首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Plasma membranes were isolated from oat (Avena sativa) roots by the phase-partitioning method. The membranes were exposed to repeated periods of moderate water-deficit stress, and a water-deficit tolerance was induced (acclimated plants). The plasma membranes of the controls (nonacclimated plants) were characterized by a high phospholipid content, 79% of total lipids, cerebrosides (9%) containing hydroxy fatty acids (>90% 24:1-OH) and free sterols, acylated sterylglucosides, sterylglucosides, and steryl esters, together amounting to 12%. Major phospholipids were phosphatidylcholine and phosphatidylethanolamine with lesser amounts of phosphatidylglycerol, phosphatidylinositol, and phosphatidic acid. After the membranes were acclimated to dehydration, the lipid to protein ratio decreased from 1.3 to 0.7 micromoles per milligram. Furthermore, the cerebrosides decreased to 5% and free sterols increased from 9% (nonacclimated plants) to 14%. Because the total phospholipids did not change significantly, the free sterol to phospholipid ratio increased from 0.12 to 0.19. There was no change in the relative distribution of sterols after acclimation. The ratio of phosphatidylcholine to phosphatidylethanolamine changed from 1.1 in the nonacclimated plants to 0.69 in the acclimated plants. The results show that acclimation to dehydration implies substantial alterations in the lipid composition of the plasma membrane.  相似文献   

2.
Plants of Ramonda serbica were dehydrated to 3.6% relative water content (RWC) by withholding water for 3 weeks, afterwards the plants were rehydrated for 1 week to 93.8% RWC. Plasma membranes were isolated from leaves using a two-phase aqueous polymer partition system. Compared with well-hydrated (control) leaves, dehydrated leaves suffered a reduction of about 75% in their plasma membrane lipid content, which returned to the control level following rewatering. Also the lipid to protein ratio decreased after dehydration, almost regaining the initial value after rehydration. Lipids extracted from the plasma membrane of fully-hydrated leaves were characterized by a high level of free sterols and a much lower level of phospholipids. Smaller amounts of cerebrosides, acylated steryl glycosides and steryl glycosides were also detected. The main phospholipids of control leaves were phosphatidylcholine and phosphatidylethanolamine, whereas sitosterol was the free sterol present in the highest amount. Following dehydration, leaf plasma membrane lipids showed a constant level of free sterols and a reduction in phospholipids compared with the well-hydrated leaves. Both phosphatidylcholine and phosphatidylethanolamine decreased following dehydration, their molar ratio remaining unchanged. Among free sterols, the remarkably high cholesterol level present in the control leaves (about 14 mol%) increased 2-fold as a result of dehydration. Dehydration caused a general decrease in the unsaturation level of individual phospholipids and total lipids as well. Upon rehydration the lipid composition of leaf plasma membranes restored very quickly approaching the levels of well-hydrated leaves.  相似文献   

3.
Plasma membranes were isolated by aqueous two-phase-partitioning from sunflower ( Helianthus annuus cv. Isabel) seedlings grown both under field irrigation and dryland conditions. Water-stressed plants showed a decrease in the leaf water potential and in the osmotic potential at full turgor, with the turgor pressure remaining at positive values. Dryland conditions also induced a reduction in the bulk modulus of elasticity. Plasma membranes of irrigated plants were characterized by high contents of phospholipids (68% of total lipids), free sterols (15. 7%) and glycolipids (9. 1%), mainly glycosphingolipids and steryl glycosides. Diacylglycerols, triacylglycerols and free fatty acids were also present. The major phospholipids were phosphatidylcholine and phosphatidylethanolamine with smaller amounts of phosphatidylinositol and phosphatidylglycerol. Following water stress, the plasma membranes showed a reduction of about 24 and 31% in total lipids and phospholipids, respectively. Also the amounts of glycolipids and diacylglycerols decreased significantly upon water stress. There was no change in free fatty acids, however, and triacylglycerols and free sterols increased. As a consequence, the free sterol to phospholipid molar ratio increased from 0. 4 to 0. 7 under water deficit conditions. The ratio of phosphatidylcholine to phosphatidylethanolamine increased from 1. 1 (control plants) to 1. 6 (water-stressed plants), while phosphatidic acid rose to 4% of total phospholipids. Dehydration did not result in any substantial change in the unsaturation level of the individual lipid classes, however. The results show that dryland conditions resulted in a marked alteration in the lipid composition of the sunflower leaf plasma membrane  相似文献   

