首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake of adenosine by an adenosine kinase deficient variant of C1300 murine neuroblastoma cells has been studied in the absence and in the presence of erythro-9-(2-hydroxy-3-nonyl)adenine, a potent adenine deaminase inhibitor. Although 100 micro M inhibitor completely blocks the metabolism of adenosine under the conditions studied, the uptake of adenosine is concentrative, i.e., the intracellular adenosine concentration exceeds the extracellular concentration. This concentrative effect decreases as the concentration of adenosine increases and is hypothesized to be due to the binding of adenosine to an intracellular component. Despite this concentrative effect, we believe that the kinetics of uptake, as determined in experiments with short (10-20 s) uptake periods, reflect the kinetics of adenosine transport by a facilitated diffusion process. This nucleoside transport system appears to be nonspecific in that the transport of adenosine is competitively antagonized by thymidine. It does not appear to be necessary to inhibit adenosine deaminase in order to study transport in these cells as the Km for transport is not affected by the presence of erythro-9-(2-hydroxy-3-nonyl)adenine. However, erythro-9-(2-hydroxy-3-nonyl)adenine does depress the V for transport. This effect of the inhibitor is probably not due to the inhibition of adenosine deaminase as the transport of thymidine is similarly affected.  相似文献   

2.
The adenosine analogue 2-chloroadenosine (2-CA) is often used to determine the biologic effects of adenosine because 2-CA is less susceptible to degradation than adenosine. We studied the effects of 2-CA on primary cultures of rat inner medullary collecting ducts because there is good evidence that adenosine can influence cell function through its effects on second messengers. 2-CA inhibited Na+ transport across the apical membrane and increased cAMP content of the cells. The major adenosine receptors in these cells appear to be the stimulatory (A2) type. Stimulation of cAMP by 2-CA was more potent when applied to the apical membrane than to the basolateral membrane, an effect opposite to that of vasopressin. These results imply that adenosine receptors are more numerous or more effective on the apical membrane than on the basolateral membrane. Inhibition of Na+ transport was probably not mediated by an adenosine receptor as evidenced by (i) a lack of effect of adenosine and other adenosine analogues on Na+ transport; (ii) a lack of effect of nonmetabolizable cyclic nucleotides on Na+ transport; and (iii) a clear discrepancy in the temporal course of 2-CA effects on a second messenger system (cAMP) and 2-CA inhibition of Na+ transport. Dipyridimole, an inhibitor of adenosine transport, also reduced Na+ transport. Taken together, the data suggest that 2-CA inhibits Na+ transport by interfering with adenosine transport or metabolism.  相似文献   

3.
The intracellular accumulation of free [3H] adenosine was measured by rapid kinetic techniques in P388 murine leukemia cells in which adenosine metabolism (phosphorylation and deamination) was completely prevented by depletion of cellular ATP and by treatment with deoxycoformycin. Nonlinear regression of integrated rate equations on the data demonstrate that the time courses of labeled adenosine accumulation at various extracellular adenosine concentrations in zero-trans and equilibrium exchange protocols are well described by a simple, completely symmetrical, transport model with a carrier:substrate affinity constant of about 150 μM. Adenosine transport was not affected by 1 mM deoxycoformycin indicating that this analog has a low affinity for the nucleoside transport system. The transport capacity of dog thymocytes and peripheral leukocytes was similar to that of P388 cells. Transport was not inhibited by deoxycoformycin and remained constant during the first two hours after mitogenic stimulation with concanavalin A. In untreated, metabolizing P388 cells transport was found to be the major determinant of the rate of intracellular metabolism, regardless of the extracellular adenosine concentration (up to at least 160 μM), but the long-term accumulation (longer than 30–60 seconds) of radioactivity from extracellular adenosine strictly reflected the rate of formation of nucleotides (mainly ATP). The metabolism of adenosine by whole cells was entirely consistent with the kinetic properties of the transport system and those of the metabolic enzymes. At low exogenous adenosine concentrations (1 μM and below) transport was slow enough to allow direct phosphorylation of most of the entering adenosine. The remainder was deaminated and rapidly converted to nucleotides via inosine, hypoxanthine, and IMP. At concentrations of 100 μM or higher, on the other hand, influx exceeded the maximum velocity of adenosine kinase about 100 times so that most of the entering adenosine was deaminated. But since the maximum velocity of adenosine deaminase exceeded those of nucleoside phosphorylase and hypoxanthine/guanine phosphoribosyltransferase about 5 and 100 times, respectively, hypoxanthine and inosine rapidly exited from the cells and accumulated in the medium. A 98% reduction of adenosine transport (at 100 μM), caused by the transport inhibitor Persantin, inhibited adenosine deamination by whole cells to about the same extent as transport, whereas adenosine phosphorylation was relatively little affected; thus in the presence of Persantin, transport and metabolism resembled that occurring at the low adenosine concentration. These and other results indicate that adenosine deamination is an event distinct from transport, which occurs only subsequent to adenosine's transport into the cell.  相似文献   

