首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathogen entry into cells occurs by direct penetration of the plasma membrane, clathrin-mediated endocytosis, caveolar endocytosis, pinocytosis or macropinocytosis. For a particular agent, the infectious pathways are typically restricted, reflecting a tight relationship with the host. Here, we survey the uptake process of human adenovirus (Ad) type 2 and 5 and integrate it into the cell biology of endocytosis. Ad2 and Ad5 naturally infect respiratory epithelial cells. They bind to a primary receptor, the coxsackie virus B Ad receptor (CAR). The CAR-docked particles activate integrin coreceptors and this triggers a variety of cell responses, including endocytosis. Ad2/Ad5 endocytosis is clathrin-mediated and involves the large GTPase dynamin and the adaptor protein 2. A second endocytic process is induced simultaneously with viral uptake, macropinocytosis. Together, these pathways are associated with viral infection. Macropinocytosis requires integrins, F-actin, protein kinase C and small G-proteins of the Rho family, but not dynamin. Macropinocytosis per se is not required for viral uptake into epithelial cells, but it appears to be a productive entry pathway of Ad artificially targeted to the high-affinity Fcgamma receptor CD64 of hematopoietic cells lacking CAR. In epithelial and hematopoietic cells, the macropinosomal contents are released to the cytosol. This requires viral signalling from the surface and coincides with particle escape from endosomes and infection. It emerges that incoming Ad2 and Ad5 distinctly modulate the endocytic trafficking and disrupt selective cellular compartments. These features can be exploited for effective artificial targeting of Ad vectors to cell types of interest.  相似文献   

2.
Pathogen entry into cells occurs by direct penetration of the plasma membrane, clathrin-mediated endocytosis, caveolar endocytosis, pinocytosis or macropinocytosis. For a particular agent, the infectious pathways are typically restricted, reflecting a tight relationship with the host. Here, we survey the uptake process of human adenovirus (Ad) type 2 and 5 and integrate it into the cell biology of endocytosis. Ad2 and Ad5 naturally infect respiratory epithelial cells. They bind to a primary receptor, the coxsackie virus B Ad receptor (CAR). The CAR-docked particles activate integrin coreceptors and this triggers a variety of cell responses, including endocytosis. Ad2/Ad5 endocytosis is clathrin-mediated and involves the large GTPase dynamin and the adaptor protein 2. A second endocytic process is induced simultaneously with viral uptake, macropinocytosis. Together, these pathways are associated with viral infection. Macropinocytosis requires integrins, F-actin, protein kinase C and small G-proteins of the Rho family, but not dynamin. Macropinocytosis per se is not required for viral uptake into epithelial cells, but it appears to be a productive entry pathway of Ad artificially targeted to the high-affinity Fcgamma receptor CD64 of hematopoietic cells lacking CAR. In epithelial and hematopoietic cells, the macropinosomal contents are released to the cytosol. This requires viral signalling from the surface and coincides with particle escape from endosomes and infection. It emerges that incoming Ad2 and Ad5 distinctly modulate the endocytic trafficking and disrupt selective cellular compartments. These features can be exploited for effective artificial targeting of Ad vectors to cell types of interest.  相似文献   

3.
Hepatitis C virus entry depends on clathrin-mediated endocytosis   总被引:10,自引:0,他引:10       下载免费PDF全文
Due to difficulties in cell culture propagation, the mechanisms of hepatitis C virus (HCV) entry are poorly understood. Here, postbinding cellular mechanisms of HCV entry were studied using both retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the HCV clone JFH-1 propagated in cell culture (HCVcc). HCVpp entry was measured by quantitative real-time PCR after 3 h of contact with target cells, and HCVcc infection was quantified by immunoblot analysis and immunofluorescence detection of HCV proteins expressed in infected cells. The functional role of clathrin-mediated endocytosis in HCV entry was assessed by small interfering RNA-mediated clathrin heavy chain depletion and with chlorpromazine, an inhibitor of clathrin-coated pit formation at the plasma membrane. In both conditions, HCVpp entry and HCVcc infection were inhibited. HCVcc infection was also inhibited by pretreating target cells with bafilomycin A1 or chloroquine, two drugs known to interfere with endosome acidification. These data indicate that HCV enters target cells by clathrin-mediated endocytosis, followed by a fusion step from within an acidic endosomal compartment.  相似文献   