4.
Of the polar lipids studied (phospholipids and glycolipids), only phosphatidylcholine and sphingomyelin can disperse in water with up to 2 mol cholesterol/mol polar lipid. However, mixtures of phosphatidylethanolamine with small amounts of phosphatidylcholine and mixed lipids from mitochondria and myelin will also form sterol-rich dispersions. Steroids in which the 3β-OH group is replaced by an oxo function do not form such steroid-rich dispersions. Electron microscopy and optical rotatory dispersion (ORD) show that sterols disperse with cerebrosides and gangliosides to form cylindrical structures with the regions around C atoms 3 and 7 of the sterol in less polar environments than those they occupy in phospholipid liposomes.

It is proposed that choline-containing phospholipids facilitate entry of sterol molecules into the outer leaflet of cell surface membranes but that the phospholipid composition itself will not give rise to an asymmetric distribution of sterol in membranes with a high cholesterol content.  相似文献   


5.
We have investigated the action and substrate specificity of phospholipase A2 (EC 3.1.1.4) purified from cobra venom (Naja naja naja) toward intact and Triton-solubilized human erythrocytes, toward ghost membranes, and toward extracted ghost lipids in mixed micelles with Triton X-100. We have found that: (i) phospholipids in the outer surface of intact erythrocytes are extremely poor substrates for the phospholipase, (ii) phospholipids in ghost erythrocyte membranes and in Triton-solubilized erythrocytes are suitable substrates for the enzyme, (iii) in these latter systems which contain a mixture of lipids, phosphatidylethanolamine is preferentially hydrolyzed, whereas in model studies on individual phospholipid species in mixed micelles with Triton, phosphatidylcholine is the preferred substrate of the enzyme, and (iv) the preferential hydrolysis of phosphatidylethanolamine is also observed for extracted ghost lipid mixtures in mixed micelles. These results demonstrate a dependence of phospholipase A2 activity on the ghosting procedure and a dependence of substrate specificity on the presence of other lipids. The relevance of these findings to the interpretation of membrane lipid asymmetry studies utilizing phospholipases is considered in detail.  相似文献   

6.
Plasma membranes were isolated from leaves of 16-day-old garden pea, Pisum sativum L., that had been grown in the absence or presence of 65 nl l−1 ozone for 4 days prior to membrane isolation. Plasma membranes from ozone-fumigated plants contained significantly more acyl lipids per protein than those from leaves of plants grown in filtered air on a molar/weight ratio. The ratio between the major acyl lipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), also increased due to the ozone fumigation, while the fatty acid unsaturation level was unaltered in total plasma membrane acyl lipids, as well as in PC and PE. The amount of free sterols per protein was unaltered, but the percentage of campesterol increased, concomitant with a decrease in stigmasterol. The dynamical properties of the isolated plasma membranes were assessed using Laurdan fluorescence spectroscopy, which monitors water penetration and mobility at the hydrophilic-hydrophobic interface of the membrane. At 0°C, the molecular mobility was slightly lower in plasma membranes from ozone-fumigated plants than in plasma membranes from control plants, possibly reflecting the increased PE/PC, campesterol/stigmasterol and lipid/protein ratios, and suggesting that ozone-fumigated pea plants may be more susceptible to freezing injuries.  相似文献   

