首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The association of K+-stimulated, Mg2+-dependent ATPase activity with plasma membranes from higher plants has been used as a marker for the isolation and purification of a plasma membrane-enriched fraction from cauliflower (Brassica oleraceae L.) buds. Plasma membranes were isolated by differential centrifugation followed by density gradient centrifugation of the microsomal fraction. The degree of purity of plasma membranes was determined by increased sensitivity of Mg2+-ATPase activity to stimulation by K+ and by assay of approximate marker enzymes. In the purified plasma membrane fraction, Mg2+-ATPase activity was stimulated up to 700% by addition of K+. Other monovalent cations also markedly stimulated the enzyme, but only in the presence of the divalent cation Mg2+. Ca2+ was inhibitory to enzyme activity. ATPase was the preferred substrate for hydrolysis, there being little hydrolysis in the presence of ADP, GTP, or p-nitrophenylphosphate. Monovalent cation-stimulated activity was optimum at alkaline pH. Enzyme activity was inhibited nearly 100% by AgNO3 and about 40% by diethylstilbestrol.  相似文献   

2.
Plasma membranes were islotaed from rat liver mainly under isotonic conditions. As marker enzymes for the plasma membrane, 5′-nucleotidase and (Na++K+)-ATPase were used. The yield of plasma membrane was 0.6–0.9 mg protein per g wet weight of liver. The recovery of 5′-nucleotidase and (Na++K+)-ATPase activity was 18 and 48% of the total activity of the whole-liver homogenate, respectively. Judged from the acitvity of glucose-6 phosphatase and succinate dehydrogenase in the plasma membrane, and from the electron microscopic observation of it, the contamination by microsomes and mitochondria was very low. A further homogenization of the plasma membrane yielded two fractions, the light and heavy fractions, in a discontinuous sucrose gradient centrifugation. The light fraction showed higher specific activities of 5′-nucleotidase, alkaline phosphatase, (Na++K+)-ATPase and Mg2+-ATPase, whereas the heavy one showed a higher specific activity of adenylate cyclase. Ligation of the bile duct for 48 h decreased the specific activities of (Na++K+)-ATPase and Mg2+-ATPase in the light fraction, whereas it had no significant influence on the activities of these enzymes in the heavy fraction. The specific activity of alkaline phosphatase was elevated in both fractions by the obstruction of the bile flow. Electron microscopy on sections of the plasma membrane subfractions showed that the light fraction consisted of vesicles of various sizes and that the heavy fractions contained membrane sheets and paired membrane strips connected by junctional complexes, as well as vesicles. The origin of these two fractions is discussed and it is suggested that the light fraction was derived from the bile front of the liver cell surface and the heavy one contained the blood front and the lateral surface of it.  相似文献   

3.
Ca2+ inhibited the Mg2+-dependent and K+-stimulated p-nitrophenylphosphatase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase. In the absence of K+, however, a Mg2+-dependent and Ca2+-stimulated phosphatase was observed, the maximal velocity of which, at pH 7.2, was about 20% of that of the K+-stimulated phosphatase. The Ca2+-stimulated phosphatase, like the K+-stimulated activity, was inhibited by either ouabain or Na+ or ATP. Ouabain sensitivity was decreased with increase in Ca2+, but the K0.5 values of the inhibitory effects of Na+ and ATP were independent of Ca2+ concentration. Optimal pH was 7.0 for Ca2+-stimulated activity, and 7.8–8.2 for the K+-stimulated activity. The ratio of the two activities was the same in several enzyme preparations in different states of purity. The data indicate that (a) Ca2+-stimulated phosphatase is catalyzed by (Na+ + K+)-ATPase; (b) there is a site of Ca2+ action different from the site at which Ca2+ inhibits in competition with Mg2+; and (c) Ca2+ stimulation can not be explained easily by the action of Ca2+ at either the Na+ site or the K+ site.  相似文献   

