首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A single cyclic AMP-dependent protein kinase (EC 2.7.1.37) has been isolated from human platelets by using DEAE-cellulose ion-exchange chromatography and Sephadex G-150 gel filtration. The molecular weight of the protein kinase was estimated to be 86 490. In the presence of cyclic AMP, the protein kinase could be dissociated into a catalytic subunit of molecular weight 50 000, and either one regulatory subunit of molecular weight 110 000 or two regulatory subunits of molecular weights 110 000 and 38 100, depending on the pH used. Recombination of either of the regulatory subunits with the catalytic subunit restored cyclic AMP-dependency in the catalytic subunit. The apparent Km for ATP in the presence of 10 muM Mg2+ was 4 muM (plus cyclic AMP) and 4.3 muM (minus cyclic AMP). The concentration of cyclic AMP needed for half-maximal stimulation of the protein kinase was 0.172 muM and apparent dissociation constants of 3.7 nM (absence of MgATP) and 0.18 muM (presence of MgATP) were exhibited by the "protein kinase-cyclic AMP complex". The enzyme required Mg2+ for maximum activity and showed a pH optimum of 6.2 with histone as substrate. In addition to four major endogenous platelet protein acceptors of apparent molecular weights 45 000, 28000, 18 500, and 11 100, the platelet protein kinase also phosphorylated the exogenous acceptor proteins thrombin, collagen and histone, all capable of inducing platelet aggregation. Prothrombin, a nonaggregating agent, was not phosphorylated.  相似文献   

2.
Cyclic GMP-dependent protein kinase was purified from foetal calf hearts, and its general properties and subunit structure were studied. The enzyme was purified over 900-fold from the heart extract by pH 5.3-isoelectric precipitation, DEAE-cellulose chromatography, Sephadex G-200 filtration and hydroxyapatite treatment. The purified myocardial enzyme, free from cyclic AMP-dependent protein kinase contamination, exhibited an absolute requirement of stimulatory modulator (or crude modulator containing the stimulatory modulator component) for its cyclic GMP-stimulated activity. Inhibitory modulator (protein inhibitor) of cyclic AMP-dependent protein kinase could not stimulate nor inhibit the cyclic GMP target enzyme. The enzyme had Ka values of 0.013, 0.033 and 3.0 micronM for 8-bromo cyclic GMP, cyclic GMP and cyclic AMP respectively. The cyclic GMP-dependent enzyme required Mg2+ and Co2+ for its activity, with optimal concentrations of about 30 and 0.5 mM respectively. The pH optimum for the enzyme activity ranged from 6 to 9. Histones were generally effective substrate proteins. The enzyme exhibited a greater affinity for histones than did the cyclic AMP-dependent class of protein kinase. The holoenzyme (apparent mol.wt. 150 000) of the myocardial cyclic GMP-dependent protein kinase was dissociated into a cyclic GMP-independent catalytic subunit (apparent mol.wt. 60 000) by cyclic GMP and histone. The catalytic subunit required the stimulatory modulator for its activity, as in the case of the holoenzyme in the presence of cyclic GMP.  相似文献   

3.
Summary The polymeric structure of the cyclic AMP-dependent protein kinase (E.C.2.7.1.37) from the dimorphic fungus Mucor rouxii was analyzed through studies of gel filtration and sucrose gradient centrifugation of the holoenzyme and its subunits and by photoaffinity labeling of the regulatory subunit. It was demonstrated that it is a tetramer composed by two regulatory subunits (R) of mol. wt. 75 000 and two catalytic subunits (C) of mol. wt. 41 000 forming a holoenzyme R2C2 of mol. wt. 242 000. Frictional coefficients of 1.55 and 1.62 for the holoenzyme and for the regulatory dimer, respectively, indicate a significant degree of dimensional asymmetry in both molecules. A procedure for the purification of the catalytic subunit of the kinase is presented. The holoenzyme could be bound to a cyclic AMP-agarose column and the catalytic subunit could be eluted by 0.5 M NaCl, well resolved from the bulk of protein. This particular behaviour of the holoenzyme in cyclic AMP-agarose chromatography allowed the inclusion of this step in the purification of the catalytic subunit and corroborated that the holoenzyme was not dissociated by cyclic AMP alone. The isolated catalytic subunit displays Michaelis-Menten behaviour towards kemptide, protamine and histone and is inhibited by sulfhydryl reagents, indicating that the molecule has at least one cysteine residue essential for enzyme activity. The catalytic activity of the isolated C subunit is inactivated by the mammalian protein kinase inhibitor, and is inhibited by the regulatory subunit from homologous and heterologous sources. In general, the properties of the catalytic subunit suggest a structural similarity between Mucor and mammalian C subunits.Abbreviations C catalytic subunit monomer of protein kinase - R regulatory subunit monomer of protein kinase - 8-N3-cyclic AMP 8-azido-cylic AMP - SDS sodium dodecyl sulfate - Pipes piperazine-N,N-bis(2-ethanesulfonic acid) See AcknowledgementsCareer Investigators from the CONICET  相似文献   