4.
2-Deoxyglucose uptake (3 min) and 3-O-methylglucose transport (2 s) was measured in rat adipocytes preincubated with 5 microM epinephrine plus adenosine deaminase as described by Green (Green, A. (1983) FEBS Lett. 152, 261-264). 2-Deoxyglucose uptake was about 95% depressed in insulin-treated, but not in 'basal', cells preincubated with epinephrine plus adenosine deaminase for 60 min in broad agreement with Green's report. However, this depression was caused by a decrease in sugar phosphorylation rather than transport. In similarly incubated cells, transport of 3-O-methylglucose, a sugar analogue not phosphorylated in the adipocytes, was not affected by catecholamine plus adenosine deaminase. However, a decrease in transport of about 60% was observed both in the absence and the presence of insulin when the albumin concentration was high enough and the cell concentration low enough to prevent accumulation of free fatty acids in the medium. In addition, the insulin sensitivity with regard to hexose transport was markedly reduced. Transport was approximately doubled in cells incubated with 5 microM epinephrine in the absence of adenosine deaminase. Thus, epinephrine at a high concentration stimulates hexose transport in the absence of adenosine deaminase (presence of adenosine) whereas it inhibits both basal and insulin-stimulated transport in the presence of adenosine deaminase (absence of adenosine).  相似文献   

5.
Rapid kinetic techniques were applied to determine the effect of transport inhibitors on the transport and metabolism of adenosine in human red cells. Dipyridamole inhibited the equilibrium exchange of 500 microM adenosine by deoxycoformycin-treated cells in a similar concentration dependent manner as the equilibrium exchange and zero-trans influx of uridine with 50% inhibition being observed at about 20 nM. Intracellular phosphorylation of adenosine at an extracellular concentration of 5 microM was inhibited only by dipyridamole concentrations greater than or equal to 100 nM, which inhibited transport about 95%. Lower concentrations of dipyridamole actually stimulated adenosine phosphorylation, because the reduced influx of adenosine lessened substrate inhibition of adenosine kinase. When the cells were not treated with deoxycoformycin, greater than 95% of the adenosine entering the cells at a concentration of 100 microM became deaminated. A 95-98% inhibition of adenosine transport by treatment with dipyridamole, dilazep, or nitrobenzylthioinosine inhibited its deamination practically completely, whereas adenosine phosphorylation was inhibited only 50-85%. Whether adenosine entering the cells is phosphorylated or deaminated is strictly based on the kinetic properties of the responsible enzymes, substrate inhibition of adenosine kinase, and the absolute intracellular steady state concentration of adenosine attained. The latter approaches the extracellular concentration of adenosine, since transport is not rate limiting, except when modulated by transport inhibitors. In spite of the extensive adenosine deamination in cells incubated with 100 microM adenosine, little IMP accumulated intracellularly when the medium phosphate concentration was 1 mM, but IMP formation increased progressively with increase in phosphate concentration to 80 mM. The intracellular phosphoribosylation of adenine and hypoxanthine were similarly dependent on phosphate concentration. The results indicate that adenosine is the main purine source for erythrocytes and is very efficiently taken up and converted to nucleotides under physiological conditions, whereas hypoxanthine and adenine are not significantly salvaged. Hypoxanthine resulting from nucleotide turnover in these cells is expected to be primarily released from the cells. Adenosine was also dephosphorylated in human red cells presumably by 5'-methylthioadenosine phosphorylase, but this reaction seems without physiological significance as it occurs only at high adenosine and phosphate concentrations and if deamination is inhibited.  相似文献   

