首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to gravitational stresses, angiosperm trees form tension wood in the upper sides of branches and leaning stems in which cellulose content is higher, microfibrils are typically aligned closely with the fibre axis and the fibres often have a thick inner gelatinous cell wall layer (G-layer). Gene expression was studied in Eucalyptus nitens branches oriented at 45 degrees using microarrays containing 4900 xylem cDNAs, and wood fibre characteristics revealed by X-ray diffraction, chemical and histochemical methods. Xylem fibres in tension wood (upper branch) had a low microfibril angle, contained few fibres with G-layers and had higher cellulose and decreased Klason lignin compared with lower branch wood. Expression of two closely related fasciclin-like arabinogalactan proteins and a beta-tubulin was inversely correlated with microfibril angle in upper and lower xylem from branches. Structural and chemical modifications throughout the secondary cell walls of fibres sufficient to resist tension forces in branches can occur in the absence of G-layer enriched fibres and some important genes involved in responses to gravitational stress in eucalypt xylem are identified.  相似文献   

2.
The distribution of noncellulosic polysaccharides in cell walls of tracheids and xylem parenchyma cells in normal and compression wood of Pinus radiata, was examined to determine the relationships with lignification and cellulose microfibril orientation. Using fluorescence microscopy combined with immunocytochemistry, monoclonal antibodies were used to detect xyloglucan (LM15), β(1,4)-galactan (LM5), heteroxylan (LM10 and LM11), and galactoglucomannan (LM21 and LM22). Lignin and crystalline cellulose were localized on the same sections used for immunocytochemistry by autofluorescence and polarized light microscopy, respectively. Changes in the distribution of noncellulosic polysaccharides between normal and compression wood were associated with changes in lignin distribution. Increased lignification of compression wood secondary walls was associated with novel deposition of β(1,4)-galactan and with reduced amounts of xylan and mannan in the outer S2 (S2L) region of tracheids. Xylan and mannan were detected in all lignified xylem cell types (tracheids, ray tracheids, and thick-walled ray parenchyma) but were not detected in unlignified cell types (thin-walled ray parenchyma and resin canal parenchyma). Mannan was absent from the highly lignified compound middle lamella, but xylan occurred throughout the cell walls of tracheids. Using colocalization measurements, we confirmed that polysaccharides containing galactose, mannose, and xylose have consistent correlations with lignification. Low or unsubstituted xylans were localized in cell wall layers characterized by transverse cellulose microfibril orientation in both normal and compression wood tracheids. Our results support the theory that the assembly of wood cell walls, including lignification and microfibril orientation, may be mediated by changes in the amount and distribution of noncellulosic polysaccharides.  相似文献   

3.
Tension wood is widespread in the organs of woody plants. During its formation, it generates a large tensile mechanical stress called maturation stress. Maturation stress performs essential biomechanical functions such as optimizing the mechanical resistance of the stem, performing adaptive movements, and ensuring the long-term stability of growing plants. Although various hypotheses have recently been proposed, the mechanism generating maturation stress is not yet fully understood. In order to discriminate between these hypotheses, we investigated structural changes in cellulose microfibrils along sequences of xylem cell differentiation in tension and normal wood of poplar (Populus deltoides × Populus trichocarpa 'I45-51'). Synchrotron radiation microdiffraction was used to measure the evolution of the angle and lattice spacing of crystalline cellulose associated with the deposition of successive cell wall layers. Profiles of normal and tension wood were very similar in early development stages corresponding to the formation of the S1 layer and the outer part of the S2 layer. Subsequent layers were found with a lower microfibril angle (MFA), corresponding to the inner part of the S2 layer of normal wood (MFA approximately 10°) and the G layer of tension wood (MFA approximately 0°). In tension wood only, this steep decrease in MFA occurred together with an increase in cellulose lattice spacing. The relative increase in lattice spacing was found close to the usual value of maturation strains. Analysis showed that this increase in lattice spacing is at least partly due to mechanical stress induced in cellulose microfibrils soon after their deposition, suggesting that the G layer directly generates and supports the tensile maturation stress in poplar tension wood.  相似文献   