4.
A cyclic adenosine 3',5'-monophosphate-dependent histone kinase (ATP: protein phosphotransferase, EC 2.7.1.37) was isolated from pig brain. The enzyme has been purified 1140-fold; it is homogeneous on polyacrylamide gel electrophoresis and gel filtration. The estimated molecular weight of the enzyme is 120 000. Histone kinase dissociates into a catalytic subunit and a regulatory one (molecular weights 40 000 and 90 000, respectively). The catalytic subunit has been obtained in homogeneous state as evidenced by sodium dodecylsulphate-polyacrylamide gel electrophoresis. At all purification steps, enzymatic activity is stimulated 5-fold by cyclic AMP. An apparent Km value for cyclic AMP is about 3.3 - 10- minus 7 M. In the presence of cyclic AMP(5 - 10- minus 6 M), the Km value for ATP and F1 histone were 1.2 - 10- minus five and 3 - 10- minus 5 M, respectively. Optimum pH value for histone kinase is 6.5, its isoelectric point is situated at pH 4.6. The purified enzyme displays high specificity for the lysine-rich and moderately lysine-rich histones F1, F2a2 and F2b. Arginine-rich histones and other known protein substrates for cyclic AMP-dependent protein kinases (casein, Escherichia coli RNA polymerase, etc.) are extremely poor substrates for this enzyme.  相似文献   

5.
Purified preparations of human polymorphonuclear leucocytes contain a protein kinase in the cytosol which is stimulated by cyclic AMP and cyclic IMP but not by other cyclic nucleotides. The holoenzyme had a molecular weight of 66000 estimated by gel filtration; when it was incubated with histone or cyclic AMP, it dissociated into two smaller subunits of molecular weight 45000 and 30000; the former remained cyclic AMP-sensitive, whereas the latter had become independent of added cyclic AMP. By means of substrate-affinity chromatography on histone-Sepharose 4B, cyclic [3H5AMP-binding activity (regulatory or R subunit) could be resolved into two peaks of enzyme activity, one again independent of added cyclic AMP, with a molecular weight of 30000 (catalytic or C subunit). Also by means of substrate-affinity chromatography it was possible to resolve 'specific' polymorphonuclear leukocyte histone phosphatases from 'non-specific' phosphomonesterases capable of dephosphorylating histone previously phosphorylated by the protein kinase. Specific histone phosphatase displayed greatest affinity for histone-Sepharose 4B, followed by acid p-nitrophenyl phosphatase, and the unretained acid beta-glucerophosphatase. Polymorphonuclear leucocyte histone phosphatase, purified approx. 40-fold, was further resolved from the other phosphatases by gel filtration on Sephadex G-150 from which it was eluted with apparent molecular weights of 45000 and 18700. The apparent Km values for dephosphorylation of histone are 4.3 X 10-6M and 3.6 X 10-6M. Most (69%) of cytoplasmic histone phosphatase was found in the cell sap, whereas 20% remained tightly associated with polymorphonuclear leucocyte lysosomes from which it could not be solubilized by treatments (Triton X-100, freeze-thawing) that released approx. 70% of lysosomal beta-glucuronidase or acid phosphatases. Although both soluble and particulate enzymes required 5-10 mM-Mn2 for maximal activation, and showed a pH maximum of 6.5-7.0, only the particulate enzyme was partly inhibited by ammonium molybdate. Polymorphonuclear leucocyte histone phosphatases were neither inhibited nor stimulated by those cyclic nucleotides that greatly stimulate the protein kinase of the same subcellular fraction  相似文献   