4.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   

5.
A ouabain-insensitive Mg2+-ATPase present in a microsomal fraction prepared from the dog submandibular gland was studied. This Mg2+-ATPase was inhibited by increasing concentrations of NaCl, KCl, RbCl and CsCl. The addition of an osmotically equal amount of sucrose was without effect. This inhibition was obtained over a pH range of from 6.3 to 8.8. The Mg2+-ATPase present in microsomes treated with NaI showed a similar inhibition. These results indicate that it is advisable to keep the ionic strength constant in solutions used to obtain (Na++K+)-ATPase activities.  相似文献   

6.
《Insect Biochemistry》1991,21(4):399-405
Na+,K+-activated ATPase activity in tick salivary glands increases during the rapid stage of tick feeding paralleling similar increases in dopamine and cAMP-stimulated fluid secretion. High concentrations of cyclic AMP increase Na+,K+-ATPase activity in a plasma membrane-enriched fraction from the salivary glands of rapidly feeding ticks. Cyclic AMP-dependent protein kinase inhibitor protein blocks activation of Na+,K+-ATPase activity at low but not high concentrations of cAMP indicating that both activator and inhibitor modulator phosphoproteins of Na+,K+-ATPase activity exist in the plasma membrane-enriched fraction.ATPase activity in the plasma membrane-enriched fraction is not measurable in the absence of Mg2+, Ca2+ and Na+. Ca-stimulated nucleotidase activity is highest with ATP serving as the preferred substrate in a series including CTP, UTP, GTP and ADP. Calcium, Mg2+ stimulated ATPase activity is activated further by calmodulin and partially inhibited by low concentration of vanadate, trifluoperazine and oligomycin. Results suggest that the plasma membrane-enriched fraction of tick salivary glands contains both Ca2+-ATPase activity and oligomycin-sensitive Ca2+, Mg2+-ATPase activities, the latter likely from a small amount of mitochondria in the partially purified organelle fraction.  相似文献   

7.
(Na+ + K+)-ATPase activity is demonstrated in plasma membranes from pig mesenteric lymph nodes. After dodecyl sulfate treatment plasma membranes have an 18-fold higher (Na+ + K+)-ATPase activity, while their ouabain-insensitive Mg2+-ATPase is markedly lowered. A solubilized (Na+ + K+)-ATPase fraction, obtained by Lubrol WX treatment of the membranes, has very high specific activity (21μmol Pi/h per mg protein). Concanavalin A has no effect on these partially purified (Na+ + K+)-ATPase, while it inhibits (40%) this activity in less purified fractions which still contain Mg2+-ATPase activity.  相似文献   

8.
Microsomal fractions from wheat tissues exhibit a higher level of ATP hydrolytic activity in the presence of Ca2+ than Mg2+. Here we characterise the Ca2+-dependent activity from roots of Triticum aestivum lev. Troy) and investigate its possible function. Ca2+-dependent ATP hydrolysis in the microsomal fraction occurs over a wide pH range with two slight optima at pH 5.5 and 7.5. At these pHs the activity co-migrates with the major peak of nitrate-inhibited Mg2+. Cl-ATPase on continuous sucrose gradients indicating that it is associated with the vacuolar membrane. Ca2+-dependent ATP hydrolysis can be distinguished from an inhibitory effect of Ca2+ on the plasma membrane K+, Mg2+-ATPase following microsomal membrane separation using aqueous polymer two phase partitioning. The Ca2+-dependent activity is stimulated by free Ca2+ with a Km of 8.1 μM in the absence of Mg2+ ([CaATP] = 0.8 mM). Vacuoiar membrane vacuolar preparations contain a higher Ca2+-dependent than Mg2+-dependent ATP hydrolysis, although the two activities are not directly additive. The nucleotide specificity of the divalent ion-dependent activities in vacuolar membrane-enriched fractions was low. hydrolysis of CTP and UTP being greater than ATP hydrolysis with both Ca2+ and Mg2+ The Ca2+-dependent activity did discriminate against dinucleotides, and mononucleotides. and failed to hydrolyse phosphatase substrates. Despite low nucleotide specificity the Mg2+-dependent activity functioned as a bafilomycin sensitive H+-pump in vacuolar membrane vesicles. Ca2+-dependent ATP hydrolysis was not inhibited by the V-, P-, or F-type ATPase inhibitors bafilomycin. vanadate and azide, respectively. nor by the phosphatase inhibitor molybdate, but was inhibited 20% at pH 7.5 by K+. Possible functions of Ca2+-dependent hydrolysis as a H+-pump or a Ca2+-pump was investigated using vacuolar membrane vesicles. No H+ or Ca2+ translocating activity was observed under conditions when the Ca2+-dependent ATP hydrolysis was active.  相似文献   