4.
The fine structure of lignin deposition was examined in developing secondary walls of wound vessel members in Coleus. KMnO4, which was used as the fixative, selectively reacts with the lignin component of the cell wall and thus can be used as a highly sensitive electron stain to follow the course of lignification during secondary wall deposition. Lignin was first detected as conspicuuos electron-opaque granules in the primary wall in the region where the secondary wall thickening arises and as fine granular striations extending into the very young secondary wall. As the secondary wall develops lignification becomes progressively more extensive. In cross sections the lignified secondary wall appears as concentric, fine granular striations; in tangent al or oblique sections it is seen as delicate, beaded fibrils paralleling the long axis of the thickening. High magnification of tangential or oblique sections shows that the fibrillar appearance is due to the presence of alternating light and dark layers each approximately 25-35 A wide. It is assumed that the light layers are the cellulose microfibrils and the dark regions contain lignin which fills the space between the microfibrils. KMnO4, by selectively reacting with lignin, thus negatively stains the cellulose microfibrils revealing their orientation and dimensions.  相似文献   

5.
J. Cronshaw 《Planta》1966,72(1):78-90
Summary Sterile pith cultures of Nicotiana tabacum have been induced to form localized regions of differentiating tracheids. These localized regions have been examined by phase, fluorescence, and electron microscopy, and polarization optics. Fixation for electron microscopy was with glutaraldehyde-osmium. The differentiating tracheids develop characteristic thick cell walls which are eventually lignified. The lignifications appear to be uniform throughout the secondary wall and little or no lignin appears to be deposited in the primary walls or intercellular layer. At all stages of secondary wall deposition, the peripheral cytoplasm contains a system of microtubules which form a pattern similar to that of the developing thickenings. Within this system the microtubules are oriented, the direction of orientation mirroring that of the fibrils in the most recently deposited parts of the wall. The observations support the view that the microtubules are somehow involved in microfibril orientation. The microtubules appear to be attached to the plasma membrane which has a triple layered structure. The two electron dense layers of the plasma membrane have a particulate structure. In the differentiating tracheids at regions where secondary wall thickening has not yet been deposited numerous invaginations of the plasma membrane are observed which contain loosely organized fibrillar material. It is suggested that these are areas of localized activity of the plasma membrane and that the enzymes concerned with the final organization of the cellulose microfibrils are situated at the surface of the plasma membrane. Dictyosomes in the differentiation cells give rise to vesicles which contain fibrous material and the contents are incorporated into the cell wall. Numerous profiles characteristic of plasmodesmata are evident in sections of the secondary thickenings.Part of this work was carried out at the Osborne Memorial Laboratories, Yale University.  相似文献   

6.
The brown alga Sphacelaria rigidula Kützing synthesizes cellulose microfibrils as determined by CBH I-gold labeling. The cellulose microfibrils are thin, ribbon-like structures with a uniform thickness of about 2.6 nm and a variable width in the range of 2.6-30 nm. Some striations appear along the longitudinal axis of the microfibrils. The developed cell wall in Sphacelaria is composed of three to four layers, and cellulose micro-fibrils are deposited in the third layer from the outside of the wall. A freeze fracture investigation of this alga revealed cellulose-synthesizing terminal complexes (TCs), which are associated with the tip of microfibril impressions in the plasmatic fracture face of the plasma membrane. The TCs consist of subunits arranged in a single linear row. The average diameter of the sub-units is about 6 nm, and the intervals between the neighboring subunits, about 9 nm, are relatively constant. The number of subunits constituting the TC varies between 10 and 100, so that the length of the whole TC varies widely. A model that has been proposed for the assembly of thin, ribbon-like microfibrils was applied to microfibril assembly in Sphacelaria.  相似文献   