6.
Cyclic AMP in Strongylocentrotus purpuratus sperm was elevated approximately 2-fold by theophylline or 1-methyl-3-isobutylxanthine. Factors released from sea urchin eggs (FRE) elevated sperm cyclic AMP by about 7-fold within 1 min, and the combination of FRE with theophylline increased sperm cyclic AMP up to 100-fold within 1 min. Cyclic GMP in sea urchin sperm was slightly elevated by theophylline, but was lowered by FRE. Cyclic GMP in sperm treated with FRE plus theophylline was not higher than in sperm treated with theophylline alone. The ability of FRE-containing sea water to increase sperm cyclic AMP in the presence of theophylline was altered only slightly if at all by boiling, but it was decreased by about 50% by dialysis and destroyed by ashing. Filtration of FRE on Sephadex G-50 columns yielded two peaks of cyclic AMP-elevating activity. One peak (peak I) was eluted at the column void volume, and the other (peak II) was retained by the column. The cyclic GMP-lowering activity was located in fractions approximately corresponding to peak I of cyclic AMP-elevating activity. Dialysis of FRE-containing sea water before its application to the G-50 column virtually eliminated peak II of the cyclic AMP-elevating activity. When the cyclic AMP-elevating activity in peak I was filtered on Bio Gel A-5m columns, it also migrated at or near the column void volume. Fractions corresponding to peak I contained material that inhibited both guanylate and adenylate cyclase activities in broken cell preparations of sperm and guanylate cyclase from rat lung. The inhibitory material was stable to boiling, non-dialyzable, and destroyed by ashing. Under a variety of conditions, FRE-containing sea water or cyclic AMP-elevating peaks I or II did not stimulate sperm adenylate cyclase activity in broken cell preparations.  相似文献   

7.
Guanosine 3':5'-monophosphate (cyclic GMP)-dependent protein kinase was purified from the guinea pig fetal lung, a tissue shown to be the richest in this enzyme in all mammalian sources examined, and its general properties studied. The enzyme was purified 150-fold from crude extract by steps of pH 5.4 isoelectric precipitation, Sephadex G-200 filtration, hydroxylapatite treatment and DEAE-cellulose chromatography. The purified enzyme, free from contamination with adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase, had a specific activity at least equivalent to 600-fold purification of the enzyme from the adult lung. The pulmonary enzyme exhibited an absolute requirement of protein kinase modulator (prepared from various mammalian tissues with an exception of skeletal muscle) for its activity. Inhibitor protein of cyclic AMP-dependent protein kinase purified from rabbit skeletal muscle could not stimulate nor inhibit the cyclic GMP target enzyme, indicating the factors from mammalian sources regulating the two classes of protein kinases may not be the same. The enzyme had Ka values of 1.3 times 10(-8) and 3.3 times 10(-8) M for 8-bromo cyclic GMP and cyclic GMP, respectively, compared to 3.0 times 10(-6) M for cyclic AMP. Cyclic GMP lowered the Km of the enzyme for ATP from 6.3 times 10(-5) M in its absence to 2.1 times 10(-5) M in its presence, accompanied by an approximate doubling of the Vmax. The molecular weight of the enzyme (assayed by its catalytic and cyclic GMP-binding abilities) was estimated to be 123,000, corresponding to a sedimendation coefficient of 7.06 S, by means of sucrose density gradient ultracentrifugation. The cyclic GMP-dependent enzyme required Mg2+ and Co2+ for its activity with optimal concentrations of about 30 and 0.7 mM, respectively. The maximal activity seen in the presence of Mg2+, however, was nearly twice as high as that seen in the presence of Co2+. Histones were generally effective substrates for the enzyme, whereas protamine, casein, phosvitin, phosphorylase kinase, and activator protein of phosphodiesterase were not. The cyclic GMP-dependent enzyme exhibited a greater affinity for histones than did the cyclic AMP-dependent enzyme in the presence of Mg2+.  相似文献   