9.
In the present study a polystyrene microtiter plate was tested as a support material for synaptic plasma membrane (SPM) immobilization by adsorption. The adsorption was carried out by an 18-h incubation at +4°C of SPM with a polystyrene matrix, at pH 7.4. Evaluation of the efficiency of the applied immobilization method revealed that 10% protein fraction of initially applied SPM was bound to the support and that two SPM enzymes, Na+/K+-ATPase and Mg2+-ATPase, retained 70–80% activity after the adsorption. In addition, adsorption stabilizes Na+/K+-ATPase and Mg2+-ATPase, since the activities are substantial 3 weeks after the adsorption. Parallel kinetic analysis showed that adsorption does not alter significantly the kinetic properties of Na+/K+-ATPase and Mg2+-ATPase and their sensitivity to and mechanism of Cd2+- or Hg2+-induced inhibition. The only exception is the “high affinity” Mg2+-ATPase moiety, whose affinity for ATP and sensitivity toward Cd2+ were increased by the adsorption. The results show that such system may be used as a practical and comfortable model for the in vitro toxicological investigations.  相似文献   

10.
The ionic influence and ouabain sensitivity of lymphocyte Mg2+-ATPase and Mg2+-(Na+ + K+)-activated ATPase were studied in intact cells, microsomal fraction and isolated plasma membranes. The active site of 5′-nucleotidase and Mg2+-ATPase seemed to be localized on the external side of the plasma membrane whereas the ATP binding site of (Na+ + K+)-ATPase was located inside the membrane.Concanavalin A induced an early stimulation of Mg2+-ATPase and (Na+ + K+)-ATPase both on intact cells and purified plasma membranes. In contrast, 5′-nucleotidase activity was not affected by the mitogen. Although the thymocyte Mg2+-ATPase activity was 3–5 times lower than in spleen lymphocytes, it was much more stimulated in the former cells (about 40 versus 20 %). (Na+ + K+)-ATPase activity was undetectable in thymocytes. However, in spleen lymphocytes (Na+ + K+)-ATPase activity can be detected and was 30 % increased by concanavalin A. Several aspects of this enzymic stimulation had also characteristic features of blast transformation induced by concanavalin A, suggesting a possible role of these enzymes, especially Mg2+-ATPase, in lymphocyte stimulation.  相似文献   

11.
《Insect Biochemistry》1991,21(7):749-758
The present study confirms previous reports of the presence of (Na+ + K+)-ATPase and anion-stimulated ATPase activity in Malpighian tubules of Locusta. In addition, the presence of a K+-stimulated, ouabain-insensitive ATPase activity has been identified in microsomal fractions. Differential and sucrose density-gradient centrifugation of homogenates has been used to separate membrane fractions which are rich in mitochondria, apical membranes and basolateral membranes; as indicated by the presence of succinate dehydrogenase and the presence or absence of non-specific alkaline phosphatase activity, respectively. Relatively high specific (Na+ + K+)-ATPase activity was associated with the basolateral membrane-rich fractions with only low levels of this activity being associated with the apical membrane-rich preparation. K+-stimulated ATPase activity was also associated, predominantly, with the basolateral membrane-rich fractions. However, comparison of the distribution of this activity with that of the (Na+ + K+)-ATPase suggests that the two enzymes did not co-separate. The possibility that the K+-stimulated ATPase was not associated with the basolateral plasma membrane is discussed.Anion-stimulated ATPase activity was found in the apical and basolateral membrane-rich fractions and in the fraction contaning mainly mitochondria. Nevertheless, the fact that this bicarbonate-stimulated activity did not co-separate with succinate dehydrogenase activity suggests that it was not exclusively mitochondrial in origin. These results are consistent with physiological studies indicating a basolateral (Na+ + K+)-ATPase but do not support the K+-stimulated ATPase as a candidate for the apical electrogenic pump. The possible role of the bicarbonate-stimulated ATPase activity in ion transport across both the basolateral and apical cell membranes is discussed.  相似文献   

