首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1988,106(4):1105-1116
Exposure of mammalian cells to a nonlethal heat-shock treatment, followed by a recovery period at 37 degrees C, results in increased cell survival after a subsequent and otherwise lethal heat-shock treatment. Here we characterize this phenomenon, termed acquired thermotolerance, at the level of translation. In a number of different mammalian cell lines given a severe 45 degrees C/30-min shock and then returned to 37 degrees C, protein synthesis was completely inhibited for as long as 5 h. Upon resumption of translational activity, there was a marked induction of heat-shock (or stress) protein synthesis, which continued for several hours. In contrast, cells first made thermotolerant (by a pretreatment consisting of a 43 degrees C/1.5-h shock and further recovery at 37 degrees C) and then presented with the 45 degrees C/30-min shock exhibited considerably less translational inhibition and an overall reduction in the amount of subsequent stress protein synthesis. The acquisition and duration of such "translational tolerance" was correlated with the expression, accumulation, and relative half-lives of the major stress proteins of 72 and 73 kD. Other agents that induce the synthesis of the stress proteins, such as sodium arsenite, similarly resulted in the acquisition of translational tolerance. The probable role of the stress proteins in the acquisition of translational tolerance was further indicated by the inability of the amino acid analogue, L-azetidine 2-carboxylic acid, an inducer of nonfunctional stress proteins, to render cells translationally tolerant. If, however, analogue-treated cells were allowed to recover in normal medium, and hence produce functional stress proteins, full translational tolerance was observed. Finally, we present data indicating that the 72- and 73-kD stress proteins, in contrast to the other major stress proteins (of 110, 90, and 28 kD), are subject to strict regulation in the stressed cell. Quantitation of 72- and 73-kD synthesis after heat-shock treatment under a number of conditions revealed that "titration" of 72/73-kD synthesis in response to stress may represent a mechanism by which the cell monitors its local growth environment.  相似文献   

2.
We have examined and compared a number of cellular and biochemical events associated with the recovery process of rat fibroblasts placed under stress by different agents. Metabolic pulse-labeling studies of cells recovering from either heat-shock treatment, exposure to sodium arsenite, or exposure to an amino acid analogue of proline, L-azetidine 2-carboxylic acid, revealed interesting differences with respect to the individual stress proteins produced, their kinetics of induction, as well as the decay in their synthesis during the recovery period. In the initial periods of recovery, the major stress-induced 72-kD protein accumulates within the altered nucleoli in close association with the pre-ribosomal-containing granular region. During the later times of recovery from stress, the nucleoli begin to regain a normal morphology, show a corresponding loss of the 72-kD protein, and the majority of the protein now begins to accumulate within the cytoplasm in three distinct locales: the perinuclear region, along the perimeter of the cells, and finally in association with large phase-dense structures. These latter structures appear to consist of large aggregates of phase-dense material with no obvious encapsulating membrane. More interestingly we show, using double-label indirect immunofluorescence analysis, that much of the perinuclear and cell perimeter-distributed 72-kD protein coincides with the distribution of the cytoplasmic ribosomes. We discuss the possible implications of the presence of the 72-kD stress proteins within the pre-ribosomal-containing granular region of the nucleolus as well as its subsequent colocalization with cytoplasmic ribosomes in terms of the translational changes which occur in cells both during and after recovery from physiological stress.  相似文献   

3.
Recent data indicate that cells may acquire thermotolerance via more than one route. In this study, we observed differences in thermotolerance development in HeLa S3 cells induced by prior heating (15 minutes at 44 degrees C) or pretreatment with sodium-arsenite (1 hour at 37 degrees C, 100 microM). Inhibition of overall protein and heat shock protein (HSP) synthesis (greater than 95%) by cycloheximide (25 micrograms/ml) during tolerance development nearly completely abolished thermotolerance induced by arsenite, while significant levels of heat-induced thermotolerance were still apparent. The same dependence of protein synthesis was found for resistance against sodium-arsenite toxicity. Toxic heat, but not toxic arsenite treatments caused heat damage in the cell nucleus, measured as an increase in the protein mass of nuclei isolated from treated cells (intranuclear protein aggregation). Recovery from this intranuclear protein aggregation was observed during post-heat incubations of the cells at 37 degrees C. The rate of recovery was faster in heat-induced tolerant cells than in nontolerant cells. Arsenite-induced tolerant cells did not show an enhanced rate of recovery from the heat-induced intranuclear protein aggregation. In parallel, hyperthermic inhibition of RNA synthesis was the same in tolerant and nontolerant cells, whereas post-heat recovery was enhanced in heat-induced, but not arsenite-induced thermotolerant cells. The more rapid recovery from heat damage in the nucleus (protein aggregation and RNA synthesis) in cells made tolerant by a prior heat treatment seemed related to the ability of heat (but not arsenite) to induce HSP translocations to the nucleus.  相似文献   