8.
A nucleoplasmic histone kinase activity was isolated from livers of adult rats and purified 39-fold compared with whole nuclei by ultracentrifugation of the nuclear extract and Sephadex G-200 gel filtration in the presence of cyclic AMP. Analysis by polyacrylamide-gel electrophoresis as well as by gel filtration indicates a mol.wt. of approx. 60,000 for the catalytic subunit and 130000-150000 for the cyclic AMP-binding activity. The purified enzyme displays a 20-fold greater preference for histone fractions 1 and 2b than for any non-histone substrate, including alpha-casein. Endogenous protein in the preparation is not appreciably phosphorylated. The unfractioned enzyme is stimulated significantly by cyclic GMP, cyclic IMP and dibutyryl cyclic AMP as well as by cyclic AMP. The catalytic reaction requires Mg2+ (Km 1.9mM) and ATP (Km 15.4 micron). Half-maximal activity of the enzyme is observed with histone 2b at 12micron and histone 1 at a higher substrate concentration. The pH optima are 6.1 and 6.5 with histones 2b and 1 respectively. This nuclear protein kinase appears to be distinct from other nuclear enzymes that have been reported, on the basis of histone specificity, univalent-salt-sensitivity, pH optima and nuclear location. However, the enzyme possesses many properties similar to those of the cytoplasmic kinases, including cyclic AMP-dependence, Mg2+ and ATP affinities and pH optima. It differs from cytoplasmic protein kinase type I, the major form in the liver, with respect to bivalent-cation effects and response to the heat-stable protein kinase inhibitor protein isolated from ox heart.  相似文献   

9.
Sterol ester hydrolase (cholesterol esterase, E.C. 3.1.1.13) of bovine adrenal cortex has been extensively purified by ammonium sulfate fractionation, acid precipitation, hydroxylapatite chromatography, and Sephadex G-200 chromatography. During the purification sequence, the hydrolase activity was purified free of endogenous protein kinase. With this purified preparation, activation by cyclic AMP and ATP-Mg2+ did not occur unless exogenous protein kinase was included in the activating system. Using [gamma-32P]ATP, the transfer of the terminal phosphate to the enzyme protein was demonstrated by three separate experimental approaches. With pooled fractions from Sephadex G-200 chromatography, significant binding of 32P by the enzyme protein was observed only in the presence of exogenous protein kinase. Time course studies disclosed a close concurrence between the extent of activation of the purified enzyme by cyclic AMP-dependent protein kinase and the level of 32P transfer from [gamma-32P]ATP to the enzyme protein. Finally, assays carried out during Sephadex G-200 chromatography showed a correspondence in the peaks for activated sterol ester hydrolase and for 32P binding by protein. The data confirm that activation of adrenal sterol ester hydrolase by cyclic AMP and ATP-Mg2+ involves protein kinase-catalyzed phosphorylation of the enzyme protein.  相似文献   

10.
In this paper, cyclic adenosine-3′:5′-monophosphate-dependent protein kinase from yeast-like cells of Mucor rouxii is characterized. A scheme of partial purification is described together with Km for ATP (15 μm), histone (0.2 mg/ml), half-maximal activation constant for cyclic AMP (30 nm), and dissociation constant for the binding of cyclic AMP (40 nm). This enzyme is similar to type II protein kinases in two main aspects: the elution position in DEAE-cellulose chromatography and the readiness of its reassociation. But it has a singular characteristic: it does not dissociate completely with cyclic AMP alone (even at concentrations as high as 0.3 mm) unless histone or NaCl is present. NaCl displays several roles: helps dissociation, prevents inactivation of the catalytic subunit, inhibits enzyme activity, and does not prevent reassociation as occurs with type II protein kinases. Once the holoenzyme is dissociated, cyclic AMP is essential to maintain the enzyme in the dissociated state.  相似文献   