12.
The uptake of K+ by cucumber plants decreased markedly duringCa2+ starvation. A plasma membrane-enriched fraction, judgedfrom the distribution of marker enzymes, was prepared from controland Ca2+-starved roots. The Mg2+- and K+-Mg2+-ATPase activitiesassociated with the plasma membrane-enriched fraction of controlroots were maxima at pH 6.5. Various monovalent cations andpotassium salts of monovalent anions stimulated Mg2+-ATPaseactivity. Vanadate, DES and DCCD inhibited K+- Mg2+-ATPase activity.Of the divalent cations and phosphate esters tested, Mg2+ andATP were most effective for the stimulation of ATPase by K+,whereas Ca2+ was ineffective in replacing Mg2+. Mg2+- and K+-Mg2+-ATPase activities associated with the plasmamembrane enriched fraction of Ca2+-starved roots were much lowerthan those of control roots. Km values of K+-Mg2+-ATPase forATP were comparable for control and Ca2+-starved roots. The K+-stimulated activity of Mg2+-ATPase in Ca2+-starved rootswas approximately one fourth that of the control, whereas therate of stimulation was only slightly lower in Ca2+-starvedroots. (Received May 9, 1984; Accepted September 17, 1984)  相似文献   

13.
In an effort to determine the subcellular localization of sodium- and potassium-activated adenosine triphosphatase (Na+, K+-ATPase) in the pseudobranch of the pinfish Lagodon rhomboides, this tissue was fractionated by differential centrifugation and the activities of several marker enzymes in the fractions were measured. Cytochrome c oxidase was found primarily in the mitochondrial-light mitochondrial (M+L) fraction. Phosphoglucomutase appeared almost exclusively in the soluble (S) fraction. Monoamine oxidase was concentrated in the nuclear (N) fraction, with a significant amount also in the microsomal (P) fraction but little in M+L or S. Na+, K+-ATPase and ouabain insensitive Mg2+-ATPase were distributed in N, M+L, and P, the former having its highest specific activity in P and the latter in M+L. Rate sedimentation analysis of the M+L fraction indicated that cytochrome c oxidase and Mg2+-ATPase were associated with a rapidly sedimenting particle population (presumably mitochondria), while Na+, K+-ATPase was found primarily in a slowly sedimenting component. At least 75% of the Na+, K+-ATPase in M+L appeared to be associated with structures containing no Mg2+-ATPase. Kinetic properties of the two ATPases were studied in the P fraction and were typical of these enzymes in other tissues. Na+, K+-ATPase activity was highly dependent on the ratio of Na+ and K+ concentrations but independent of absolute concentrations over at least a fourfold range.  相似文献   

14.
Summary A procedure is described for the preparation of a membrane fraction enriched in basal-lateral plasma membranes from gastric mucosa. Gastric glands isolated from rabbit were employed as starting material, greatly reducing contamination from nonglandular cell types. The distribution of cellular components during the fractionation procedure was monitored with specific marker enzymes. (Na++K+)-ATPase, ouabain-sensitive K+-stimulatedp-nitrophenyl-phosphatase and histamine-stimulated adenylate cyclase were used as markers for basal-lateral membranes. These three markers were similarly distributed during both differential and equilibrium density gradient centrifugation. The enriched membrane fraction contained more than 30% of the total initial activities of the three basal-lateral membrane markers which were purified better than 11-fold with respect to protein. (Na++K+)-ATPase activity was resolved from the activities of acid phosphatase, pepsin, Mg2+-ATPase, cytochromec oxidase, NADPH-cytochromec reductase, glucose-6-phosphatase, (K++H+)-ATPase, DNA and RNA.  相似文献   