7.
A phospholipid transfer protein from yeast (Daum, G. and Paltauf, F. (1984) Biochim. Biophys. Acta 794, 385-391) was 2800-fold enriched by an improved procedure. The specificity of this transfer protein and the influence of membrane properties of acceptor vesicles (lipid composition, charge, fluidity) on the transfer activity were determined in vitro using pyrene-labeled phospholipids. The yeast transfer protein forms a complex with phosphatidylinositol or phosphatidylcholine, respectively, and transfers these two phospholipids between biological and/or artificial membranes. The transfer rate for phosphatidylinositol is 19-fold higher than for phosphatidylcholine as determined with 1:8 mixtures of phosphatidylinositol and phosphatidylcholine in donor and acceptor membrane vesicles. If acceptor membranes consist only of non-transferable phospholipids, e.g., phosphatidylethanolamine, a moderate but significant net transfer of phosphatidylcholine occurs. Phosphatidylcholine transfer is inhibited to a variable extent by negatively charged phospholipids and by fatty acids. Differences in the accessibility of the charged groups of lipids to the transfer protein might account for the different inhibitory effects, which occur in the order phosphatidylserine which is greater than phosphatidylglycerol which is greater than phosphatidylinositol which is greater than cardiolipin which is greater than phosphatidic acid which is greater than fatty acids. Although mitochondrial membranes contain high amounts of negatively charged phospholipids, they serve effectively as acceptor membranes, whereas transfer to vesicles prepared from total mitochondrial lipids is essentially zero. Ergosterol reduces the transfer rate, probably by decreasing membrane fluidity. This notion is supported by data obtained with dipalmitoyl phosphatidylcholine as acceptor vesicle component; in this case the transfer rate is significantly reduced below the phase transition temperature of the phospholipid.  相似文献   

8.
Phospholipids extracted from liver microsomes and mitochondria of ethanol-fed rats retained the resistance to membrane disordered by ethanol which is observed in the intact isolated membranes. The lipid extracts were separated into the major phospholipid classes (phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol from microsomes and phosphatidylcholine, phosphatidylethanolamine and cardiolipin from mitochondria) by preparative TLC. The extent of membrane disordering by ethanol of phospholipid vesicles composed of a mixture of phospholipids from ethanol-fed rats and controls was determined from the reduction of the order parameter of the spin-probe 12-doxyl-stearate. In contrast to previous reports, we found that all phospholipid classes from ethanol-fed rats confer resistance to disordering by ethanol. To a first approximation the extent of resistance was proportional to the fraction of lipids from ethanol-fed rats, regardless of the phospholipid head-group. Subtle differences between phospholipid classes may exist but were too small to measure accurately. Except for phosphatidylethanol, incorporation of anionic phospholipids did not have a significant effect on the sensitivity of phospholipid vesicles to the disordering effect of ethanol. Vesicles prepared from mixtures of various dioleoyl phospholipids and natural phospholipids did not indicate a clear effect of fatty acid saturation on the sensitivity to disordering by ethanol. Although the precise molecular changes that occur in phospholipids from ethanol-fed rats have not been fully characterized it appears that subtle changes in all phospholipid classes contribute to the resistance to ethanol disordering of these membranes.  相似文献   

9.
PDC-109 is the main component of bovine seminal plasma and has been suggested to play an important role in the genesis of bovine sperm cells. Here, the effect of binding of PDC-109 to membranes on the structure and physical properties of the lipid phase was investigated. For that, ESR measurements were undertaken on model membranes (lipid vesicles) and on biological membranes (epididymal spermatozoa) by employing various spin-labeled phospholipids. We found that PDC-109 alters the membrane structure of lipid vesicles as well as of bovine epididymal spermatozoa in that the mobility of spin-labeled phospholipids was reduced in the presence of the protein. This immobilizing effect of the protein was not restricted to analogues of phosphatidylcholine but was also detected with spin-labeled phosphatidylethanolamine. However, the extent of immobilization was lower for phosphatidylethanolamine compared with phosphatidylcholine, supporting the lipid headgroup specificity of the protein. Besides phospholipid headgroups, the physical state of membrane lipids is also important for the interaction of PDC-109 with membranes, in that, e.g., the immobilizing effect of the protein on labeled lipids was larger in membranes above the phase transition temperature compared with the effect below this temperature. The results are of relevance for understanding the physiological role of PDC-109 in the genesis of sperm cells.  相似文献   