11.
Sperm from several invertebrates contained guanylate cyclase activity several-hundred-fold greater than that in the most active mammalian tissues; the enzyme was totally particulate. Activity in the presence of Mn2+ was up to several hundred-fold greater than with Mg2+ and was increased 3–10-fold by Triton X-100. Sperm from several vertebrates did not contain detectable guanylate cyclase. Sperm of both invertebrates and vertebrates contained roughly equal amounts of Mn2+-dependent adenylate cyclase activity; in invertebrate sperm, this enzyme was generally several hundred-fold less active than guanylate cyclase. Adenylate cyclase was particulate, was unaffected by fluoride, and was generally greater than 10-fold more active with Mn2+ than with Mg2+. Invertebrate sperm contained phosphodiesterase activities against 1.0 μm cyclic GMP or cyclic AMP in amounts greater than mammalian tissues. Fish sperm, which did not contain guanylate cyclase, had high phosphodiesterase activity with cyclic AMP as substrate but hydrolyzed cyclic GMP at a barely detectable rate. In sea urchin sperm, phosphodiesterase activity against cyclic GMP was largely particulate and was strongly inhibited by 1.0% Triton X-100. In contrast, activity against cyclic AMP was largely soluble and was weakly inhibited by Triton. The cyclic GMP and cyclic AMP contents of sea urchin sperm were in the range of 0.1–1 nmol/g. Sea urchin sperm homogenates possessed protein kinase activity when histone was used as substrate; activities were more sensitive to stimulation by cyclic AMP than by cyclic GMP.5  相似文献   

12.
This study examined the binding of both cyclic AMP and cyclic GMP to receptor proteins in particulate and soluble subfractions of renal cortical homogenates from the golden hamster. The binding of both nucleotides was compared to subsequent effects of both nucleotides on the phosphorylation of histone from identical fractions. Cyclic AMP binding and cyclic AMP-dependent protein kinase activity predominated in the cytosol, with some binding and enzyme activity also detected in particulate fractions. Cyclic GMP and cyclic GMP-dependent protein kinase activity could only be demonstrated in cytosolic fractions and represented only 20-30% of cyclic AMP-dependent activity in this fraction. Binding of both nucleotides was highly specific, however, cyclic AMP showed some interaction with cyclic GMP binding. Evidence suggesting that each nucleotide interacts with a specific protein kinase was as follows: both the binding activity of the cyclic nucleotides and their combined protein kinase activity show additivity; cyclic AMP and cyclic GMP binding activity could be separated on sucrose gradients; cyclic AMP and cyclic GMP protein kinase activity could be separated with Sephadex G-100 chromatography, after preincubation of homogenate supernatants with either cyclic AMP or cyclic GMP. The results demonstrate the presence of both cyclic AMP- and cyclic GMP-dependent protein kinase in renal cortex.  相似文献   

13.
Abstract— The activity profiles of the solubilized protein kinases from the microsomal and myelin fractions of bovine brain were examined by column chromatography and sucrose density gradient centrifugation. The main peak of adenosine 3',5'-monophosphate (cyclic AMP)-dependent activity with histone as substrate for each membrane enzyme was eluted with about 0.2 m -NaCl on a DEAE-cellulose column. A peak of activity stimulated with cyclic AMP was also eluted with about 0.1 m -NaCl for the microsomal enzyme. A peak with protamine and casein as substrate for the microsomal or myelin enzyme, respectively, was larger than that with histone as substrate for each enzyme. The first peak with histone as substrate on a DEAE–cellulose column appeared as two peaks on the Sepharose 6B column. The second peak with histone as substrate on DEAE–cellulose column was shown to be a holoenzyme consisting of regulatory and catalytic subunits. The holoenzyme and subunits were eluted at similar positions to each other between both membrane enzymes on Sepharose 6B column. The holoenzyme sedimented as two peaks of activity on sucrose density gradient centrifugation, both of which were stimulated with cyclic AMP. The preincubation of the holoenzyme with cyclic AMP resulted in shifting to a position of a smaller molecular size.
The results indicate the occurrence of multiple forms of protein kinases in membrane fractions of brain with respect to substrate specificity and physical property.  相似文献   