4.
Myosin VI is a motor protein that moves toward the minus end of actin filaments. It is involved in clathrin-mediated endocytosis and associates with clathrin-coated pits/vesicles at the plasma membrane. In this article the effect of the loss of myosin VI no insert isoform (NoI) on endocytosis in nonpolarized cells was examined. The absence of myosin VI in fibroblasts derived from the Snell''s waltzer mouse (myosin VI knock-out) gives rise to defective clathrin-mediated endocytosis with shallow clathrin-coated pits and a strong reduction in the internalization of clathrin-coated vesicles. To compensate for this defect in clathrin-mediated endocytosis, plasma membrane receptors such as the transferrin receptor (TfR) are internalized by a caveola-dependent pathway. Moreover the clathrin adaptor protein, AP-2, necessary for TfR internalization, follows the receptor and relocalizes in caveolae in Snell''s waltzer fibroblasts.  相似文献   

5.
Receptor-mediated endocytosis is a major gate for pathogens into cells. In this study, we analyzed the trafficking of human adenovirus type 2 and 5 (Ad2/5) and the escape-defective temperature-sensitive Ad2-ts1 mutant in epithelial cancer cells. Ad2/5 and Ad2-ts1 uptake into endosomes containing transferrin, major histocompatibility antigen 1 and the Rab5 effector early endosome antigen 1 (EEA1) involved dynamin, amphiphysin, clathrin and Eps15. Cointernalization experiments showed that most of the Ad2/5 and Ad2-ts1 visited the same EEA1-positive endosomes. In contrast to Ad2/5, Ad2-ts1 required functional Rab5 for endocytosis and lysosomal transport and was sensitive to the phosphatidyl-inositol-3 (PI3)-kinase inhibitor wortmannin or the ubiquitin-binding protein Hrs for sorting from early to late endosomes. Endosomal escape of Ad2 was not affected by incubation at 19 degrees C, which blocked membrane sorting in early endosomes and inhibited Ad2-ts1 transport to lysosomes. Unlike Semliki Forest Virus (SFV), sorting of Ad2-ts1 to late endosomes was independent of Rab7 and Ad2/5 infection independent of EEA1. The data indicate that Ad2/5 and Ad2-ts1 use an invariant machinery for clathrin-mediated uptake to early endosomes. We suggest that the infectious Ad2 particles are either directly released from early endosomes to the cytosol or sorted by a temperature-insensitive and PI3-kinase-independent mechanism to an escape compartment different from late endosomes or lysosomes.  相似文献   

6.
Numerous biologically relevant substrates are selectively internalized via clathrin-mediated endocytosis. At the plasma membrane the AP-2 complex plays a major role in clathrin coat formation, interacting with both cargo and clathrin. Utilizing simultaneous dual-channel total internal reflection fluorescence microscopy we have analyzed components of the AP-2 complex (alpha- and beta 2-adaptin) during clathrin-mediated endocytosis. Although in static images enhanced green fluorescent protein-tagged AP-2 markers significantly co-localized with clathrin and other components of clathrin-coated pits, AP-2 did not seem to be present in clathrin spots that appeared to undergo internalization or motility parallel to the plane of the plasma membrane. Two populations of clathrin at the plasma membrane seem to exist, the dynamic and the static, and AP-2 appears to be only found within the latter. These results suggest that colocalized clathrin/AP-2 puncta may represent loci for coated pit production and that previous models that assumed AP-2 was retained within clathrin coats during endocytosis may need to be re-evaluated.  相似文献   

7.
Endocytic adaptor proteins facilitate cargo recruitment and clathrin-coated pit nucleation. The prototypical clathrin adaptor AP2 mediates cargo recruitment, maturation, and scission of the pit by binding cargo, clathrin, and accessory proteins, including the Eps-homology (EH) domain proteins Eps15 and intersectin. However, clathrin-mediated endocytosis of some cargoes proceeds efficiently in AP2-depleted cells. We found that Dab2, another endocytic adaptor, also binds to Eps15 and intersectin. Depletion of EH domain proteins altered the number and size of clathrin structures and impaired the endocytosis of the Dab2- and AP2-dependent cargoes, integrin β1 and transferrin receptor, respectively. To test the importance of Dab2 binding to EH domain proteins for endocytosis, we mutated the EH domain-binding sites. This mutant localized to clathrin structures with integrin β1, AP2, and reduced amounts of Eps15. Of interest, although integrin β1 endocytosis was impaired, transferrin receptor internalization was unaffected. Surprisingly, whereas clathrin structures contain both Dab2 and AP2, integrin β1 and transferrin localize in separate pits. These data suggest that Dab2-mediated recruitment of EH domain proteins selectively drives the internalization of the Dab2 cargo, integrin β1. We propose that adaptors may need to be bound to their cargo to regulate EH domain proteins and internalize efficiently.  相似文献   