10.
Summary The interaction of furosemide with different phospholipids was investigated. Its influence on the lipid structure was inferred from its effect on the phase transition properties of lipids and on the conductance of planar bilayer membranes. The thermotropic properties of dipalmitoyl phosphatidylcholine, phosphatidylethanolamine (natural), dipalmitoyl phosphatidylethanolamine, brain sphingomyelin, brain cerebrosides and phosphatidylserine in the presence and absence of furosemide were investigated by differential scanning calorimetry,. The modifying effect of furosemide seems to be strongest on phosphatidylethanolamine (natural) and sphingomyelin bilayers. The propensity of furosemide to decrease the electrical resistance of planar lipid membranes was also studied and it is shown that the drug facilitates the transport of ions. Partition coefficients of furosemide between lipid bilayers and water were measured.Abbreviations DSC differential scanning calorimetry - PLM planar lipid membranes - DPPC dipalmitoyl phosphatidylcholine - DMPC dimyristoyl phosphatidylcholine - PE phosphatidyl ethanol  相似文献   

11.
The activity of purified recombinant yeast dolichyl-phosphomannose synthase (EC 2.4.1.83) was assessed following reconstitution of the enzyme with phospholipids. The yeast synthase, similar to the mammalian enzyme, was active when reconstituted with phosphatidylethanolamine dispersions but had little (less than 5%) activity in stable phosphatidylcholine bilayers. The enzyme was activated by adding increasing amounts of diacylglycerol to phospholipid bilayers, suggesting that activity of the yeast enzyme was dependent on lipid phase properties rather than specific phospholipids. The synthase could also be reconstituted as an active enzyme in bilayers prepared with a commercial crude lipid preparation containing 40% phosphatidylcholine, but at a rate 10% of that occurring in phosphatidylethanolamine. Vesicles composed of the 40% phosphatidylcholine lipid mixture, dolichyl phosphate, and enzyme were leaky in the presence of divalent cations, and dolichyl-phosphomannose synthase did not appear to catalyze the translocation of dolichyl phosphomannose across membranes at a catalytically significant rate under the assay conditions employed.  相似文献   

12.
Characteristics of lipids in the microvillar membranes of octopus photoreceptor cells were studied in order to obtain some information on the membrane environment with rhodopsin in the invertebrate. (1) The membranes contain lipid and protein in almost equal proportion. The majority of lipids are phospholipids. Neutral lipids make up 16% of the total lipids, the major constituent of which is cholesterol. (2) Phosphatidylethanolamine and phosphatidylcholine are the major phospholipids. Phosphatidylserine, ceramide 2-aminoethylphosphonate and sphingomyelin occur as minor components. An unidentified alkaline and acid stable phospholipid was found. (3) The predominant fatty acids of phosphatidylethanolamine and phosphatidylcholine are highly unsaturated such as 22 : 6, 20 : 5 and 20 : 4. The 22 : 6 and 20 : 5 are exclusively linked at the 2-position, but the 20 : 4 is linked significantly at the 1-position of the phospholipids. (4) Major molecular species are 16 : 0/22 : 6 (48.4%) and 16 : 0/20 : 4 (19.6%) in phosphatidylcholine, and 20 : 4/22 : 6 (50.7%) and 16 : 0/22 : 6 (25.6%) in phosphatidylethanolamine.  相似文献   