14.
Adenosine 3':5' -monophosphate (cyclic AMP) -dependent protein kinase from bovine heart muscle catalyzes the phosphorylation of its regulatory, cyclic AMP-binding subunit. Phosphorylation enhances net dissociation of the enzyme by cyclic AMP. Chromatography on omega-aminohexyl-agarose was used to study the effects of phosphorylation on cyclic AMP binding and subunit dissociation and reassociation. This method permitted rapid separation of the catalytic subunit from the cyclic AMP -binding protein and holoenzyme. Phospho- and dephosphoprotein kinases were found to dissociate to the same extent at any given concentration of cyclic AMP and completely at saturation. At equilibrium, the amount of cyclic AMP bound was the same for both forms of enzyme and was directly proportional to the degree of dissociation of the holoenzyme. In the absence of cyclic AMP, phospho- and dephospho-cyclic AMP-binding proteins reassociated completely with the catalytic subunit. However, the rate of reassociation of the dephospho-cyclic AMP-binding protein was at least 5 times greater than the phospho-cyclic AMP-binding protein. Retardation of reassociation was directly proportional to the extent of phosphorylation. We conclude that the degree to which the cyclic AMP-binding protein is phosphorylated markedly affects its intrinsic ability to combine with the catalytic subunit to regenerate the inactive cyclic nucleotide-dependent kinase and that the state of phosphorylation of this subunit may be important in detemining the proportion of dissociated (active) and reassociated (inactive) protein kinase at any given time.  相似文献   

15.
Poly(ADP-ribose) glycohydrolase has been purified about 12 300-fold from pig thymus with a recovery of 8.5%. The specific activity of the purified enzyme is 13.8 mumol min -1 mg protein -1. The molecular weight was estimated to be 59 000 by gel filtration through Sephadex G-100 in a non-denaturing solvent. Analysis of the final preparation by sodium dodecyl sulphate gel electrophoresis reveals two protein bands of molecular weight, 61 500 and 67 500. The Km value for poly(ADP-ribose) is estimated to be 1.8 microM monomer units. The enzyme preparation is free from phosphodiesterase, NADase and ADP-ribosyltransferase activities. The purified enzyme is inhibited by cyclic AMP, ADP-ribose, naphthylamine, histones H1, H2A, H2B, H3, polylysine, polyarginine, polyornithine and protamine. The inhibition by histone is relieved by an equal mass of DNA. Single-stranded DNA, poly(A), poly(I) and polyvinyl sulphate were inhibitory, but double-stranded DNA was not inhibitory.  相似文献   

16.
1. A protein was demonstrated in mammalian islets of Langerhans that after purification appeared as a single component possessing both cyclic-AMP (adenosine 3':5'-cyclic monophosphate)-binding and cyclic-AMP-dependent protein phosphokinase activities. 2. The protein had an intrinsic association constant for cyclic AMP of 1.15x10(-8)m, which was similar to the K(m) for cyclic AMP (1.11x10(-8)m) of the protein phosphokinase activity. 3. Incubation of the protein in the presence of cyclic AMP resulted in its dissociation into cyclic-AMP-independent protein phosphokinase (catalytic) and cyclic-AMP-binding (receptor) subunits, which could be separated on Sephadex G-200. 4. The cyclic-AMP-dependent protein phosphokinase was capable of phosphorylating a variety of proteins, the most readily phosphorylated being histone, casein and protein components of sub-cellular fractions prepared from islets of Langerhans. 5. The cyclic-AMP-dependent phosphorylation of histone had a K(m) for ATP of 1.1x10(-5)m. 6. The endogenous protein phosphokinase activity in rat islets incubated with agents that are known to alter the intracellular concentration of cyclic AMP was investigated. Theophylline and 3-isobutyl-1-methylxanthine, agents that raise cyclic AMP concentrations in islets, increased the activity of the protein phosphokinase, whereas adrenaline, which lowers islet cyclic AMP concentrations, decreased its activity. 7. It is suggested that cyclic AMP may exert its effects on insulin release by increasing the activity of a protein phosphokinase and may thereby promote the phosphorylation and activity of a rate-determining component of the secretory mechanism.  相似文献   