4.
We have compared the effects of a mild heat shock and febrile temperatures on heat-shock protein (hsp) synthesis and development of stress tolerance in T lymphocytes. Our previous studies demonstrated that febrile temperatures (less than or equal to 41 degrees C) induced the synthesis of hsp110, hsp90, and the constitutive or cognate form of hsp70 (hscp70; a weak induction of the strongly stress-induced hsp70 was also observed. In the studies reported herein, we demonstrate that a mild heat shock (42.5 degrees C) reverses this ratio; that is, hsp70 and not hscp70 is the predominate member of this family synthesized at this temperature. Modest heat shock also enhanced the synthesis of hsp110 and hsp90. In order to assess the relationship between hsp synthesis and the acquisition of thermotolerance, purified T cells were first incubated at 42.5 degrees C (induction temperature) and then subsequently subjected to a severe heat-shock challenge (45 degrees C, 30 min). T cells first incubated at a mild heat-shock temperature were capable of total protein synthesis at a more rapid rate following a severe heat shock than control cells (induction temperature 37 degrees C). This phenomenon, which has been previously termed translational tolerance, did not develop in cells incubated at the febrile temperature (induction temperature 41 degrees C). Protection of translation also extended to immunologically relevant proteins such as interleukin-2 and the interleukin-2 receptor. Because clonal expansion is a critical event during an immune response, the effects of hyperthermic stress on DNA replication (mitogen-induced T cell proliferation) was also evaluated in thermotolerant T cells. DNA synthesis in control cells (induction temperature 37 degrees C) was severely inhibited following heat-shock challenge at 44 degrees C or 45 degrees C; in contrast, T cells preincubated at 42.5 degrees C rapidly recovered their DNA synthetic capacity. T cells preincubated at a febrile temperature were moderately protected against hyperthermic stress. The acquisition of thermotolerance was also associated with enhanced resistance to chemical (ethanol)-induced stress but not to heavy metal toxicity (cadmium) or dexamethasone-induced immunosuppression. These studies suggest that prior hsp synthesis may protect immune function against some forms of stress (e.g., febrile episode) but would be ineffective against others such as elevated glucocorticoid levels which normally occur during an immune response.  相似文献   

5.
The proteins encoded by both viral and cellular forms of the c-myc oncogene have been previously demonstrated to have exceptionally short in vivo half-lives. In this paper we report a comparative study on the parameters affecting turnover of nuclear oncoproteins c-myc, c-myb, and the rapidly metabolized cytoplasmic enzyme ornithine decarboxylase. The degradation of all three proteins required metabolic energy, did not result in production of cleavage intermediates, and did not involve lysosomes or ubiquitin. A five- to eightfold increase in the half-life of c-myc proteins, and a twofold increase in the half-life of c-myb proteins was detected after heat-shock treatment at 46 degrees C. In contrast, heat shock had no effect on the turnover of ornithine decarboxylase. Heat shock also had the effect of increasing the rate of c-myc protein synthesis twofold, whereas c-myb protein synthesis was decreased nearly fourfold. The increased stability and synthesis of c-myc proteins led to an overall increase in the total level of c-myc proteins in response to heat-shock treatment. Furthermore, treatments which reduced c-myc and c-myb protein turnover, such as heat shock and exposure to inhibitors of metabolic energy production, resulted in reduced detergent solubility of both proteins. The recovery from heat shock, as measured by increased turnover and solubility, was energy dependent and considerably more rapid in thermotolerant cells.  相似文献   