13.
Organelle biogenesis and intracellular lipid transport in eukaryotes.   总被引:8,自引:1,他引:7  
The inter- and intramembrane transport of phospholipids, sphingolipids, and sterols involves the most fundamental processes of membrane biogenesis. Identification of the mechanisms involved in these lipid transport reactions has lagged significantly behind that for intermembrane protein traffic until recently. Application of methods that include fluorescently labeled and spin-labeled lipid analogs, new cellular fractionation techniques, topographically specific chemical modification techniques, the identification of organelle-specific metabolism, permeabilized cell methodology, and yeast molecular genetics has contributed to revealing a diverse biochemical array of transport processes for lipids. Compelling evidence now exists for ATP-dependent, ATP-independent, vesicle-dependent, and vesicle-independent transport processes that are lipid and membrane specific. ATP-dependent transport processes include the transbilayer movement of phosphatidylserine and phosphatidylethanolamine at the plasma membrane and the transport of phosphatidylserine from its site of synthesis to the mitochondria. ATP-independent processes include the transbilayer movement of virtually all lipids at the endoplasmic reticulum, the movement of phosphatidylserine between the inner and outer mitochondrial membranes, and the transfer of nascent phosphatidylcholine and phosphatidylethanolamine to the plasma membrane. The ATP-independent movement of lipids between organelles is believed to be due to the action of lipid transfer proteins, but this still remains to be proved. Vesicle-based transport mechanisms (which are also inherently ATP dependent) include the transport of nascent cholesterol, sphingomyelin, and glycosphingolipids from the Golgi apparatus to the plasma membrane and the recycling of sphingolipids and selected pools of phosphatidylcholine from the plasma membrane to the cell interior. The vesicles involved in cholesterol transport to the plasma membrane are different from those involved in bulk protein transport to the cell surface. The vesicles involved in recycling sphingomyelin to and from the cell surface are different from those involved in the assembly of newly synthesized sphingolipids into the plasma membrane. The preliminary characterization of these lipid translocation processes suggests divergent rather than unifying mechanisms for lipid transport in organelle assembly.  相似文献   

14.
Plasma membrane lipid alterations induced by NaCl in winter wheat roots   总被引:12,自引:0,他引:12  
A highly enriched plasma membrane traction was isolated by two phase partitioning from wheat roots ( Triticum aestivum L. cv. Vivant) grown with and without 100 m M NaCl. The lipids of the plasma membrane fraction were extracted and characterised. Phosphatidylcholine and phosphatidylethanolamine were the major phospholipids with lesser amounts of phosphandylinositol, phosphatidylglycerol, diphosphalidylglycerol, phosphatidic acid and phosphatidylseriae. NaCl decreased the total phospholipids and the phosphatidylcholine portion of the plasma membranes. Salt treatment had no effect on total sterols and glycolipids. but the relative abundance of the tree sterols was altered: cholesterol, stigma sterol and brassicasterol were significantly increased. Salt treatment resulted in an increase of the more planar/less planar ratio of the free sterols and in introduction of a double bond in the C22 position in the side chain of stigma sterol and brassicasterol. The degree of fatty acid saturation of total phospholipids, phospha-tidylcholine and phosphatidylethanolamine was increased after salt treatment. These lipid changes are discussed in relation to the salt tolerance mechanism.  相似文献   

15.
The chloroform-methanol extractable lipids of the soil filamentous fungus Absidia corymbifera VKMF-965 account for about 20% by weight of dry cells and are composed of low-polarity constituents (about 75% of the total lipids), such as triacylglycerols (mainly), diacylglycerols, sterols and free fatty acids, as well as of glycolipids (about 3%) and phospholipids. The last consist largely of components common to the fungal lipids, namely, phosphatidylethanolamine (38% of the total phospholipids), phosphatidyl-myo-inositol (16%), diphosphatidylglycerol (12%), phosphatidylcholine (7%), phosphatidic acid (6%) and phosphatidylglycerol (3%), and two unusual phospholipids, PL1 (6%) and PL2 (9%). Based on the infrared (IR), (1)H-nuclear magnetic resonance (NMR), (13)C-NMR and mass spectra along with the results of degradation experiment, these two phospholipids have been established to be 1,2-diacyl-sn-glycero-3-phospho(N-acetylethanolamine), or N-acetyl phosphatidylethanolamine, and 1,2-diacyl-sn-glycero-3-phospho(N-ethoxycarbonyl-ethanolamine), respectively. These structures have been confirmed by preparing similar phospholipids from the phosphatidylethanolamine isolated from the same fungus and correlating their chromatographic behaviour, IR and (1)H-NMR spectra with those of PL1 and PL2. So far N-acetyl phosphatidylethanolamine has been detected only in cattle and human brains and a human placenta but its structure was not rigorously proved. PL2 is a novel lipid; to our knowledge no natural phospholipid with an urethane group has yet been found. The main fatty acids of both the phospholipids are n-hexadecanoic, octadecanoic and octadecadienoic ones; PL2 contains in addition a considerable amount of octadecatrienoic acid with its greater portion located at the sn-1 position.  相似文献   