17.
In order to investigate the sequence of events triggered by cyclic AMP and cyclic GMP in exocrine pancreatic cells, the identification of the various protein kinases possibly present in this tissue is of major interest. Further analysis of the two cyclic AMP-dependent protein kinases previously reported [11] suggests that KI is a degraded form of KII. It is therefore likely that a single holoenzyme is present in exocrine cells. In addition no protein kinase, specifically stimulated by cyclic GMP, has been detected in any fraction obtained in the course of purification of the cyclic AMP-dependent protein kinase. A faster and more efficient method than the one previously described [11] allows the purification (5000 times) of the protein kinase catalytic subunit. Analysis of the subunit by sodium dodecyl sulphate polyacrylamide gel electrophoresis indicates a molecular weight of 40 000 +/- 1 000. The enzyme phosphorylates specifically histone H2B (Vm = 236 min(-1), Km = 1.15 10(-5) M) and to a lesser extent H2A, H5 and H1 (Vm = 55--77 min(-1), Km 5--25 10(-5) M). Histones H3 and H4 are not phosphorylated. The effect of the heat stable inhibitor, extracted from rat pancreas, on the phosphorylation of H2B has been investigated. The inhibition is of the non competitive type with respect to ATP. The inhibition at various histone concentrations cannot be described by the Michaelis-Menten equation.  相似文献   

18.
A protein kinase was obtained from rat brain cytosol which phosphorylated preferentially protamine and to some extent histone. This enzyme was independent of adenosine 3′,5′-monophosphate (cyclic AMP) and was not identical with the catalytic unit of cyclic AMP-dependent protein kinase. The enzyme and cyclic AMP-dependent protein kinase from this tissue were distinguishable from each other in their kinetic and catalytic properties, and phosphorylated different seryl and threonyl residues of protamine and histone.  相似文献   

19.
Release of Endogenous Amino Acids from Striatal Neurons in Primary Culture   总被引:7,自引:7,他引:0  
Following partial purification, the characteristics of a cytosol protein kinase were investigated. The protein kinase was purified by ammonium sulfate precipitation and diethylaminoethyl-cellulose, ATP-agarose, and hydroxyapatite chromatography. Analysis of the purified protein kinase preparation by polyacrylamide gel electrophoresis revealed three major protein bands. The cytosol protein kinase was purified approximately 442-fold, as calculated from the cyclic nucleotide independent protein kinase activity in the 40,000 g supernatant. The activity of the kinase was found to be independent of either cyclic AMP or cyclic GMP. Moreover, the kinase activity was unaffected by the addition of the endogenous protein kinase inhibitor, or the regulatory subunit from the type II cyclic AMP-dependent protein kinase from bovine heart. The molecular weight of the enzyme was determined to be 95,000 by Sephadex G-200 gel filtration. The activity of the kinase was increased approximately twofold in the presence of 10 microM Ca+2 and calmodulin. This increase was reversed by the addition of EGTA. The subcellular distribution of the protein kinase was also examined. The soluble fraction from nerve terminal was found to have the highest concentration of the kinase activity.  相似文献   

20.
A phosphoprotein phosphatase active towards casein, phosphorylase a and mRNP proteins has been detected in the cytosol of cryptobiotic gastrulae of Artemia sp. This phosphatase has a relative molecular mass (Mr) of 225,000 as measured by gel filtration on Sephadex G-200 and has been purified to near homogeneity by ion-exchange chromatography on different DEAE-substituted matrices, affinity chromatography on polylysine-agarose, histone-Sepharose 4B and protamine-agarose, hydrophobic chromatography on phenyl-Sepharose 4B and gel filtration on Sephadex G-200. Sodium dodecyl sulphate gel electrophoresis of the final purification step revealed that the enzyme contains two types of subunits, alpha and beta, with Mr of 40,000 and 75,000, respectively. These values, in conjunction with the native Mr and the molar ratios of the subunits estimated by densitometric analysis of the gel, suggested that the subunit composition of the enzyme is alpha 2 beta 2. When treated with 1.7% (v/v) 2-mercaptoethanol at -20 degrees C or with ethanol, the enzyme released the catalytic alpha subunit of Mr 40,000. The protein phosphatase was activated by basic proteins e.g. protamine (A 0.5 = 1 microM), histone H1 (A 0.5 = 1.6 microM) and polylysine (A 0.5 = 0.2 microM) and inhibited by ATP (I 0.5 = 12 microM), NaF (I 0.5 = 3.1 mM) and pyrophosphate (I 0.5 = 0.6 mM). The enzyme is a polycation-stimulated protein phosphatase. Purified mRNP proteins, phosphorylated by the mRNP-associated casein kinase type II, are among the substrates used by the enzyme. The function of reversible phosphorylation-dephosphorylation of mRNP as a regulatory mechanism in mRNP metabolism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号