6.
Adenosine Transport into Guinea-pig Synaptosomes   总被引:17,自引:15,他引:2  
Abstract: Kinetics for transport of adenosine into guinea-pig neocortex synaptosomes were studied by incubating them with [14C]adenosine for up to 30 s. The apparent K m value of the high-affinity transport system for adenosine was 21.1 μM and the V max value was 257.3 pmol/min/mg protein. The transport system was inhibited by both compounds structurally related (compounds 554 and 555) and unrelated (dipyridamole) to adenosine. Because electrically stimulated synaptosomes release up to 1.5% of the adenosine derivative content per min, the physiological significance of adenosine uptake is discussed as a possible mechanism to compensate for the loss of adenine nucleotides from synaptosomes preparations.  相似文献   

7.
Inhibition of adenosine reuptake by nucleoside transport inhibitors, such as dipyridamole and dilazep, is proposed to increase extracellular levels of adenosine and thereby potentiate adenosine receptor-dependent pathways that promote cardiovascular health. Thus adenosine can act as a paracrine and/or autocrine hormone, which has been shown to regulate glucose uptake in some cell types. However, the role of adenosine in modulating glucose transport in cardiomyocytes is not clear. Therefore, we investigated whether exogenously applied adenosine or inhibition of adenosine transport by S-(4-nitrobenzyl)-6-thioinosine (NBTI), dipyridamole, or dilazep modulated basal and insulin-stimulated glucose uptake in the murine cardiomyocyte cell line HL-1. HL-1 cell lysates were subjected to SDS-PAGE and immunoblotting to determine which GLUT isoforms are present. Glucose uptake was measured in the presence of dipyridamole (3-300 microM), dilazep (1-100 microM), NBTI (10-500 nM), and adenosine (50-250 microM) or the nonmetabolizable adenosine analog 2-chloro-adenosine (250 microM). Our results demonstrated that HL-1 cells possess GLUT1 and GLUT4, the isoforms typically present in cardiomyocytes. We found no evidence for adenosine-dependent regulation of basal or insulin-stimulated glucose transport in HL-1 cardiomyocytes. However, we did observe a dose-dependent inhibition of glucose transport by dipyridamole (basal, IC(50) = 12.2 microM, insulin stimulated, IC(50) = 13.09 microM) and dilazep (basal, IC(50) = 5.7 microM, insulin stimulated, IC(50) = 19 microM) but not NBTI. Thus our data suggest that dipyridamole and dilazep, which are widely used to specifically inhibit nucleoside transport, have a broader spectrum of transport inhibition than previously described. Moreover, these data may explain previous observations, in which dipyridamole was noted to be proischemic at high doses.  相似文献   