6.
J V Anderson  Q B Li  D W Haskell    C L Guy 《Plant physiology》1994,104(4):1359-1370
The 70-kD heat-shock proteins (HSP70s) are encoded by a multigene family in eukaryotes. In plants, the 70-kD heat-shock cognate (HSC70) proteins are located in organellar and cytosolic compartments of cells in most tissues. Previous work has indicated that HSC70 proteins of spinach (Spinacia oleracea) are actively synthesized during cold-acclimating conditions. We have isolated, sequenced, and characterized cDNA and genomic clones for the endoplasmic reticulum (ER) luminal HSC70 protein (immunoglobulin heavy chain-binding protein; BiP) of spinach. The spinach ER-luminal HSC70 is a constitutively expressed gene consisting of eight exons. Spinach BiP mRNA appears to be up-regulated during cold acclimation but is not expressed during water stress or heat shock. In contrast to the differential regulation of mRNA, the ER-luminal HSC70 protein levels remain constant in response to various environmental stresses. Two other members of the spinach 70-kD heat-shock (HS70) multigene family also show differential expression in response to a variety of environmental stresses. A constitutively expressed cytosolic HSC70 protein in spinach appears also to be up-regulated in response to both cold-acclimating and heat-shock treatments. Spinach also contains a cold-shock-induced HS70 gene that is not expressed during heat shock or water stress. Since HSP70s are considered to be involved with the chaperoning and folding of proteins, the data further support the concept that they may be important for maintaining cellular homeostasis and proper protein biogenesis during cold acclimation of spinach.  相似文献   

7.
In this study, we have demonstrated that topoisomerase I DNA relaxing activity is protected against a severe heat shock in T cells made thermotolerant by a prior modest heat treatment. However, following a severe heat-shock challenge and incubation at 37 degrees C, topoisomerase activity in the control population eventually returned to levels similar to those detected in thermotolerant cells. This recovery of topoisomerase activity appears to result from the renaturation of heat-inactivated enzyme rather than from synthesis of new protein because the rate of recovery of catalytic activity was not inhibited by the presence of the protein synthesis inhibitor, cycloheximide.  相似文献   

8.
9.
Using affinity chromatography on ATP-agarose, we have identified a major ATP-binding protein in Nonidet P-40 extracts of avian and mammalian cells labeled with [35S]methionine. After washing ATP-agarose beads with high-ionic-strength buffer (0.4 M NaCl), the 37-kD protein was shown to be one of the major ATP-binding proteins while p72 and grp78, which are members of the hsp70 family, also bound to ATP-agarose. This protein consisted of several spots on two-dimensional gel electrophoresis. The isoelectric point of the most basic spot was approximately 9.2 in chick embryo fibroblasts, whereas it was about 8.8 in mouse 3T3 cells. The identities of these proteins in mouse and chick cells were confirmed by peptide mapping. After heat-shock treatment of BALB/3T3 cells, the major heat-shock protein, hsp70, was shown to be induced very rapidly after heat shock and was recovered in the ATP-binding fraction. Besides hsp70, a 37-kD protein was also found to be induced by heat shock. This protein was drastically induced by treating the cells with alpha,alpha'-dipyridyl, an iron chelating reagent, but not with sodium arsenite, calcium ionophore, or tunicamycin. The synthesis and the total amount of this ATP-binding protein increased in mouse 3T3 cells transformed by simian virus 40, methylcholanthrene, or activated c-Ha-ras oncogene compared to their normal counterparts. The incorporation of [32P]orthophosphate was not detected in either normal or transformed cells. These studies established that a major ATP-binding protein of Mr = 37,000 is a heat-inducible protein and that the synthesis of this protein is regulated by malignant transformation.  相似文献   