8.
The lack of a suitable in vitro hepatitis B virus (HBV) infectivity model has limited examination of the early stages of the virus-cell interaction. In this study, we used an immortalized cell line derived from human primary hepatocytes, HuS-E/2, to study the mechanism of HBV infection. HBV infection efficiency was markedly increased after dimethyl sulfoxide (DMSO)-induced differentiation of the cells. Transmission electron microscopy demonstrated the presence of intact HBV particles in DMSO-treated HBV-infected HuS-E/2 cells, which could be infected with HBV for up to at least 50 passages. The pre-S1 domain of the large HBsAg (LHBsAg) protein specifically interacted with clathrin heavy chain (CHC) and clathrin adaptor protein AP-2. Short hairpin RNA knockdown of CHC or AP-2 in HuS-E/2 cells significantly reduced their susceptibility to HBV, indicating that both are necessary for HBV infection. Furthermore, HBV entry was inhibited by chlorpromazine, an inhibitor of clathrin-mediated endocytosis. LHBsAg also interfered with the clathrin-mediated endocytosis of transferrin by human hepatocytes. This infection system using an immortalized human primary hepatocyte cell line will facilitate investigations into HBV entry and in devising therapeutic strategies for manipulating HBV-associated liver disorders.  相似文献   

9.
Clustering of macrophage Fc gamma receptors by multimeric immunoglobulin complexes leads to their internalization. Formation of small aggregates leads to endocytosis, whereas large particulate complexes induce phagocytosis. In RAW-264.7 macrophages, Fc gamma receptor endocytosis was found to be dependent on clathrin and dynamin and insensitive to cytochalasin. Clathrin also associates with nascent phagosomes, and earlier observations suggested that it plays an essential role in phagosome formation. However, we find that phagocytosis of IgG-coated large (> or =3 microm) particles was unaffected by inhibition of dynamin or by reducing the expression of clathrin using antisense mRNA but was eliminated by cytochalasin, implying a distinct mechanism dependent on actin assembly. The uptake of smaller particles (< or =1 microm) was only partially blocked by cytochalasin. Remarkably, the cytochalasin-resistant component was also insensitive to dominant-negative dynamin I and to clathrin antisense mRNA, implying the existence of a third internalization mechanism, independent of actin, dynamin, and clathrin. The uptake of small particles occurred by a process distinct from fluid phase pinocytosis, because it was not inhibited by dominant-negative Rab5. The insensitivity of phagocytosis to dominant-negative dynamin I enabled us to test the role of dynamin in phagosomal maturation. Although internalization of receptors from the plasma membrane was virtually eliminated by the K44A and S45N mutants of dynamin I, clearance of transferrin receptors and of CD18 from maturing phagosomes was unaffected by these mutants. This implies that removal of receptors from the phagosomal membrane occurs by a mechanism that is different from the one mediating internalization of the same receptors at the plasma membrane. These results imply that, contrary to prevailing notions, normal dynamin and clathrin function is not required for phagocytosis and reveal the existence of a component of phagocytosis that is independent of actin and Rab5.  相似文献   