8.
A membrane component involved in the transport of adenosine in adipocytes has been identified utilizing the techniques of photoaffinity labeling with the adenosine derivative, 8-azidoadenosine. In the absence of light, adenosine and 8-azidoadenosine exhibited similar transport characteristics. In addition, adenosine was shown to be a competitive inhibitor of 8-azidoadenosine uptake, and the photoprobe, a competitive inhibitor of adenosine uptake. Analysis of the nucleotide metabolites indicated that the photoprobe was metabolized in a similar fashion to that observed for adenosine. Several nucleoside transport inhibitors were also equally effective in inhibiting the uptake of both nucleosides. These results suggest that 8-azidoadenosine is transported by the same membrane system as adenosine. Photolysis of 8-azido[2-3H]adenosine in the presence of adipocytes resulted in the covalent incorporation of the photoprobe into the plasma membrane fraction. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that essentially all of the radioactivity was incorporated into a glycoprotein with a molecular weight of 56,000. This labeling was inhibited by greater than 90% when the photolysis was carried out in the presence of excess adenosine or the transport inhibitors, persantin or theophylline. Fractionation of the labeled plasma membranes by dialysis against water (pH 9.5) indicated that approximately 75% of the radioactivity was associated with a glycoprotein which resisted solubilization by this procedure. These results suggest that the major labeled species is a 56,000 Mr intrinsic membrane glycoprotein which may function as a component of a transmembrane assembly involved in the transport of adenosine.  相似文献   

9.
Addition of insulin to cultured mouse plasma tumor cells (MPC-11) increases the entry of tritiated cyclic adenosine 3',5'-monophosphate (3H-cAMP). No increase of entry of N6-O2-dibutyryl adenosine 3',5' cyclic monophosphate (DBcAMP), 5' adenosine monophosphate (5' AMP) or adenosine was noted in the presence of insulin. The stimulation of cAMP transport by insulin was concentration dependent and inactivated insulin had no effect on nucleotide transport. Intracellular radioactivity after transport of cAMP was largely 5'AMP, while most of the extracellular radioactivity remained as cAMP after incubation.  相似文献   

10.
The interaction between catecholamines and insulin in regulating glucose transport in isolated rat adipose cells has been evaluated. In the absence of insulin, 1 microM isoproterenol stimulates 3-O-methylglucose transport approximately 2-fold. However, isoproterenol in combination with adenosine deaminase inhibits glucose transport activity approximately 60%. N6-Phenylisopropyladenosine, a nonmetabolizable adenosine analogue, substantially reverses this inhibitory effect and actually stimulates glucose transport activity approximately 2-fold in the absence of isoproterenol. Dibutyryl cAMP inhibits glucose transport activity approximately 75% regardless of adenosine deaminase. While none of these agents significantly influences the basal concentration of plasma membrane glucose transporters, as assessed by specific D-glucose-inhibitable cytochalasin B binding, isoproterenol or dibutyryl cAMP in combination with adenosine deaminase reduces that in the low density microsomes 19 and 58%, respectively. In the presence of insulin, both isoproterenol and adenosine deaminase alone inhibit glucose transport activity approximately 25%. However, only the latter is accompanied by a corresponding decrease in the insulin-stimulated concentration of plasma membrane glucose transporters. Together, isoproterenol and adenosine deaminase inhibit insulin-stimulated glucose transport activity approximately 75%, even in the presence of 5 mM glucose to maintain cellular ATP levels. A similar inhibition is observed with dibutyryl cAMP. However, these agents decrease the insulin-stimulated concentration of plasma membrane glucose transporters only approximately 45%. Nevertheless, all of these inhibitory effects occur through decreases in the transport Vmax. In addition, N6-phenylisopropyladenosine partially reverses the inhibitory effects induced by the presence of adenosine deaminase. These results suggest that catecholamines counter-regulate basal and insulin-stimulated glucose transport in rat adipose cells through a cAMP-mediated mechanism, but only in part by modulating the translocation of glucose transporters.  相似文献   