16.
Although the results of lipid analyses from several plant species have been available for many years a complete characterization of the corn root plasma membrane is still lacking. The present study provides a detailed analysis of individual lipids and a characterization of the membrane fluidity of corn (Zea mays L.) root plasma membranes isolated by phase-partitioning. Phospholipids (43.9 mol%), sterols (40.8 mol%), and sphingolipids in the form of glucocerebroside (6.8 mol%) constitute the major lipid classes. Stigmasterol (19.8 mol%), campesterol (13.0 mol%), phosphatidylcholine 15.8 mol%), and phosphatidylethanolamine (14.2 mol%) represent the most ubiquitous individual lipids. Hydroxy fatty acids make up 80.9 mol% and very long chain fatty acids are almost 78% of fatty acids in glucocerebroside. Hydroxy arachidic acid (20:0 h) and hydroxy lignoceric acid (24:0 h) are most prominent and glucocerebroside from corn root plasma membranes contains virtually no unsaturated fatty acids. Among the phospholipids only phosphatidylserine displayed a high proportion of very long chain fatty acids (e.g., behenic and lignoceric acid). Membrane fluidity was estimated by fluorescence anisotropy. Due to the high sterol content the plasma membrane of corn roots is relatively rigid.  相似文献   

17.
The lipid composition of highly purified Flury strain of rabies virus (HEP) propagated in BHK-21 cells in a chemically defined medium was observed to be 6.7% neutral lipids, 15.8% phospholipids, and 1.5% glycolipids. In the virion, phosphatidylethanolamine, phosphatidylcholine, and sphingomyelin were the most abundant phospholipids, accounting for 90% of the total, and the molar ratio of cholesterol to phospholipid was 0.48. Uninfected BHK-21 cell membranes were obtained by nitrogen cavitation techniques and separated by density gradient centrifugation, and the membranes were assayed for purity using 5'-nucleotidase, cytochrome oxidase, and reduced nicotinamide adenine dinucleotide phosphate diaphorase activities. Lipids of the plasma membrane were enriched in cholesterol, phosphatidylcholine, and phosphatidylethanolamine. In contrast, membranes of the endoplasmic reticulum were enriched in phosphatidylcholine, but contained smaller amounts of phosphatidylethanolamine and sphingomyelin. Comparison of the fatty acyl chains of virus and membranes from uninfected cells revealed the virion to have the lowest ratio of C18:1 to C18:0 (1.771), compared with values of about 3.0 for the plasma membrane and endoplasmic reticulum. Total polyenoic fatty acids were enriched in the plasma membrane, whereas the virus contained higher amounts of total saturates than either of the two membrane preparations. Analysis of the polar and neutral lipid fractions as well as the acyl chain analysis suggests the virion has a lipid composition that is intermiediate to that of the plasma membrane and endoplasmic reticulum and is consistent with the view that numerous viral particles are synthesized de novo by not utilizing a preexisting membrane template. From the ratio of cholesterol to phospholipid of 0.48, we calculated that 1.92 X 10(5) molecules of lipid would cover 4.14 X 10(4) nm2 in the form of a bilayer. Considerations of the molecular dimensions of the rabies envelope (total surface area, 5 X 10(4) nm2) as a bilayer suggest that some penetration of lipids by envelope proteins (M and G) is necessary.  相似文献   