10.
Using both electron microscopy and immunological methods, we have characterized a number of changes occurring in rat fibroblasts after heat-shock treatment. Incubation of the cells for 3 h at 42 degrees-43 degrees C resulted in a number of changes within the cytoplasm including: a disruption and fragmentation of the Golgi complex; a modest swelling of the mitochondria and subtle alterations in the packing of the cristae; and alterations in cytoskeletal elements, specifically a collapse and aggregation of the vimentin-containing intermediate filaments around the nucleus. A number of striking changes were also found within the nuclei of the heat-treated cells: (a) We observed the appearance of rod-shaped bodies consisting of densely packed filaments. Using biochemical and immunological methods, these nuclear inclusion bodies were shown to be comprised of actin filaments. (b) Considerable alterations in the integrity of the nucleoli were observed after the heat-shock treatment. Specifically, there appeared to be a general relaxation in the condensation state of the nucleoli, changes in both the number and size of the granular ribonucleoprotein components, and finally a reorganization of the nucleolar fibrillar reticulum. These morphological changes in the integrity of the nucleoli are of significant interest since previous work as well as studies presented here show that two of the mammalian stress proteins, the major stress-induced 72-kD protein and the 110-kD protein, localize within the nucleoli of the cells after heat-shock treatment. We discuss these morphological changes with regards to the known biological and biochemical events that occur in cells after induction of the stress response.  相似文献   

11.
A new and rapid purification procedure has been developed for the mammalian 70,000-dalton (70-kDa) heat-shock (or stress) proteins. Both the constitutive 73-kDa protein and the stress-induced 72-kDa protein have been purified by a two-step procedure employing DE52 ion-exchange chromatography followed by affinity chromatography on ATP-agarose. The two proteins, present in approximately equal amounts in either the 12,000 X g supernatant or pellet of hypotonically lysed heat-shock-treated HeLa cells, were found to copurify in relatively homogenous form. The purified proteins were covalently labeled with the fluorescent dye tetramethylrhodamine isothiocyanate, and the fluorescently labeled proteins were introduced back into living rat embryo fibroblasts via microinjection. The microinjected cells maintained at 37 degrees C showed only diffuse nuclear and cytoplasmic fluorescence. After heat-shock treatment of the cells, fluorescence was observed throughout the nucleus and more prominently within the nucleolus. This result is consistent with our earlier indirect immunofluorescence studies which showed a nuclear and nucleolar distribution of the endogenous 72-kDa stress protein in heat-shock-treated mammalian cells. The result also indicates that, for at least the 72-kDa protein, (i) the protein has been purified in apparently "native" form and (ii) its nucleolar distribution is stress dependent.  相似文献   

12.
To study the mechanism of thermotolerance, the adaptive response by which cells become transiently resistant to killing by heat shock, we have focused on the centrosome, an organelle whose disorganization is closely correlated with thermal killing in Chinese hamster ovary (CHO) cells. Centrosome structure was studied by use of antisera directed against pericentrin, a 220 Kd protein of the pericentriolar material (PCM). Centrosome function was measured in intact cells by performing microtubule regrowth following exposure to the drug nocodazole. Immediately following heating at 45°C for 4–18 min, centrosomal staining by antipericentrin decreased. Thereafter, staining gradually recovered, although abnormal configurations of staining appeared in heated cultures 10–20 h later. In contrast, abnormal patterns of staining rarely developed in thermotolerant cultures. Centriole number was not perturbed by heat, indicating that the heat effect was specific for the PCM. Heat also caused an immediate reduction in the number of microtubules nucleated by the PCM. As for staining by antipericentrin, microtubule nucleation recovered during 3–20 h at 37°C after heating. The immediate, heat-induced decrease in antipericentrin staining or microtubule nucleation was similar in thermotolerant and nontolerant cells. In contrast, the inhibition for both endpoints recovered to control levels much more quickly in thermotolerant cells than in nontolerant cells. Furthermore, new protein synthesis was not required for the recovery of microtubule nucleation. These data show that thermotolerant cells have an enhanced capacity to repair thermal damage to centrosome structure and function, and suggest that a faster rate of recovery prevents disorganization of the PCM that is observed in nontolerant cells several hours after heating. © 1995 Wiley-Liss, Inc.  相似文献   