10.
The clathrin assembly lymphoid myeloid leukemia (CALM) gene encodes a putative homologue of the clathrin assembly synaptic protein AP180. Hence the biochemical properties, the subcellular localization, and the role in endocytosis of a CALM protein were studied. In vitro binding and coimmunoprecipitation demonstrated that the clathrin heavy chain is the major binding partner of CALM. The bulk of cellular CALM was associated with the membrane fractions of the cell and localized to clathrin-coated areas of the plasma membrane. In the membrane fraction, CALM was present at near stoichiometric amounts relative to clathrin. To perform structure-function analysis of CALM, we engineered chimeric fusion proteins of CALM and its fragments with the green fluorescent protein (GFP). GFP-CALM was targeted to the plasma membrane-coated pits and also found colocalized with clathrin in the Golgi area. High levels of expression of GFP-CALM or its fragments with clathrin-binding activity inhibited the endocytosis of transferrin and epidermal growth factor receptors and altered the steady-state distribution of the mannose-6-phosphate receptor in the cell. In addition, GFP-CALM overexpression caused the loss of clathrin accumulation in the trans-Golgi network area, whereas the localization of the clathrin adaptor protein complex 1 in the trans-Golgi network remained unaffected. The ability of the GFP-tagged fragments of CALM to affect clathrin-mediated processes correlated with the targeting of the fragments to clathrin-coated areas and their clathrin-binding capacities. Clathrin-CALM interaction seems to be regulated by multiple contact interfaces. The C-terminal part of CALM binds clathrin heavy chain, although the full-length protein exhibited maximal ability for interaction. Altogether, the data suggest that CALM is an important component of coated pit internalization machinery, possibly involved in the regulation of clathrin recruitment to the membrane and/or the formation of the coated pit.  相似文献   

11.
Adenovirus type 2 (Ad2) binds the coxsackie B virus Ad receptor and is endocytosed upon activation of the alphav integrin coreceptors. Here, we demonstrate that expression of dominant negative clathrin hub, eps15, or K44A-dynamin (dyn) inhibited Ad2 uptake into epithelial cells, indicating clathrin-dependent viral endocytosis. Surprisingly, Ad strongly stimulated the endocytic uptake of fluid phase tracers, coincident with virus internalization but without affecting receptor-mediated transferrin uptake. A large amount of the stimulated endocytic activity was macropinocytosis. Macropinocytosis depended on alphav integrins, PKC, F-actin, and the amiloride-sensitive Na+/H+ exchanger, which are all required for Ad escape from endosomes and infection. Macropinocytosis stimulation was not a consequence of viral escape, since it occurred in K44A-dyn-expressing cells. Surprisingly, 30-50% of the endosomal contents were released into the cytosol of control and also K44A-dyn-expressing cells, and the number of fluid phase-positive endosomes dropped below the levels of noninfected cells, indicating macropinosomal lysis. The release of macropinosomal contents was Ad dose dependent, but the presence of Ad particles on macropinosomal membranes was not sufficient for contents release. We conclude that Ad signaling from the cell surface controls the induction of macropinosome formation and leakage, and this correlates with viral exit to the cytosol and infection.  相似文献   

12.
Endocytosis by random initiation and stabilization of clathrin-coated pits   总被引:29,自引:0,他引:29  
Clathrin-coated vesicles carry traffic from the plasma membrane to endosomes. We report here the real-time visualization of cargo sorting and endocytosis by clathrin-coated pits in living cells. We have detected the formation of coats by monitoring incorporation of fluorescently tagged clathrin or its adaptor AP-2; we have also followed clathrin-mediated uptake of transferrin and of single LDL or reovirus particles. The intensity of a cargo-loaded clathrin cluster grows steadily during its lifetime, and the time required to complete assembly is proportional to the size of the cargo particle. These results are consistent with a nucleation-growth mechanism and an approximately constant growth rate. There are no strongly preferred nucleation sites. A proportion of the nucleation events are weak and short lived. Cargo incorporation occurs primarily or exclusively in a newly formed coated pit. Our data lead to a model in which coated pits initiate randomly but collapse unless stabilized, perhaps by cargo capture.  相似文献   

13.
The established mechanism for infection of most cells with adenovirus serotype 5 (Ad5) involves fiber capsid protein binding to coxsackievirus-adenovirus receptor (CAR) at the cell surface, followed by penton base capsid protein binding to alpha(v) integrins, which triggers clathrin-mediated endocytosis of the virus. Here we determined the identity of the capsid proteins responsible for mediating Ad5 entry into the acinar epithelial cells of the lacrimal gland. Ad5 transduction of primary rabbit lacrimal acinar cells was inhibited by excess Ad5 fiber or knob (terminal region of the fiber) but not excess penton base. Investigation of the interactions of recombinant Ad5 penton base, fiber, and knob with lacrimal acini revealed that the penton base capsid protein remained surface associated, while the knob domain of the fiber capsid protein was rapidly internalized. Introduction of rabbit CAR-specific small interfering RNA (siRNA) into lacrimal acini under conditions that reduced intracellular CAR mRNA significantly inhibited Ad5 transduction, in contrast to a control (nonspecific) siRNA. Preincubation of Ad5 with excess heparin or pretreatment of acini with a heparinase cocktail each inhibited Ad5 transduction by a separate and apparently additive mechanism. Functional and imaging studies revealed that Ad5, fiber, and knob, but not penton base, stimulated macropinocytosis in acini and that inhibition of macropinocytosis significantly reduced Ad5 transduction of acini. However, inhibition of macropinocytosis did not reduce Ad5 uptake. We propose that internalization of Ad5 into lacrimal acini is through a novel fiber-dependent mechanism that includes CAR and heparan sulfate glycosaminoglycans and that the subsequent intracellular trafficking of Ad5 is enhanced by fiber-induced macropinocytosis.  相似文献   