11.
The uptake of adenosine and tubercidin by control and ATP-deleted wild-type and adenosine kinase-deficient cells was measured by rapid kinetic techniques. Adenosine deamination was inhibited by pretreatment with 2-deoxy-coformycin. Control wild-type cells phosphorylated adenosine so rapidly that the kinetics of transport per se could not be assessed unambiguously. ATP depletion and adenosine kinase deficiency did not abolish the conversion of adenosine to nucleotides, but reduced it to such an extent that initial velocities of uptake could be safely construed as transport velocities in both zerotrans and equilibrium exchange modes. The same was true for tubercidin, which was not phosphorylated in adenosine kinase-deficient cells. It accumulated intracellularly, however, to concentrations 50 to 120% higher than those in the extracellular space, apparently due to binding to some intracellular component(s). Binding was not saturated up to a concentration of 200 μM, but seemed to be slow relative to transport. Fits of appropriate integrated rate equations based on the simple carrier model to uptake time courses obtained under these conditions yielded Michaelis-Menten constants for adenosine and tubercidin transport of 100 to 200 μM and maximum velocities of 10 to 30 pmol/μl cell H2O ? sec, whereas the rate of intracellular phosphorylation was maximal at concentrations between 2 and 8 μM. The first-order rate constant (Vmax/Km) for adenosine phosphorylation, however, seemed to be appreciably higher than that for its transport. This indicates that at physiological concentrations, which fall in the first-order range for both processes, adenosine trapping is very efficient. Adenosine, tubercidin, tricyclic nucleoside, 2′-deoxyadenosine, and 3′-deoxyadenosine all inhibited uridine and thymidine transport to about the same extent, whereas pyrazofurin was signficantly less effective.  相似文献   

12.
Adenosine is known to modulate cell growth in a variety of mammalian cells either via the activation of receptors or through metabolism. We investigated the effect of adenosine on Baby Hamster Kidney (BHK) cell growth and attempted to determine its mechanism of modulation. In wild-type BHK cells, adenosine evoked a biphasic response in which a low concentration of adenosine (1-5 microM) produced an inhibition of colony formation but at higher concentrations (up to 50 microM) this inhibition was progressively reversed. However, no biphasic response was observed in an "adenosine kinase" deficient BHK mutant, "5a", which suggests that adenosine kinase plays an important role in the modulation of growth response to adenosine. Adenosine receptors did not appear to have a role in regulating cell growth of BHK cells. Specific A1 and A2 receptor antagonists were unable to reverse the effect of adenosine on cell growth. Even though a specific A3 adenosine receptor antagonist MRS-1220 partly reversed the inhibition in colony formation at 1 microM adenosine, it also affected the transport of adenosine. Thus adenosine transport and metabolism appears to play the major role in this modulation of cell growth as 5'-amino-5'-deoxyadenosine, an adenosine kinase inhibitor, reversed the inhibition of cell growth observed at 1 microM adenosine. These results, taken together, would suggest that adenosine modulates cell growth in BHK mainly through its transport and metabolism to adenine nucleotides.  相似文献   

13.
Inhibitors of adenosine uptake or transport have been used clinically for some time in certain cardiovascular diseases. More recently, some of them have also been investigated for possible clinical use in combination with antimetabolites based on the observed heterogeneity of nucleoside transport in mammalian tumor cells. Such a heterogeneity of adenosine uptake and uptake sites has now also been suggested in the mammalian CNS. The aim of this article is, therefore, to review the present status of our knowledge of adenosine uptake in the mammalian CNS, compare it with our far more advanced knowledge of nucleoside transport in other mammalian cells and suggest direction of future research. The possible implications for the development of adenosine uptake inhibitors as adenosinergic neuropharmaceuticals will be discussed based on our knowledge of the physiological function of adenosine in the CNS.  相似文献   