13.
XRCC5 (also known as Ku80) is a component of the DNA-dependent protein kinase (DNA-PK), existing as a heterodimer with G22P1 (also known as Ku70). DNA-PK is involved in the nonhomologous end-joining (NHEJ) pathway of DNA double-strand break (DSB) repair, and kinase activity is dependent upon interaction of the Ku subunits with the resultant DNA ends. Nuclear XRCC5 is normally extractable with non-ionic detergent; it is found in the soluble cytoplasmic fraction after nuclear isolation with Triton X-100. In this study, we found that heating at 45.5 degrees C causes a decreased extractability of XRCC5 from the nuclei of human U-1 melanoma or HeLa cells. Such decreases in extractability are indicative of protein aggregation within nuclei. Recovery of extractability of XRCC5 to that of unheated control cells was observed after incubation at 37 degrees C after heat shock. The decrease in extractability and the kinetics of recovery were dependent on dose, although the decrease in extractability reached a plateau after heating for 15 min or more. Thermotolerant U-1 cells also showed decreased extractability of XRCC5, but to a lesser degree compared to nontolerant cells. When a comparable initial reduction of extractability of XRCC5 was induced in both thermotolerant and nontolerant cells, the kinetics of recovery was nearly identical. The kinetics of recovery of the extractability of XRCC5 was different from that of total nuclear protein in nontolerant cells; recovery of extractability of XRCC5 occurred faster initially and returned to the level in unheated cells faster than total nuclear protein. Similar results were obtained for thermotolerant cells, with differences between the initial recovery of the extractability of XRCC5 and total protein being particularly evident after longer heating times. Heat has been shown to inactivate XRCC5. We speculate that inactivation of XRCC5 after heat shock results from protein aggregation, and that changes in XRCC5 may, in part, lead to inhibition of DSB repair through inactivation of the NHEJ pathway.  相似文献   

14.
The effect of heat shock on the thermotolerance of etiolated mung bean seedlings ( Vigna radiata L. cv. Wilczek) and the effects of gibberellic acid (GA) were studied. The potentially lethal temperature of etiolated mung bean seedlings was 45°C. But, when seedlings were pretreated with a heat-shock period at 40°C for 1 h before incubation at 45°C, they become thermotolerant and survived the 45°C treatment. The addition of actinomycin D or cycloheximide during the heat-shock period decreased the subsequent thermotolerance of the seedlings. Depending upon the time of its application, GA appeared to have multiple effects: (1) when applied during the 40°C heat-shock period, GA enhanced the heat-shock effect; (2) when applied during the 45°C potentially lethal temperature period, GA enhanced the subsequent growth of hypocotyls. This suggests that GA makes the seedlings tolerant to the potentially lethal temperature; (3) when GA was applied during a following 25°C growth period to seedlings which had been exposed first to 40°C and then 45°C, it promoted growth, suggesting that GA enhanced the restoration of the seedlings from high temperature damage. The role of GA and heat shock in the acquisition of thermotolerance in etiolated mung bean seedlings are discussed.  相似文献   

15.
16.
Exposure of cells to heat induces thermotolerance, a transient resistance to subsequent heat challenges. It has been shown that thermotolerance is correlated in time with the enhanced synthesis of heat shock proteins. In this study, the association of induced heat shock proteins with various cellular fractions was investigated and the heat-induced changes in skeletal protein composition in thermotolerant and control cells was compared. All three major heat shock proteins induced in Chinese hamster fibroblasts after a 46 degrees C, 4-min heat treatment (70, 87, and 110 kDa) were purified with the cytoplasmic fraction, whereas only the 70-kDa protein was also found in other cell fractions, including that containing the cellular skeleton. Immediately after a second heat treatment at 45 degrees C for 45 min, the 110-kDa protein from thermotolerant cells also purified extensively with the cellular skeletal fraction. In this regard, the 110-kDa protein behaved similarly to many other cellular proteins, since we observed an overall temperature-dependent increase in the total labeled protein content of the high-salt-resistant cellular skeletal fraction after heat shock. Pulse-chase studies demonstrated that this increased protein content gradually returned to normal levels after a 3-hr incubation at 37 degrees C. The alteration or recovery kinetics of the total labeled protein content of the cellular skeletal fraction after heat shock did not correlate with the dramatic increase in survival observed in thermotolerant cells. The relationship between heat shock proteins and thermotolerance, therefore, does not correlate directly with changes in the heat-induced cellular alterations leading to differences in protein fractionation.  相似文献   