7.
8.
Cellulose microfibril angle in the cell wall of wood fibres   总被引:1,自引:0,他引:1  
The term microfibril angle (MFA) in wood science refers to the angle between the direction of the helical windings of cellulose microfibrils in the secondary cell wall of fibres and tracheids and the long axis of cell. Technologically, it is usually applied to the orientation of cellulose microfibrils in the S2 layer that makes up the greatest proportion of the wall thickness, since it is this which most affects the physical properties of wood. This review describes the organisation of the cellulose component of the secondary wall of fibres and tracheids and the various methods that have been used for the measurement of MFA. It considers the variation of MFA within the tree and the biological reason for the large differences found between juvenile (or core) wood and mature (or outer) wood. The ability of the tree to vary MFA in response to environmental stress, particularly in reaction wood, is also described. Differences in MFA have a profound effect on the properties of wood, in particular its stiffness. The large MFA in juvenile wood confers low stiffness and gives the sapling the flexibility it needs to survive high winds without breaking. It also means, however, that timber containing a high proportion of juvenile wood is unsuitable for use as high-grade structural timber. This fact has taken on increasing importance in view of the trend in forestry towards short rotation cropping of fast grown species. These trees at harvest may contain 50% or more of timber with low stiffness and therefore, low economic value. Although they are presently grown mainly for pulp, pressure for increased timber production means that ways will be sought to improve the quality of their timber by reducing juvenile wood MFA. The mechanism by which the orientation of microfibril deposition is controlled is still a matter of debate. However, the application of molecular techniques is likely to enable modification of this process. The extent to which these techniques should be used to improve timber quality by reducing MFA in juvenile wood is, however, uncertain, since care must be taken to avoid compromising the safety of the tree.  相似文献   

9.
A fine structure of cell wall lamellae in a coenocytic green algaBoergesenia forbesii was examined by electron microscopy. The wall has a polylamellate structure containing cellulose microfibrils 25 to 30 nm in diameter. The outer surface of the cell was covered by a thin structureless lamella, underneath which existed a lamella containing randomly-oriented microfibrils. The major part of the wall consisted of two types of lamellae, multifibrillar lamella and a transitional, matrix-rich one. In the former, microfibrils were densely arranged more or less parallel with each other. In the transitional lamella, existing between the multifibrillar ones, the microfibril orientation shifted about 30° within the layer. The fibril orientation also shifted 30° between adjacent transitional and multifibrillar layers, and consequently the microfibril orientation in the neighboring multifibrillar layers shifted 90°. It was concluded that the orientation rotated counterclockwise when observed from inside the cell. Each lamella in the thallus wall become thinner with cell expansion, but no reorientation of microfibrils in the outer old layers was observed. In the rhizoid, the outer lamellae sloughed off with the tip growth.  相似文献   

10.
Agarwal UP 《Planta》2006,224(5):1141-1153
A detailed understanding of the structural organization of the cell wall of vascular plants is important from both the perspectives of plant biology and chemistry and of commercial utilization. A state-of-the-art 633-nm laser-based confocal Raman microscope was used to determine the distribution of cell wall components in the cross section of black spruce wood in situ. Chemical information from morphologically distinct cell wall regions was obtained and Raman images of lignin and cellulose spatial distribution were generated. While cell corner (CC) lignin concentration was the highest on average, lignin concentration in compound middle lamella (CmL) was not significantly different from that in secondary wall (S2 and S2–S3). Images generated using the 1,650 cm−1 band showed that coniferaldehyde and coniferyl alcohol distribution followed that of lignin and no particular cell wall layer/region was therefore enriched in the ethylenic residue. In contrast, cellulose distribution showed the opposite pattern—low concentration in CC and CmL and high in S2 regions. Nevertheless, cellulose concentration varied significantly in some areas, and concentrations of both lignin and cellulose were high in other areas. Though intensity maps of lignin and cellulose distributions are currently interpreted solely in terms of concentration differences, the effect of orientation needs to be carefully considered to reveal the organization of the wood cell wall.The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This article was written and prepared by U.S. Government employees on official time, and it is therefore in the public domain and not subject to copyright. The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service.  相似文献   