18.
Anammox bacteria that are capable of anaerobically oxidizing ammonium (anammox) with nitrite to nitrogen gas produce unique membrane phospholipids that comprise hydrocarbon chains with three or five linearly condensed cyclobutane rings. To gain insight into the biophysical properties of these ‘ladderane’ lipids, we have isolated a ladderane phosphatidylcholine and a mixed ladderane phosphatidylethanolamine/phosphatidylglycerol lipid fraction and reconstituted these lipids in different membrane environments. Langmuir monolayer experiments demonstrated that the purified ladderane phospholipids form fluid films with a relatively high lipid packing density. Fluid-like behavior was also observed for ladderane lipids in bilayer systems as monitored by cryo-electron microscopy on large unilamellar vesicles (LUVs) and epi-fluorescence microscopy on giant unilamellar vesicles (GUVs). Analysis of the LUVs by fluorescence depolarization revealed a relatively high acyl chain ordering in the hydrophobic region of the ladderane phospholipids. Micropipette aspiration experiments were applied to study the mechanical properties of ladderane containing lipid bilayers and showed a relatively high apparent area compressibility modulus for ladderane containing GUVs, thereby confirming the fluid and acyl chain ordered characteristics of these lipids. The biophysical findings in this study support the previous postulation that dense membranes in anammox cells protect these microbes against the highly toxic and volatile anammox metabolites.  相似文献   

19.
It is generally recognized nowadays that active lipid metabolism takes place in the nucleus of a mammalian cell. Experimental data testify to the biosynthesis of polyphosphoinositides and phosphatidylcholine and reveal corresponding enzymes within nuclei of mammalian cells. These findings suggest that lipidmediated signaling pathways in nuclei operate independently of lipid-mediated regulatory mechanisms functioning in membranes and cytosol. To explore the pathways of intranuclear lipid biosynthesis, we studied incorporation of 2-14C-acetate into lipids of cytosol and isolated nuclei of rat thymus cells after separate and combined incubation with the labeled precursor. The most efficient incorporation of 2-14C-acetate into lipids (cholesterol, free fatty acids, and phospholipids) was observed in a reaction mixture containing cytosol. When the reaction mixture contained only nuclei, incorporation of the radioactive precursor into lipids also took place, but specific radioactivity of the lipids was essentially lower than in the cytosol. In both cases, 2-14C-acetate incorporated into phosphatidylethanolamine, sphingomyelin, phosphatidylserine, phosphatidylinositol, and cardiolipin. Phosphatidylcholine, the most abundant membrane phospholipid, demonstrated the lowest radioactivity, which was significantly lower than that of phosphatidylethanolamine. Incorporation of newly synthesized free fatty acids in nuclear phospholipids was inhibited, if nuclei were incubated with cytosol. As a result, radioactive free fatty acids were accumulated in nuclei, while in cytosol they were efficiently incorporated into phospholipids. The levels of phospholipids and cholesterol remained constant regardless of incubation protocol, while the overall yield of free fatty acids decreased after combined incubation of nuclear and cytosolic fractions or after incubation of cytosol without nuclei. Putative mechanisms underlying the appearance of radioactive lipids in isolated nuclei of thymus cells are discussed.  相似文献   

20.
Parameters of the physicochemical regulatory system of lipid peroxidation in the liver of white outbred mice (females) were studied before and during one month after X-ray exposure at the doses less than 1.5 mGy in the autumn and spring-summer seasons. The initial value of parameters is found to exert the most substantial influence on the liver relative mass, the phosphatidylcholine and lysoform relative content in the liver phospholipids of mice. The reliable diminution and the substantial influence of the dose rate dynamics during irradiation are revealed for the molar ratio of [sterols]/[phospholipids], the phosphatidylcholine/phosphatidylethanolamine ratio and the ratio of sums of the more easily oxidizable to the more poorly oxidizable fractions ofphospolipids. The experimental data testify to the complicated nonlinear character of the biological effects of X-irradiation at low doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号