4 lysozyme are associated with orientational rotations. This observation also suggests that the T4 lysozyme binding-unbinding motions on cell walls involve a complex mechanism beyond a single-step first-order rate process.  相似文献   

11.
Joo C  McKinney SA  Nakamura M  Rasnik I  Myong S  Ha T 《Cell》2006,126(3):515-527
RecA and its homologs help maintain genomic integrity through recombination. Using single-molecule fluorescence assays and hidden Markov modeling, we show the most direct evidence that a RecA filament grows and shrinks primarily one monomer at a time and only at the extremities. Both ends grow and shrink, contrary to expectation, but a higher binding rate at one end is responsible for directional filament growth. Quantitative rate determination also provides insights into how RecA might control DNA accessibility in vivo. We find that about five monomers are sufficient for filament nucleation. Although ordinarily single-stranded DNA binding protein (SSB) prevents filament nucleation, single RecA monomers can easily be added to an existing filament and displace SSB from DNA at the rate of filament extension. This supports the proposal for a passive role of RecA-loading machineries in SSB removal.  相似文献   

12.
P Schwille  J Korlach  W W Webb 《Cytometry》1999,36(3):176-182
We report on the successful application of fluorescence correlation spectroscopy (FCS) to the analysis of single fluorescently labeled lipid analogue molecules diffusing laterally in lipid bilayers, as exemplified by time traces of fluorescence bursts of individual molecules entering and leaving the excitation area. FCS measurements performed on lipid probes in rat basophilic leukemia cell membranes showed deviations from two-dimensional Brownian motion with a single uniform diffusion constant. Giant unilamellar vesicles were employed as model systems to characterize diffusion of fluorescent lipid analogues in both homogeneous and mixed lipid phases with diffusion heterogeneity. Comparing the results of cell membrane diffusion with the findings on the model systems suggests possible explanations for the observations: (a) anomalous subdiffusion in which evanescent attractive interactions with disparate mobile molecules modifies the diffusion statistics; (b) alternatively, probe molecules are localized in microdomains of submicroscopic size, possibly in heterogeneous membrane phases.  相似文献   

13.
Sharma P  Varma R  Sarasij RC  Ira  Gousset K  Krishnamoorthy G  Rao M  Mayor S 《Cell》2004,116(4):577-589
Cholesterol and sphingolipid-enriched "rafts" have long been proposed as platforms for the sorting of specific membrane components including glycosyl-phosphatidylinositol-anchored proteins (GPI-APs), however, their existence and physical properties have been controversial. Here, we investigate the size of lipid-dependent organization of GPI-APs in live cells, using homo and hetero-FRET-based experiments, combined with theoretical modeling. These studies reveal an unexpected organization wherein cell surface GPI-APs are present as monomers and a smaller fraction (20%-40%) as nanoscale (<5 nm) cholesterol-sensitive clusters. These clusters are composed of at most four molecules and accommodate diverse GPI-AP species; crosslinking GPI-APs segregates them from preexisting GPI-AP clusters and prevents endocytosis of the crosslinked species via a GPI-AP-selective pinocytic pathway. In conjunction with an analysis of the statistical distribution of the clusters, these observations suggest a mechanism for functional lipid-dependent clustering of GPI-APs.  相似文献   

14.
Strong adhesion of highly active cells often nucleates focal adhesions, synapses, and related structures. Red cells lack such complex adhesion systems and are also nonmotile, but they are shown here to dynamically evolve complex spatial patterns beyond an electrostatic threshold for strong adhesion. Spreading of the cell onto a dense, homogeneous poly-L-lysine surface appears complete in <1 s with occasional blisters that form and dissipate on a similar timescale; distinct rippled or stippled patterns in fluorescently labeled membrane components emerge later, however, on timescales more typical of long-range lipid diffusion (approximately minutes). Within the contact zone, the anionic fluorescent lipid fluorescein phosphoethanolamine is seen to rearrange, forming worm-like rippled or stippled domains of <500 nm that prove independent of whether the cell is intact and sustaining a tension or ruptured. Lipid patterns are accompanied by visible perturbations in Band 3 distribution and weaker perturbations in membrane skeleton actin. Pressing down on the membrane quenches the lipid patterns, revealing a clear topographical basis for pattern formation. Counterion screening and membrane fluctuations likely contribute, but the results primarily highlight the fact that even in adhesion of a passive red cell, regions of strong contact slowly evolve to become interspersed with regions where the membrane is more distant from the surface.  相似文献   