11.
Awano T  Takabe K  Fujita M 《Protoplasma》2002,219(1-2):106-115
Summary. Delignified and/or xylanase-treated secondary walls of Fagus crenata fibers were examined by field emission scanning electron microscopy. Microfibrils with a smooth surface were visible in the innermost surface of the differentiating fiber secondary wall. There was no ultrastructural difference between control and delignified sections, indicating that lignin deposition had not started in the innermost surface of the cell wall. There was no ultrastructural difference between control and xylanase-treated sections. Microfibrils on the outer part of the differentiating secondary wall surface had globular substances in delignified sections. These globular substances disappeared following xylanase treatment, indicating that these globules are xylan. The globular substances were not visible near the inner part of the differentiating secondary wall but gradually increased toward the outer part of the secondary wall, indicating that xylan penetrated into the cell wall and continuously accumulated on the microfibrils. Mature-fiber secondary walls were also examined by field emission scanning electron microscopy. Microfibrils were not apparent in the secondary wall in control specimens. Microfibrils with many globular substances were observed in the delignified specimens. Following xylanase treatment, the microfibrils had a smooth surface without any globules, indicating that the globular substance is xylan. These results suggest that cellulose microfibrils synthesized on the plasma membrane are released into the innermost surface of the secondary wall and coated with a thin layer of xylan. Successive deposition of xylan onto the cell wall increases the microfibril diameter. The large amounts of xylan that accumulated on microfibrils appear globular but are covered with lignin after they are deposited. Received February 20, 2001/Accepted September 1, 2001  相似文献   

12.
Joseleau JP  Imai T  Kuroda K  Ruel K 《Planta》2004,219(2):338-345
The occurrence of lignin in the additional gelatinous (G-) layer that differentiates in the secondary wall of hardwoods during tension wood formation has long been debated. In the present work, the ultrastructural distribution of lignin in the cell walls of normal and tension wood fibres from poplar (Populus deltoides Bartr. ex Marshall) was investigated by transmission electron microscopy using cryo-fixation–freeze-substitution in association with immunogold probes directed against typical structural motifs of lignin. The specificity of the immunological probes for condensed and non-condensed guaiacyl and syringyl interunit linkages of lignin, and their high sensitivity, allowed detection of lignin epitopes of definite chemical structures in the G-layer of tension wood fibres. Semi-quantitative distribution of the corresponding epitopes revealed the abundance of syringyl units in the G-layer. Predominating non-condensed lignin sub-structures appeared to be embedded in the crystalline cellulose matrix prevailing in the G-layer. The endwise mode of polymerization that is known to lead to these types of lignin structures appears consistent with such an organized cellulose environment. Immunochemical labelling provides the first visualization in planta of lignin structures within the G-layer of tension wood. The patterns of distribution of syringyl epitopes indicate that syringyl lignin is deposited more intensely in the later phase of fibre secondary wall assembly. The data also illustrate that syringyl lignin synthesis in tension wood fibres is under specific spatial and temporal regulation targeted differentially throughout cell wall layers.Abbreviations G-layer Gelatinous layer - G Guaiacyl monomeric unit - PATAg Periodic acid–thiocarbohydrazide–silver proteinate - S Syringyl monomeric unit  相似文献   

13.
Polarised light microscopy and transmission electron microscopy were used to measure the variation in cellulose microfibril orientation across the secondary cell wall of Pinus radiata D. Don tracheids using oblique sections. Variations in orientation for the S1, S2 and S3 layers were determined for radial and tangential cell walls from the juvenile and mature earlywood at the base of the stem and at 5 m height. Microfibrils in the S1 layer are usually arranged in an S-helix (>90°) varying from 79° to 117° among tracheids. Within individual tracheids the microfibril orientation in the S1 region can be quite variable, sometimes changing from an S to Z-helix but without a well-defined crossed structure. Microfibrils in the S2 layer form a Z-helix (<90°) with average orientation varying from 1° to 59° among tracheids, while the S3 layer is also often a Z-helix varying from 50° to113° in orientation. The S2 layer shows significant variation among sample points within the tree related to age and height, while the S1 and S3 layers show small random variations within the tree. Microfibril orientation in the S2 layer is very uniform, although when variation does occur the trend is exclusively for an increase towards the S1 region. Orientation in the S3 layer often varies continuously from the S2 boundary to the lumen. The S3 layer becomes much thinner with increasing age and height, making measurement by light microscopy more difficult. The innermost lamellae of microfibrils at the lumen surface sometimes show a distinctive clustering, forming macrofibrils of varying orientation but this may be the result of delignification treatment.  相似文献   