14.
The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.  相似文献   

15.
The species C adenovirus type 2 (Ad2) and Ad5 bind the coxsackievirus B Ad receptor and alphav integrin coreceptors and enter epithelial cells by clathrin-mediated endocytosis. This pathway is rapid and efficient. It leads to cell activation and the cholesterol-dependent formation of macropinosomes. Macropinosomes are triggered to release their contents when incoming Ad2 escapes from endosomes. Here, we show that cholesterol extraction of epithelial cells by methyl-beta-cyclodextrin (mbetaCD) treatment reduced Ad5-mediated luciferase expression approximately 4-fold. The addition of cholesterol to normal cells increased gene expression in a dose-dependent manner up to threefold, but it did not restore gene expression in mbetaCD-treated cells. mbetaCD had no effect in the presence of excess cholesterol, indicating that the inhibition of gene expression was due specifically to cholesterol depletion. Cholesterol depletion inhibited rapid Ad2 endocytosis, endosomal escape, and nuclear targeting, consistent with the notion that clathrin-dependent endocytosis of Ad2 is cholesterol dependent. In cholesterol-reduced cells, Ad2 internalized at a low rate, suggestive of an alternative, clathrin-independent, low-capacity entry pathway. While exogenous cholesterol completely restored rapid Ad2 endocytosis, macropinocytosis, and macropinosome disruption, it did not, surprisingly, restore viral escape from endosomes. Our results indicate that macropinosome disruption and endosomal escape of Ad2 are independent events in cells depleted of and then refilled with cholesterol, suggesting that viral escape from endosomes requires lipid-controlled membrane homeostasis, trafficking, or signaling.  相似文献   

16.
During clathrin-mediated endocytosis, clathrin-coated pits invaginate to form clathrin-coated vesicles (CVs). Since clathrin-coated pits are planar structures, whereas CVs are spherical, there must be a structural rearrangement of clathrin as invagination occurs. This could occur through simple addition of clathrin triskelions to the edges of growing clathrin-coated pits with very little exchange occurring between clathrin in the pits and free clathrin in the cytosol, or it could occur through large scale exchange of free and bound clathrin. In the present study, we investigated this question by studying clathrin exchange both in vitro and in vivo. We found that in vitro clathrin in CVs and clathrin baskets do not exchange with free clathrin even in the presence of Hsc70 and ATP where partial uncoating occurs. However, surprisingly FRAP studies on clathrin-coated pits labeled with green fluorescent protein-clathrin light chains in HeLa cells show that even when endocytosis is blocked by expression of a dynamin mutant or depletion of cholesterol from the membrane, replacement of photobleached clathrin in coated pits on the membrane occurs at almost the same rate and magnitude as when endocytosis is occurring. Furthermore, very little of this replacement is due to dissolution of old pits and reformation of new ones; rather, it is caused by a rapid ATP-dependent exchange of clathrin in the pits with free clathrin in the cytosol. On the other hand, consistent with the in vitro data both potassium depletion and hypertonic sucrose, which have been reported to transform clathrin-coated pits into clathrin cages just below the surface of the plasma membrane, not only block endocytosis but also block exchange of clathrin. Taken together, these data show that ATP-dependent exchange of free and bound clathrin is a fundamental property of clathrin-coated pits, but not clathrin baskets, and may be involved in a structural rearrangement of clathrin as clathrin-coated pits invaginate.  相似文献   