15.
Fungi impact humans and the environment in many ways, for good and ill. Some fungi support the growth of terrestrial plants or are used in biotechnology, and yet others are established or emerging pathogens. In some cases, the same organism may play different roles depending on the context or the circumstance. A better understanding of the relationship between fungal biochemical composition as related to the fungal growth environment is essential if we are to support or control their activities. Synchrotron FTIR (sFTIR) spectromicroscopy of fungal hyphae is a major new tool for exploring cell composition at a high spatial resolution. Brilliant synchrotron light is essential for this analysis due to the small size of fungal hyphae. sFTIR biochemical characterization of subcellular variation in hyphal composition will allow detailed exploration of fungal responses to experimental treatments and to environmental factors.  相似文献   

16.
We present a simple technique for visualizing replication of individual DNA molecules in real time. By attaching a rolling-circle substrate to a TIRF microscope-mounted flow chamber, we are able to monitor the progression of single-DNA synthesis events and accurately measure rates and processivities of single T7 and Escherichia coli replisomes as they replicate DNA. This method allows for rapid and precise characterization of the kinetics of DNA synthesis and the effects of replication inhibitors.  相似文献   

17.
With the use of a newly developed Imaging Cryomicrotome to determine the spatial location of fluorescent microspheres in organs, we validate and report our processing algorithms for measuring regional blood flow in small laboratory animals. Microspheres (15-microm diameter) of four different fluorescent colors and one radioactive label were simultaneously injected into the left ventricle of a pig. The heart and kidneys were dissected, and the numbers of fluorescent and radioactive microspheres were determined in 10 randomly selected pieces. All microsphere counts fell well within the 95% expected confidence limits as determined from the radioactive counts. Fluorescent microspheres (15-microm diameter) of four different colors were also injected into the tail vein of a rat and the left ventricle of a rabbit. After correction for Poisson noise, correlation coefficients between the colors were 0.99 +/- 0.02 (means +/- SD) for the rabbit heart and 0.99 +/- 0.02 for the rat lung. Mathematical dissection algorithms, statistics to analyze the spatial data, and methods to visualize blood flow distributions in small animal organs are presented.  相似文献   

18.
19.
Both folded and unfolded conformations should be observed for a protein at its melting temperature (T(m)), where DeltaG between these states is zero. In an all-atom molecular dynamics simulation of chymotrypsin inhibitor 2 (CI2) at its experimental T(m), the protein rapidly loses its low-temperature native structure; it then unfolds before refolding to a stable, native-like conformation. The initial unfolding follows the unfolding pathway described previously for higher-temperature simulations: the hydrophobic core is disrupted, the beta-sheet pulls apart and the alpha-helix unravels. The unfolded state reached under these conditions maintains a kernel of structure in the form of a non-native hydrophobic cluster. Refolding simply reverses this path, the side-chain interactions shift, the helix refolds, and the native packing and hydrogen bonds are recovered. The end result of this refolding is not the initial crystal structure; it contains the proper topology and the majority of the native contacts, but the structure is expanded and the contacts are long. We believe this to be the native state at elevated temperature, and the change in volume and contact lengths is consistent with experimental studies of other native proteins at elevated temperature and the chemical denaturant equivalent of T(m).  相似文献   

20.
Casoli  E.  Ventura  D.  Mancini  G.  Pace  D. S.  Belluscio  A.  Ardizzone  G. 《Coral reefs (Online)》2021,40(4):1267-1280
Coral Reefs - Coralligenous reefs are characterized by large bathymetric and spatial distribution, as well as heterogeneity; in shallow environments, they develop mainly on vertical and...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号