17.
Embryonic chick neural retina responds to heat shock by the synthesis of "stress" polypeptides with molecular weights of 85 and 70 kd. Both stress proteins are synthesised from newly-transcribed messenger RNA. Sodium arsenite induces an additional stress protein of MW 25 kd. The heat shock response does not change during culture and subsequent transdifferentiation, and crystallin synthesis is not coinducible with the heat-shock proteins. We have also examined the pattern of protein synthesis at various stages of culture in both monolayer and aggregate systems; although changes in the protein synthetic profine are evident, there is no stress protein induction above basal levels at any time. Whilst mammalian α crystallin (B2 chain) exhibits considerable homology to four small Drosophila heat-shock proteins, no significant antigenic similarity is apparent between δ crystallin and the major avian heat shock proteins. Thus during transdifferentiation, (a) the crystallin proteins do not behave in a manner analogous to stress proteins; moreover (b) crystallin production is not mediated by stress proteins resulting from a culture-induced stress response.  相似文献   

18.
Using monoclonal antibodies directed against different cytoplasmic isoforms of hsp70 proteins, namely, the constitutive hsc73 and the inducible hsp72 isoforms, we found that one isoform related to hsc73 was present in Euglena gracilis. This hsc73-like protein is expressed with a higher rate of synthesis in cells growing under heat shock than in control cells. Moreover, in cadmium-resistant cells, cultured at normal growth temperature, the rate of synthesis of this protein is constitutively increased. These results indicate that a heat-shock protein related to hsc73 is present in an ancestral eukaryote, Euglena gracilis, and that this protein may be constitutive and stress inducible as well.  相似文献   

19.
Dynamic intracellular ATP and Pi levels were measured non-invasively for Chinese hamster V79 cells by 31P-NMR under conditions of thermotolerance and heat-shock protein induction. High densities of cells were embedded in agarose strands, placed within a standard NMR sample tube, and perfused with medium maintained either at 37 or 43 degrees C at pH 7.35. Cell survival and heat-shock protein synthesis were assessed either from parallel monolayer cultures or cells dislodged from the agarose strands post-treatment. Thermotolerance (heat resistance) and heat-shock protein synthesis was induced by a 1 h exposure to 43 degrees C followed by incubation for 5 h at 37 degrees C. After the 5 h incubation at 37 degrees C, marked thermal resistance was observed in regard to survival with concomitant synthesis of two major heat-shock proteins at 70 and 103 kDa. Studies were also conducted where tolerance and heat-shock protein synthesis were partially inhibited by depletion of cellular glutathione (GSH) prior to and during heat treatment. Dynamic measurement of intracellular ATP of cells heated with or without GSH depletion revealed no change in steady-state levels immediately after heating or during the 5 h post-heating incubation at 37 degrees C where thermotolerance and heat-shock proteins develop. These data are consistent with other reported data for mammalian cells and indicate that the steady-state ATP levels in mammalian cells remain unchanged during and after the acquisition of the thermotolerant state.  相似文献   

20.
We have determined that one small heat shock protein gene, encoding Hsp17.7, plays an important role in the ability of carrot cells and plants to survive thermal stress. Transgenic cells and regenerated plants were generated in which the carrot Hsp17.7 gene was either constitutively expressed (denoted CaS lines) or expressed as a heat inducible antisense RNA (denoted AH lines). Thermotolerance measurements demonstrated that CaS lines were more thermotolerant than vector controls and AH antisense lines were less thermo- tolerant than vector controls. RNA analysis demonstrated that Hsp17. 7 mRNA was detectable, but not abundant, prior to heat shock in CaS cells, but not in vector control cells. Conversely, RNA analysis of antisense cells showed that, after heat shock, the amounts of mRNA for Hsp17.7 was moderately less abundant in AH cells than in vector controls. Analysis of protein synthesis in CaS cells did not indicate substantial synthesis or accumulation of Hsp17.7, or any small Hsp, at 23 degrees C. However, in the most thermotolerant line, protein synthesis was maintained at a higher rate than in other cell lines at a more extreme heat shock (42 degrees C). In contrast, antisense AH cells showed reduced synthesis of many Hsp, large and small. These results suggest that the Hsp17.7 gene plays a critical, although as yet not understood, role in thermotolerance in carrot. This represents the first demonstration of the ability to both increase and decrease thermotolerance by the manipulation of expression of a single gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号