17.
Dengue virus (DENV) is an enveloped RNA virus that causes the most common arthropod-borne infection worldwide. The mechanism by which DENV infects the host cell remains unclear. In this work, we used live-cell imaging and single-virus tracking to investigate the cell entry, endocytic trafficking, and fusion behavior of DENV. Simultaneous tracking of DENV particles and various endocytic markers revealed that DENV enters cells exclusively via clathrin-mediated endocytosis. The virus particles move along the cell surface in a diffusive manner before being captured by a pre-existing clathrin-coated pit. Upon clathrin-mediated entry, DENV particles are transported to Rab5-positive endosomes, which subsequently mature into late endosomes through acquisition of Rab7 and loss of Rab5. Fusion of the viral membrane with the endosomal membrane was primarily detected in late endosomal compartments.  相似文献   

18.
The clathrin adaptor complex AP-2 serves to coordinate clathrin-coated pit assembly with the sorting of transmembrane cargo proteins at the plasmalemma. How precisely AP-2 assembly and cargo protein recognition at sites of endocytosis are regulated has remained unclear, but recent evidence implicates phosphoinositides, in particular phosphatidylinositol (4,5)-bisphosphate (PI[4,5]P2), in these processes. Here we have identified and functionally characterized a conserved binding site for PI(4,5)P2 within mu2-adaptin, the medium chain of the clathrin adaptor complex AP-2. Mutant mu2 lacking a cluster of conserved lysine residues fails to bind PI(4,5)P2 and to compete the recruitment of native clathrin/AP-2 to PI(4,5)P2-containing liposomes or to presynaptic membranes. Moreover, we show that expression of mutant mu2 inhibits receptor-mediated endocytosis in living cells. We suggest that PI(4,5)P2 binding to mu2-adaptin regulates clathrin-mediated endocytosis and thereby may contribute to structurally linking cargo recognition to coat formation.  相似文献   

19.
We report that the small GTPase, ADP-ribosylation factor 6 (ARF6), is present only on the apical surface of polarized MDCK epithelial cells. Overexpression of a mutant of ARF6, ARF6–Q67L, which is predicted to be in the GTP-bound form, stimulates endocytosis exclusively at this surface. Surprisingly, overexpression of the mutant ARF6–T27N, which is predicted to be in the GDP-bound form, also stimulated apical endocytosis, though to a lesser extent. ARF6-stimulated endocytosis is inhibited by a dominant-negative form of dynamin, or a dominant-negative hub fragment of clathrin heavy chain, indicating that it is mediated by clathrin. Correspondingly, overexpression of either mutant of ARF6 leads to an increase in the number of clathrin-coated pits at the apical plasma membrane. When ARF6–Q67L is overexpressed in the presence of the dominant-negative dynamin, the ARF6–Q67L colocalizes with clathrin and with IgA bound to its receptor. We conclude that ARF6 is an important modulator of clathrin-mediated endocytosis at the apical surface of epithelial cells.  相似文献   

20.
Multiple roles of auxilin and hsc70 in clathrin-mediated endocytosis   总被引:2,自引:0,他引:2  
The ATP-dependent dissociation of clathrin from clathrin-coated vesicles (CCVs) by the molecular chaperone Hsc70 requires J-domain cofactor proteins, either auxilin or cyclin-G-associated kinase (GAK). Both the nerve-specific auxilin and the ubiquitous GAK induce CCVs to bind to Hsc70. The removal of auxilin or GAK from various organisms and cells has provided definitive evidence that Hsc70 uncoats CCVs in vivo. In addition, evidence from various studies has suggested that Hsc70 and auxilin are involved in several other key processes that occur during clathrin-mediated endocytosis. First, Hsc70 and auxilin are required for the clathrin exchange that occurs during coated-pit invagination and constriction; this clathrin exchange may catalyze any rearrangement of the clathrin-coated pit (CCP) structure that is required during invagination and constriction. Second, Hsc70 and auxilin may chaperone clathrin after it dissociates from CCPs so that it does not aggregate in the cytosol. Third, auxilin and Hsc70 may be involved in the rebinding of clathrin to the plasma membrane to form new CCPs and independently appear to chaperone adaptor proteins so that they can also rebind to membranes to nucleate the formation of new CCPs. Finally, if formation of the curved clathrin coat induces membrane curvature, then Hsc70 and auxilin provide the energy for this curvature by inducing ATP-dependent clathrin exchange and rearrangement during endocytosis and ATP-dependent dissociation of clathrin at the end of the cycle so that it is energetically primed to rebind to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号