首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Proteins in the forkhead box O (FOXO) family contain three Akt phosphorylation sites that are important for export of the protein from the nucleus to the cytosol. In mammalian FOXO1, phosphorylation of serine 256 (S256) is a prerequisite for the phosphorylation of the other two sites. Although Drosophila FOXO (dFOXO) contains three well-conserved Akt phosphorylation sites, their role in the regulation of Drosophila physiology is not well understood. In the present study, we examine the regulation and function of phosphorylation at serine 190 (S190), which corresponds to S256 of mammalian FOXO1. Insulin and Akt were shown to increase S190 phosphorylation of dFOXO. Moreover, dFOXO nuclear export was induced by insulin treatment in both fly tissues and transfected Drosophila and human cells, and a protein containing an alanine substitution at S190 (dFOXOS190A) was defective in these insulin-dependent responses, suggesting that S190 phosphorylation is required for dFOXO nuclear export. Interestingly, dFOXOS190A and dFOXOS190D mutants showed lower target gene expression and a reduced ability to induce cell death compared to wild-type dFOXO. These results suggest that the S190 residue is required for dFOXO translocation and is important for the pro-apoptotic function of dFOXO.  相似文献   

10.
11.
Serine/threonine phosphorylation of insulin receptor substrate 1 (IRS-1) has been implicated as a negative regulator of insulin signaling. Prior studies have indicated that this negative regulation by protein kinase C involves the mitogen-activated protein kinase and phosphorylation of serine 612 in IRS-1. In the present studies, the negative regulation by platelet-derived growth factor (PDGF) was compared with that induced by endothelin-1, an activator of protein kinase C. In contrast to endothelin-1, the inhibitory effects of PDGF did not require mitogen-activated protein kinase or the phosphorylation of serine 612. Instead, three other serines in the phosphorylation domain of IRS-1 (serines 632, 662, and 731) were required for the negative regulation by PDGF. In addition, the PDGF-activated serine/threonine kinase called Akt was found to inhibit insulin signaling. Moreover, this inhibition required the same IRS-1 serine residues as the inhibition by PDGF. Finally, the negative regulatory effects of PDGF and Akt were inhibited by rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), one of the downstream targets of Akt. These studies implicate the phosphatidylinositol 3-kinase/Akt kinase cascade as an additional negative regulatory pathway for the insulin signaling cascade.  相似文献   

12.
Skeletal muscle insulin sensitivity improves with short-term reduction in calorie intake. The goal of this study was to evaluate changes in the abundance and phosphorylation of Akt1 and Akt2 as potential mechanisms for enhanced insulin action after 20 days of moderate calorie restriction [CR; 60% of ad libitum (AL) intake] in rat skeletal muscle. We also assessed changes in the abundance of SH2 domain-containing inositol phosphatase (SHIP2), a negative regulator of insulin signaling. Fisher 344 x Brown Norway rats were assigned to an AL control group or a CR treatment group for 20 days. Epitrochlearis muscles were dissected and incubated with or without insulin (500 microU/ml). Total Akt serine and threonine phosphorylation was significantly increased by 32 (P < 0.01) and 30% (P < 0.005) in insulin-stimulated muscles from CR vs. AL. Despite an increase in total Akt phosphorylation, there was no difference in Akt1 serine or Akt1 threonine phosphorylation between CR and AL insulin-treated muscles. However, there was a 30% decrease (P < 0.05) in Akt1 abundance for CR vs. AL. In contrast, there was no change in Akt2 protein abundance, and there was a 94% increase (P < 0.05) in Akt2 serine phosphorylation and an increase of 75% (P < 0.05) in Akt2 threonine phosphorylation of insulin-stimulated CR muscles compared with AL. There was no diet effect on SHIP2 abundance in skeletal muscle. These results suggest that, with brief CR, enhanced Akt2 phosphorylation may play a role in increasing insulin sensitivity in rat skeletal muscles.  相似文献   

13.
14.
Gab1 (Grb2-associated binder1) belongs to a family of multifunctional docking proteins that play a central role in the integration of receptor tyrosine kinase (RTK) signaling, i.e., mediating cellular growth response, transformation, and apoptosis. In addition to RTK-specific tyrosine phosphorylation, these docking proteins also can be phosphorylated on serine/threonine residues affecting signal transduction. Since serine and threonine phosphorylation are capable of modulating the initial signal one major task to elucidate signal transduction via Gab1 is to determine the exact localization of distinct phosphorylation sites. To address this question in this report we examined extracellular signal-regulated kinases 1/2 (ERK) specific serine/threonine phosphorylation of the entire Gab1 engaged in insulin signaling in more detail in vitro. To elucidate the ERK1/2-specific phosphorylation pattern of Gab1, we used phosphopeptide mapping by two-dimensional HPLC analysis. Subsequently, phosphorylated serine/threonine residues were identified by sequencing the separated phosphopeptides using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) and Edman degradation. Our results demonstrate that ERK1/2 phosphorylate Gab1 at six serine/threonine residues (T312, S381, S454, T476, S581, S597) in consensus motifs for MAP kinase phosphorylation. Serine residues S454, S581, S597, and threonine residue T476 represent nearly 80% of overall incorporated phosphate. These sites are located adjacent to src homology region-2 (SH2) binding motifs (YVPM-motif: Y447, Y472, Y619) specific for the phosphatidylinositol 3kinase (PI3K). The biological role of identified phosphorylation sites was proven by PI3K and Akt activity in intact cells. These data demonstrate that ERK1/2 modulate insulin action via Gab1 by targeting serine and threonine residues beside YXXM motifs. Accordingly, insulin signaling is blocked at the level of PI3K.  相似文献   

15.
16.
Phosphorylation of insulin receptor substrate (IRS)-2 on tyrosine residues is a key event in IGF-1/insulin signaling and leads to activation of the PI 3-kinase and the Ras/MAPK pathway. Furthermore, phosphorylated serine/threonine residues on IRS-2 can induce 14-3-3 binding. In this study we searched IRS-2 for novel phosphorylation sites and investigated the interaction between IRS-2 and 14-3-3. Mass spectrometry identified a total of 24 serine/threonine residues on IRS-2 with 12 sites unique for IRS-2 while the other residues are conserved in IRS-1 and IRS-2. IGF-1 stimulation led to increased binding of 14-3-3 to IRS-2 in transfected HEK293 cells and this binding was prevented by inhibition of the PI 3-kinase pathway and an Akt/PKB inhibitor. Insulin-stimulated interaction between endogenous IRS-2 and 14-3-3 was observed in rat hepatoma cells and in mice liver after an acute insulin stimulus and refeeding. Using different IRS-2 fragments enabled localization of the IGF-1-dependent 14-3-3 binding region spanning amino acids 300-600. The 24 identified residues on IRS-2 included several 14-3-3 binding candidates in the region 300-600. Single alanine mutants of these candidates led to the identification of serine 573 as 14-3-3 binding site. A phospho-site specific antibody was generated to further characterize serine 573. IGF-1-dependent phosphorylation of serine 573 was reduced by inhibition of PI 3-kinase and Akt/PKB. A negative role of this phosphorylation site was implicated by the alanine mutant of serine 573 which led to enhanced phosphorylation of Akt/PKB in an IGF-1 time course experiment. To conclude, our data suggest a physiologically relevant role for IGF-1/insulin-dependent 14-3-3 binding to IRS-2 involving serine 573.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号