15.
Abstract A strontium capture method, using p-nitrophenyl phosphate as substrate, was used to determine the subcellular localization of (Na+ + K+)-ATPase activity in Malpighian tubules of Locusta migratoria L. Ultrastructural studies revealed that (Na+ + K+)-ATPase activity was restricted to the basolateral plasma membranes with little evidence of activity associated with the apical microvilli. In contrast, alkaline phosphatase activity was specifically associated with the apical cell membrane. Biochemical assays of fixed and non-fixed tubule homogenates were used to evaluate the p-nitrophenyl phosphate-strontium procedure for localization of the phosphatase component of (Na+ + K+)-ATPase. No significant potassium-dependent, ouabain-sensitive p-nitrophenyl phosphatase activity was demonstrated in homogenates under conditions necessary for the cytochemical procedure, viz fixation, pH 9.0 and the presence of strontium. The significance of the biochemical results are discussed in relation to the validity of such cytochemical techniques for (Na+ + K+)-ATPase localization.  相似文献   

16.
Na+,K+-ATPase and Mg2+-ATPase activities were determined in the synaptic plasma membranes from hippocampus of rats subjected to chronic and acute proline administration. Na+,K+-ATPase activity was significantly reduced in chronic and acute treatment by 33% and 40%, respectively. Mg2+-ATPase activity was not altered by any treatment. In another set of experiments, synaptic plasma membranes were prepared from hippocampus and incubated with proline or glutamate at final concentrations ranging from 0.2 to 2.0 mM. Na+,K+-ATPase, but not Mg2+-ATPase was inhibited (30%) by the two amino acids. In addition, competition between proline and glutamate for the enzyme activity was observed, suggesting a common binding site for these amino acids. Considering that Na+,K+-ATPase activity is critical for normal brain function, the results of the present study showing a marked inhibition of this enzyme by proline may be associated with the neurological dysfunction found in patients affected by type II hyperprolinemia.  相似文献   

17.
A procedure is described for isolating plasma, smooth and other cellular membranes from hypotonically lysed protoplasts of the marine diatom, Nitzschia alba. From starting material of approximately 10 g wet weight (1010 cells), about 168 mg (organic weight) of a membrane-enriched fraction, exclusive of mitochondria, is obtained by differential centrifugation. From this, six membrane fractions are separated on a discontinuous sucrose gradient by isopycnic centrifugation.The plasma membranes, from the density region 1.23-1.29 g/cc, consist of small vesicles and sheets. They are purified approximately 20-fold, based on the increase in specific activity of a (Na+-K+-Mg2+)-ATPase, an enzyme found predominantly in these membranes. They also contain the highest specific and total activity of a (Mg2+)-ATPase and, in addition, are distinguished chemically by their high sterol specific content and high molar ratio of sterol/phospholipid (0.792-0.854). The carbohydrate/ protein ratio (0.070-0.072) is appreciably lower than that of the smooth membranes.The smooth membranes separate into two distinct fractions, a light and heavy component, which occur at the top of the sucrose gradient in densities of 1.13 and 1.18 g/cc, respectively. Both fractions are composed of relatively large membrane vesicles and membrane sheets and are distinguished from other membrane fractions by an exceptionally high carbohydrate/protein ratio (0.194-0.294).The light component shows the highest specific content of lipid, phospholipid, neutral lipid, carbohydrate, sialic acid, and RNA, and the highest specific activity of NADPH cytochrome c reductase, 5′-nucleotidase and phosphodiesterase compared to the other five fractions. It shows the lowest Na+ plus K+ stimulation of the (Mg2+)-ATPase. This fraction is probably enriched in endoplasmic reticulum.The heavy component contains some Golgi-like vesicles, sacs and tubules. It is characterized by the highest total content of chemical constituents analyzed, with the exception of RNA, and by the highest specific activity of thiamine pyrophosphatase, uridine diphosphatase, acid and alkaline phosphatase, and glucose-6-phosphatase, suggesting that this component is enriched in Golgi membranes approximately 13-fold.A most striking feature of these diatom membranes is the presence in all fractions of (Mg2+)-ATPase activity which is stimulated 5- to 10-fold by the presence of equimolar Na2+ plus K+. The data clearly differentiate these membrane fractions from each other as well as from membranes prepared from animal cells.  相似文献   