14.
Olsson AM  Bjurhager I  Gerber L  Sundberg B  Salmén L 《Planta》2011,233(6):1277-1286
Polarisation Fourier transform infra-red (FTIR) microspectroscopy was used to characterize the organisation and orientation of wood polymers in normal wood and tension wood from hybrid aspen (Populus tremula × Populus tremuloides). It is shown that both xylan and lignin in normal wood are highly oriented in the fibre wall. Their orientation is parallel with the cellulose microfibrils and hence in the direction of the fibre axis. In tension wood a similar orientation of lignin was found. However, in tension wood absorption peaks normally assigned to xylan exhibited a 90° change in the orientation dependence of the vibrations as compared with normal wood. The molecular origin of these vibrations are not known, but they are abundant enough to mask the orientation dependence of the xylan signal from the S2 layer in tension wood and could possibly come from other pentose sugars present in, or associated with, the gelatinous layer of tension wood fibres.  相似文献   

15.
Confocal Raman microscopy was used to illustrate changes of molecular composition in secondary plant cell wall tissues of poplar (Populus nigra x Populus deltoids) wood. Two-dimensional spectral maps were acquired and chemical images calculated by integrating the intensity of characteristic spectral bands. This enabled direct visualization of the spatial variation of the lignin content without any chemical treatment or staining of the cell wall. A small (0.5 microm) lignified border toward the lumen was observed in the gelatinous layer of poplar tension wood. The variable orientation of the cellulose was also characterized, leading to visualization of the S1 layer with dimensions smaller than 0.5 mum. Scanning Raman microscopy was thus shown to be a powerful, nondestructive tool for imaging changes in molecular cell wall organization with high spatial resolution.  相似文献   

16.
Five specimens that contained a continuous gradient of wood, from normal to tension wood regions, were collected from an inclined yellow poplar (Liriodendron tulipifera), and the released strain of tensile growth stress was quantified. Ultraviolet (UV) microspectrophotometry was used to examine the relationship between lignin distribution in the cell wall and the intensity of tensile growth stress. The UV absorption of the secondary wall and the cell corner middle lamella decreased with increasing tensile released strain (i.e., tensile growth stress). The UV absorption in the compound middle lamella region remained virtually constant, irrespective of the tensile released strain. The absorption maximum (5max) remained virtually constant in the secondary wall, the cell corner middle lamella, and the compound middle lamella region at 273-274, 277-278, and 275-278 nm respectively, irrespective of the tensile released strain. The ratios of the UV absorbance at 280 to 260 nm and 280 to 273 nm of the secondary wall decreased with increasing tensile released strain. The ratios in the cell corner and compound middle lamella region remained constant, irrespective of the tensile released strain. The lignin content of the secondary wall decreased, while the syringyl/guaiacyl ratio increased with increasing tensile released strain. Gelatinous fibers were not observed in the tension wood regions, but the secondary wall became gelatinous-layer-like, i.e., the lignin content and microfibrillar angle decreased and the cellulose content increased. A definite gelatinous layer seems to be important for generating greater tensile growth stress. It is concluded that a decrease in lignin and an increase in cellulose microfibrils parallel to the fiber axis in the secondary wall are necessary to produce large tensile growth stress.  相似文献   

17.
We used atomic force microscopy (AFM), complemented with electron microscopy, to characterize the nanoscale and mesoscale structure of the outer (periclinal) cell wall of onion scale epidermis – a model system for relating wall structure to cell wall mechanics. The epidermal wall contains ~100 lamellae, each ~40 nm thick, containing 3.5‐nm wide cellulose microfibrils oriented in a common direction within a lamella but varying by ~30 to 90° between adjacent lamellae. The wall thus has a crossed polylamellate, not helicoidal, wall structure. Montages of high‐resolution AFM images of the newly deposited wall surface showed that single microfibrils merge into and out of short regions of microfibril bundles, thereby forming a reticulated network. Microfibril direction within a lamella did not change gradually or abruptly across the whole face of the cell, indicating continuity of the lamella across the outer wall. A layer of pectin at the wall surface obscured the underlying cellulose microfibrils when imaged by FESEM, but not by AFM. The AFM thus preferentially detects cellulose microfibrils by probing through the soft matrix in these hydrated walls. AFM‐based nanomechanical maps revealed significant heterogeneity in cell wall stiffness and adhesiveness at the nm scale. By color coding and merging these maps, the spatial distribution of soft and rigid matrix polymers could be visualized in the context of the stiffer microfibrils. Without chemical extraction and dehydration, our results provide multiscale structural details of the primary cell wall in its near‐native state, with implications for microfibrils motions in different lamellae during uniaxial and biaxial extensions.  相似文献   

