首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The long control region of bovine papillomavirus type 1 (BPV-1) can function in an orientation- and position-independent manner as an E2-dependent enhancer. Dissection of the long control region has revealed two E2-responsive elements, E2RE1 and E2RE2, which map, respectively, between nucleotides 7611 and 7806 and between nucleotides 7200 and 7386 of the BPV-1 genome. In this study, we have carried out a detailed analysis of E2RE1, which has previously been shown to be involved in the regulation of the BPV-1 promoters P89 and P7940. One characteristic of E2RE1 is the presence of a pair of ACCN6GGT motifs (E2 binding sites) at each end of the element. To determine the contribution of these sites, as well as other sequences within E2RE1, to enhancer function, specific mutations and deletions were generated by oligonucleotide reconstruction. The functional analysis of these mutations confirmed that a pair of E2 binding sites was essential for E2-dependent enhancer activity but also indicated that cooperativity between the motifs at each end of E2RE1 creates a highly responsive element. Isolated ACCN6GGT motif pairs could also act as E2-dependent enhancers but at a significantly reduced level in comparison to the intact element. The sequences between the E2 binding sites in E2RE1 were not required for enhancer function and could actually block the enhancer activity of an isolated pair of E2 binding sites when positioned between the binding sites and the enhancer-deleted simian virus 40 early promoter.  相似文献   

3.
4.
5.
6.
Papillomavirus E6 proteins are adapters that change the function of cellular regulatory proteins. The bovine papillomavirus type 1 E6 (BE6) binds to LXXLL peptide sequences termed LD motifs (consensus sequence LDXLLXXL) on the cellular protein paxillin that is a substrate of Src and focal adhesion kinases. Anchorage-independent transformation induced by BE6 required both paxillin and BE6-binding LD motifs on paxillin but was independent of the major tyrosine phosphorylation sites of paxillin. The essential role of paxillin in transformation by BE6 highlights the role of paxillin in the transduction of cellular signals that result in anchorage-independent cell proliferation.  相似文献   

7.
8.
Bovine papillomavirus type 1 (BPV-1) is a small DNA virus that causes fibropapillomas of the host. BPV-1 has served as the prototype for studies of the molecular biology of the papillomaviruses. BPV-1 efficiently induces anchorage-independent growth and focus formation in murine C127 cells. The transforming properties of BPV-1 primarily reside in two genes, E5 and E6. Each of these genes is sufficient to transform cells. Although no independent transformation activity has been detected for E7, it was shown to be required for full transformation of C127 by BPV-1. We investigated the biological activities of BPV-1 E7 in several assays. Our results indicate that expression of BPV-1 E7 sensitizes cells to tumor necrosis factor alpha (TNF)-induced apoptosis. The TNF-induced apoptosis in E7-expressing cells was accompanied by increased release of arachidonic acid, indicating that phospholipase A(2) was activated. Unlike the E7 proteins from the cancer-related human papillomaviruses, the BPV-1 E7 protein does not associate efficiently with the retinoblastoma protein (pRB) in vitro, nor does it significantly affect the pRB levels in cultured cells. Furthermore, BPV-1 E7 sensitizes Rb-null cells to TNF-induced apoptosis. These studies indicate that BPV-1 E7 can sensitize cells to apoptosis through mechanisms that are independent of pRB.  相似文献   

9.
10.
11.
Chon SK  Rim BM  Im DS 《IUBMB life》1999,48(4):397-404
Adeno-associated virus type-2 (AAV-2) is a helper-dependent parvovirus that has been implicated in the inhibition of replication and oncogenic transformation of bovine papillomavirus type-1 (BPV-1) and other transforming DNA viruses. Previous studies have suggested that the Rep78 protein of AAV-2 is a key player mediating this effect. In this report we have analyzed the effect of AAV-2 Rep78 protein on the regulation of gene expression of a reporter gene under the control of the long control region (LCR) of BPV-1. Our results show that Rep78 is capable of down-regulating the promoter activity of the LCR in vivo in tissue culture cells. Inhibition of LCR activity in vivo suggested the need for Rep78 to bind to a region of the LCR promoter spanning the E2-responsive elements of BPV-1. This observation was further confirmed in vitro with gel shift assays showing specific binding of Rep78 to DNA oligonucleotides containing E2-responsive element 1 (E2RE1) sequences of BPV-1 LCR. Our results expand the understanding of the mechanism of trans-regulation mediated by Rep78 and involving this protein and DNA sequences with complex secondary structure.  相似文献   