14.
The effect of 24-h cold storage of liver on nucleoside transport was investigated. Nucleoside transport was estimated under conditions when both known types of nucleoside transport, facilitated diffusion and Na+/nucleoside cotransport, were active and when one of these transport mechanisms was inhibited. The rate of adenosine transport was not decreased after long-term cold storage of the liver. Inhibition of one of the transport systems decreased the rate of adenosine uptake before and after preservation of the liver to about the same extent. The adenosine transport rate was maintained during long-term (100 min) liver perfusion ex vivo. Slight activation of energy-dependent transport in the beginning of reperfusion and the slower recovery of this transport after the second transition from Na+-free to Na+-containing perfusion are not regarded as physiologically important because they were observed after changing the ionic content of the extracellular medium. We conclude that the nucleoside transport systems in liver are quite well preserved after 24-h cold storage of the organ.  相似文献   

15.
The kinetic parameters of [8-(14)C]adenosine transport by a general nucleoside uptake system were studied in germinated conidia of the ad 8 strain of Neurospora crassa. The apparent K(m) for adenosine uptake by this system was found to be 6.2 muM. The apparent K(i) values for other nucleosides competing with adenosine for uptake were measured by using Dixon plots. Nucleosides which were efficient competitive inhibitors of adenosine transport were found to inhibit severely the rate of growth of strain ad-8 on adenosine-supplemented medium. Xanthosine and thymidine did not inhibit [8-(14)C]adenosine uptake as severely as other nucleosides, nor did they cause significant inhibition of ad-8 growth rate on adenosine.  相似文献   

16.
The transport of [3H]adenosine at 22°C was investigated in guinea pig cerebral cortical synaptosomes using an inhibitor-stop filtration method. Under these conditions adenosine was not significantly metabolized during the incubation period used to determine the initial rates of adenosine transport. The dose response curves for the inhibition of adenosine transport by nitrobenzylthioinosine (NBMPR), dilazep and dipyridamole were biphasic—approx. 50–60% of the transport activity was inhibited with IC50 values of 0.7, 1 and 9 nM respectively, but the remaining activity was insensitive to concentrations as high as 1 μ M. Adenosine influx by both components was saturable (Km values of 17 ± 3 and 68 ± 8 μ M; Vmax values of 2.8 ± 0.3 and 6.1 ± 0.4 pmol/mg protein per s for NBMPR-sensitive and -insensitive components, respectively), and inhibited by other nucleosides and benzodiazepines. The two transport components also differed in their sensitivity to inhibition by other nucleosides and benzodiazepines indicating that the NBMPR-sensitive component of nucleoside transport in guinea pig synaptosomes exhibits a higher affinity than the NBMPR-insensitive component. However, both components have a broad specificity. Inhibition of adenosine transport by NBMPR was associated with high affinity binding of NBMPR to the synaptosomes (Kd 88 ± 6 pM). Binding of NBMPR to these sites was blocked by dilazep and dipyridamole with K1 values similar to those measured for inhibiting NBMPR-sensitive adenosine influx. These results, together with previous findings using NBMPR and dipyridamole as ligand probes, suggest that there are two components of nucleoside transport in mammalian cerebral cortical synaptosomes that differ in their sensitivity to inhibition by NBMPR and other transport inhibitors.  相似文献   

17.
The dose response effect of a new adenosine analogue, GR 79236 (N-[1S trans-2-hydroxycyclopentyl] adenosine) upon insulin sensitivity was examined in human adipocytes. The influence of adenosine upon insulin sensitivity for suppression of lipolysis and stimulation of glucose transport was examined. Removal of adenosine by use of adenosine deaminase stimulated lipolysis to the same extent as did 10–9 M noradrenaline. GR79236 brought about dose dependent inhibition of lipolysis with half-maximal effect at 11.3±7.8×10–9 M. When lipolysis was stimulated by noradrenaline alone the subsequent inhibition of lipolysis brought about by GR79236 was significantly greater than that of insulin. To examine adenosine effects on the insulin signalling pathway separately from those on lipolysis, the insulin sensitivity of glucose transport was examined. Removal of adenosine brought about a small but significant increase in the concentration of insulin required for half-maximal stimulation of glucose transport. Adenosine agonists offer promise as new agents for the modulation of metabolism in diabetes and other states of insulin resistance.  相似文献   