18.
Summary The marine red algaErythrocladia subintegra synthesizes cellulose microfibrils as determined by CBH I-gold labelling, X-ray and electron diffraction analyses. The cellulose microfibrils are quite thin, ribbon-like structures, 1–1.5 nm in thickness (constant), and 10–33 nm in width (variable). Several laterally associated minicrystal components contribute to the variation in microfibrillar width. Electron diffraction analysis suggested a uniplanar orientation of the microfibrils with their (101) lattice planes parallel to the plasma membrane surface of the cell. The linear particle arrays bound in the plasma membrane and associated with microfibril impressions recently demonstrated inErythrocladia have been shown in this study to be the cellulose-synthesizing terminal complexes (TCs). The TCs appear to be organized by a repetition of transverse rows consisting of four TC subunits, rather than by four rows of longitudinallyarranged TC subunits. The number of transverse rows varied between 8–26, corresponding with variation in the length of the TCs and the width of the microfibrils. The spacings between the neighboring transverse rows are almost constant being 10.5–11.5 nm. Based on the knowledge thatAcetobacter, Vaucheria, andErythrocladia synthesize similar thin, ribbon-like cellulose microfibrils, the structural characteristics common to the organization of distinctive TCs occurring in these three organisms has been discussed, so that the mode of cellulose microfibril assembly patterns may be deciphered.  相似文献   

19.
Microtubules have long been known to play a key role in plant cell morphogenesis, but just how they fulfill this function is unclear. Transverse microtubules have been thought to constrain the movement of cellulose synthase complexes in order to generate transverse microfibrils that are essential for elongation growth. Surprisingly, some recent studies demonstrate that organized cortical microtubules are not essential for maintaining or re-establishing transversely oriented cellulose microfibrils in expanding cells. At the same time, however, there is strong evidence that microtubules are intimately associated with cellulose synthesis activity, especially during secondary wall deposition. These apparently conflicting results provide important clues as to what microtubules do at the interface between the cell and its wall. I hypothesize that cellulose microfibril length is an important parameter of wall mechanics and suggest ways in which microtubule organization may influence microfibril length. This concept is in line with current evidence that links cellulose synthesis levels and microfibril orientation. Furthermore, in light of new evidence showing that a wide variety of proteins bind to microtubules, I raise the broader question of whether a major function of plant microtubules is in modulating signaling pathways as plants respond to sensory inputs from the environment.  相似文献   

20.
Root contraction has been described for many species within the plant kingdom for over a century, and many suggestions have been made for mechanisms behind these contractions. To move the foliage buds deeper into the soil, the proximal part of the storage root of Trifolium pratense contracts by up to 30%. Anatomical studies have shown undeformed fibres next to strongly deformed tissues. Raman imaging revealed that these fibres are chemically and structurally very similar to poplar (Populus) tension wood fibres, which are known to generate high tensile stresses and bend leaning stems or branches upright. Analogously, an almost pure cellulosic layer is laid down in the lumen of certain root fibres, on a thin lignified secondary cell wall layer. To reveal its stress generation capacities, the thick cellulosic layer, reminiscent of a gelatinous layer (G‐layer) in tension wood, was selectively removed by enzymatic treatment. A substantial change in the dimensions of the isolated wood fibre bundles was observed. This high stress relaxation indicates the presence of high tensile stress for root contraction. These findings indicate a mechanism of root contraction in T. pratense (red clover) actuated via tension wood fibres, which follows the same principle known for poplar tension wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号