12.
A common feature of replicator sequences from a variety of organisms is multiple binding sites for an initiator protein. By binding to the replicator, initiators mark the site and contribute to melting or distortion of the DNA. We have defined the recognition sequence for the papillomavirus E1 initiator and determined the arrangement of binding sites in the viral origin of replication. We show that E1 recognizes a hexanucleotide sequence which is present in overlapping arrays in virtually all papillomavirus replicators. Binding of the initiator to these sites would result in the formation of a closely packed array of E1 molecules that wrap around the double helix.  相似文献   

13.
In addition to viral proteins E1 and E2, bovine papillomavirus type 1 (BPV1) depends heavily on host replication machinery for genome duplication. It was previously shown that E1 binds to and recruits cellular replication proteins to the BPV1 origin of replication, including DNA polymerase alpha-primase, replication protein A (RPA), and more recently, human topoisomerase I (Topo I). Here, we show that Topo I specifically stimulates the origin binding of E1 severalfold but has no effect on nonorigin DNA binding. This is highly specific, as binding to nonorigin DNA is not stimulated, and other cellular proteins that bind E1, such as RPA and polymerase alpha-primase, show no such effect. The stimulation of E1's origin binding by Topo I is not synergistic with the stimulation by E2. Although the enhanced origin binding of E1 by Topo I requires ATP and Mg2+ for optimal efficiency, ATP hydrolysis is not required. Using an enzyme-linked immunosorbent assay, we showed that the interaction between E1 and Topo I is decreased in the presence of DNA. Our results suggest that Topo I participates in the initiation of papillomavirus DNA replication by enhancing E1 binding to the BPV1 origin.  相似文献   

14.
15.
Ilves I  Kivi S  Ustav M 《Journal of virology》1999,73(5):4404-4412
Papillomavirus genomes are stably maintained as extrachromosomal nuclear plasmids in dividing host cells. To address the mechanisms responsible for stable maintenance of virus, we examined nuclear compartmentalization of plasmids containing the full-length upstream regulatory region (URR) from the bovine papillomavirus type 1 (BPV1) genome. We found that these plasmids are tightly associated with the nuclear chromatin both in the stable cell lines that maintain episomal copies of the plasmids and in transiently transfected cells expressing the viral E1 and E2 proteins. Further analysis of viral factors revealed that the E2 protein in trans and its multiple binding sites in cis are both necessary and sufficient for the chromatin attachment of the plasmids. On the other hand, the BPV1 URR-dependent plasmid replication and chromatin attachment processes are clearly independent of each other. The ability of the plasmids to stably maintain episomes correlates clearly with their chromatin association function. These data suggest that viral E2 protein-mediated attachment of BPV1 genomes to the host cell chromatin could provide a mechanism for the coupling of viral genome multiplication and partitioning to the host cell cycle during viral latent infection.  相似文献   

16.
Expression of the high-risk human papillomavirus (HPV) E6 and E7 oncogenes is essential for the initiation and maintenance of cervical cancer. The repression of both was previously shown to result in activation of their respective tumor suppressor targets, p53 and pRb, and subsequent senescence induction in cervical cancer cells. Consequently, viral oncogene suppression is a promising approach for the treatment of HPV-positive tumors. One well-established method of E6/E7 repression involves the reexpression of the viral E2 protein which is usually deleted in HPV-positive cancer cells. Here, we show that, surprisingly, bovine papillomavirus type 1 (BPV1) E2 but not RNA interference-mediated E6/E7 repression in HPV-positive cervical cancer cells stimulates cellular motility and invasion. Migration correlated with the dynamic formation of cellular protrusions and was dependent upon cell-to-cell contact. While E2-expressing migratory cells were senescent, migration was not a general feature of cellular senescence or cell cycle arrest and was specifically observed in HPV-positive cervical cancer cells. Interestingly, E2-expressing cells not only were themselves motile but also conferred increased motility to admixed HeLa cervical cancer cells. Together, our data suggest that repression of the viral oncogenes by E2 stimulates the motility of E6/E7-targeted cells as well as adjacent nontargeted cancer cells, thus raising the possibility that E2 expression may unfavorably increase the local invasiveness of HPV-positive tumors.  相似文献   

17.
18.
To examine the biological properties of the bovine papillomavirus type 1 (BPV) and human papillomavirus type 16 (HPV16) E5 genes, each was cloned separately into a retroviral expression vector and helper-free recombinant viruses were generated in packaging cell lines. The BPV E5 retroviruses efficiently caused morphologic and tumorigenic transformation of cultured lines of murine fibroblasts, whereas the HPV16 E5 viruses were inactive in these assays. In contrast, infection of the p117 established line of murine epidermal keratinocytes with either the BPV or the HPV16 E5 retrovirus resulted in the generation of tumorigenic cells. Pam212 murine keratinocytes were also transformed to tumorigenicity by the HPV16 E5 gene but not by the gene carrying a frameshift mutation. These results establish that the HPV16 E5 gene is a transforming gene in cells related to its normal host epithelial cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号