18.
Sodium-dependent nucleoside transport in mouse leukemia L1210 cells   总被引:1,自引:0,他引:1  
Nucleoside permeation in L1210/AM cells is mediated by (a) equilibrative (facilitated diffusion) transporters of two types and by (b) a concentrative Na(+)-dependent transport system of low sensitivity to nitrobenzylthioinosine and dipyridamole, classical inhibitors of equilibrative nucleoside transport. In medium containing 10 microM dipyridamole and 20 microM adenosine, the equilibrative nucleoside transport systems of L1210/AM cells were substantially inhibited and the unimpaired activity of the Na(+)-dependent nucleoside transport system resulted in the cellular accumulation of free adenosine to 86 microM in 5 min, a concentration three times greater than the steady-state levels of adenosine achieved without dipyridamole. Uphill adenosine transport was not observed when extracellular Na+ was replaced by Li+, K+, Cs+, or N-methyl-D-glucammonium ions, or after treatment of the cells with nystatin, a Na+ ionophore. These findings show that concentrative nucleoside transport activity in L1210/AM cells required an inward transmembrane Na+ gradient. Treatment of cells in sodium medium with 2 mM furosemide in the absence or presence of 2 mM ouabain inhibited Na(+)-dependent adenosine transport by 50 and 75%, respectively. However, because treatment of cells with either agent in Na(+)-free medium decreased adenosine transport by only 25%, part of this inhibition may be secondary to the effects of furosemide and ouabain on the ionic content of the cells. Substitution of extracellular Cl- by SO4(-2) or SCN- had no effect on the concentrative influx of adenosine.  相似文献   

19.
The beta-methyl-galactoside- and galactose-specific transport systems of Escherichia coli were shown by experiments involving inhibitors and the use of an adenosine triphosphatase mutant strain to utilize adenosine 5'-triphosphate or a related compound to drive active transport. These systems were shown to be unable to use the activated-membrane state. The galactose-specific transport system was shown to behave most like a member of the binding-protein class of transport systems by its response to osmotic shock and vesicle formation. These results extended to two sugar transport systems: the correlation between the source of energy and class of transport system found by Berger (1973) for amino acid transport systems. That is, binding-protein systems utilized adenosine 5'-triphosphate whereas membrane-bound systems utilized the activated-membrane state to drive active transport.  相似文献   

20.
We identified four genes for potential equilibrative nucleoside transporters (ENTs) from rice (Oryza sativa; designated OsENT1 through OsENT4). Growth analysis of budding yeast (Saccharomyces cerevisiae) cells expressing OsENTs showed that OsENT2 transported adenosine and uridine with high affinity (adenosine, K(m) = 3.0 microm; uridine, K(m) = 0.7 microm). Purine or pyrimidine nucleosides and 2'-deoxynucleosides strongly inhibited adenosine transport via OsENT2, suggesting that OsENT2 possesses broad substrate specificity. OsENT2-mediated adenosine transport was resistant to the typical inhibitors of mammalian ENTs, nitrobenzylmercaptopurine ribonucleoside, dilazep, and dipyridamole. The transport activity was maximal at pH 5.0 and decreased slightly at lower as well as higher pH. In competition experiments with various cytokinins, adenosine transport by OsENT2 was inhibited by isopentenyladenine riboside (iPR). Direct measurements with radiolabeled cytokinins demonstrated that OsENT2 mediated uptake of iPR (K(m) = 32 microm) and trans-zeatin riboside (K(m) = 660 microm), suggesting that OsENT2 participates in iPR transport in planta. In mature plants, OsENT2 was predominantly expressed in roots. The OsENT2 promoter drove the expression of the beta-glucuronidase reporter gene in the scutellum during germination and in vascular tissues in germinated plants, suggesting a participation of OsENT2 in the retrieval of endosperm-derived nucleosides by the germinating embryo and in the long-distance transport of nucleosides in growing plants, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号