18.
Summary The aim of this study was to provide further evidence for the existence of a nonmitochondrial bicarbonate-stimulated Mg2+-ATPase in brush border membranes derived from rat kidney cortex. A plasma membrane fraction rich in brush border microvilli and a mitochondrial fraction were isolated by differential centrifugation. Both fractions contain a Mg2+-ATPase activity which can be stimulated by bicarbonate. The two Mg2+-ATPases are stimulated likewise by chloride, bicarbonate, and sulfite or inhibited by oligomycin and aurovertin, though to different degrees. In contrast to these similarities, only the Mg2+-ATPase activity of the mitochondrial fraction is inhibited by atractyloside, a substance which blocks an adenine nucleotide translocator in the inner mitochondrial membrane. On the other hand, filipin, an antibiotic that complexes with cholesterol in the membranes inhibits exclusively the Mg2+-ATPase of the cholesterol-rich brush border membranes. Furthermore it could be demonstrated by the use of bromotetramisole, an inhibitor of alkaline phosphatase activity, that the Mg2+-ATPase activity in the membrane fraction is not due to the presence of the highly active alkaline phosphatase in these membranes. These results support the assumption that an intrinsic bicarbonate-stimulated Mg2+-ATPase is present in rat kidney brush border membranes.  相似文献   

19.
Membranes of corn (Zea mays, cv Trojan 929) coleoptiles were fractionated by sucrose density gradient centrifugation and the locations of organelles were determined using marker enzymes and electron microscopy. Latent IDPase (or UDPase) was selected as the Golgi marker and UDPG-sterol glucosyl transferase was selected as the plasma membrane (PM) marker, because they were clearly separable from markers for the other organelles. Golgi-rich and PM-rich fractions were studied in relation to their ATPase activities. The pH optimum of the KCl, Mg2+-ATPase of the PM-rich fraction from a step gradient was 6.0 to 6.5, while the Golgi-rich fraction had peaks at pH 6.0 to 6.5 and pH 7.5. It is hypothesized that the peak at pH 6.0 to 6.5 for the Golgi-rich fraction is due to PM-contamination, while the peak at pH 7.5 represents the activity of a Golgi ATPase. To reduce PM contamination, Golgi-rich fractions obtained from step or rate-zonal gradients were recentrifuged isopycnically on linear sucrose gradients. The distribution of KCl, Mg2+-ATPase activity was measured at pH 6.5 and 7.5. The pH 6.5 ATPase was coincident with UDPG-sterol glucosyl transferase, a PM marker, while the pH 7.5 ATPase overlapped with latent UDPase, a Golgi marker. These results provide strong evidence for a KCl, Mg2+-ATPase, active at pH 7.5, associated with the Golgi membranes of corn coleoptiles.  相似文献   

20.
Dopamine inhibits Mg2+,Na+,K+- and Na+,K+-ATPase activities but does not modify Mg2+-ATPase activity of nerve ending membranes isolated from rat cerebral cortex. In the presence of the soluble fraction of brain, dopamine activates total, Na+,K+-, and Mg2+-ATPases. Dopamine stimulation of nerve ending membrane ATPases is achieved when soluble fractions of brain, kidney, or liver are used. On the other hand, dopamine effects are not observed on kidney or heart ATPase preparations. These results indicate tissue specificity of dopamine effects with respect to the enzyme source; there is no tissue specificity for the requirement of the soluble fraction to achieve stimulation of ATPases by dopamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号