首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male Wistar rats were exposed to 575 (100 ppm), 2875 (500 ppm) or 5750 mg/m3 (1000 ppm) white spirit vapour for 4–17 weeks 5 days a week, 6 h daily. Perirenal fat solvent concentration corresponded in composition and concentration to those of the vapour at all times. The neurochemical effects included a dose-dependent decrease in the cerebellar succinate dehydrogenase activity for 8 weeks while creatine kinase activity increased after 12 weeks. The specific creatine kinase activity in the glial cell fraction, a marker for astroglia, did not increase suggesting proliferation of astroglial cells in the homogenate. The serum creatine kinase activity originating mainly from striated muscle was below the control range at the two higher concentrations after 12 weeks. Simultaneous analyses for isolated muscle membrane sialic acid and uronic acid residues showed decreased concentrations in proportion to lipid phosphorus or total membrane protein. Thus, the white spirit mixture has neurochemical effects possibly caused by paraffins and the same components may have caused the muscle cell membrane effects. The lowest exposure concentration represents a virtual ‘no effect’ level for rats in the 17-week exposure.  相似文献   

2.
Besides ethanol, other aliphatic alcohols such as n-propanol and isopropanol induce a triacylglycerol (TAG) accumulation in the liver. To determine whether a common mechanism is responsible for the effects of these three alcohols on hepatic lipid metabolism, each was administered by gastric tube to female Wistar rats at the dose of 50 mmol/kg body wt. Whichever alcohol was administered, the hepatic triacylglycerol accumulation was found to be related to the duration of elevated blood alcohol concentration. After administration of n-propanol or isopropanol, the liver [14C]palmitate uptake was increased whereas hepatic palmitate oxidation to 14CO2 was impaired and palmitate esterification into TAG enhanced; these perturbations were however more discrete than after ethanol administration. In contrast to ethanol and n-propanol which, at the dose presently used, increase precursor incorporation into blood TAG, isopropanol inhibits this incorporation. Interference with the process of very low density lipoprotein (VLDL) synthesis and/or secretion, which appears only at a late stage of isopropanol intoxication, is probably responsible for the intensity and duration of the fatty liver observed after administration of this alcohol.  相似文献   

3.
To investigate the role of ethanol in chemically-induced carcinogenesis, we exposed Wistar rats to ethanol, either as an acute dose or for prolonged periods in a liquid diet and looked for effects on endogenously and exogenously derived DNA adducts. Changes in the cytochrome P450 protein (CYP 2E1) and its catalytic demethylase activity were also followed in order to provide a sequence of relatively well understood changes that are associated with free radical production and, therefore, potentially capable of affecting DNA.The exocyclic DNA adducts, ethenodeoxyadenosine (varepsilondA) and ethenodeoxycytidine (varepsilondC), known to arise from oxidative stress and lipid peroxidation (LPO) sources, were detected in the liver DNA of Wistar rats at background concentrations of 4-6 (varepsilondA) and 25-35 (varepsilondC) adducts per 10(9) parent bases. When rats were given either an acute dose of ethanol (5g/kg, i.g.) or exposed for 1 week to ethanol in a liquid diet (5%, w/v), etheno adduct levels were increased approximately 2-fold and this was statistically significant for varepsilondC (P<0.05 and P<0.02, respectively) for the two separate treatments.In N-nitrosodimethylamine (NDMA)-treated rats, acute ethanol treatment significantly increased the level of O(6)-methylguanine (O(6)-MeG) in hepatic DNA and this was paralleled by a decrease in O(6)-alkylguanine DNA alkyltransferase (ATase) activity; immunohistochemistry confirmed this increase of O(6)-MeG in both hepatic and renal nuclei. When rats were given ethanol in the diet and treated with NDMA, O(6)-MeG levels in hepatic DNA increased at 1 week which coincided with the peak of CYP 2E1-dependent NDMA-demethylase activity. Single cell gel electrophoresis of liver cells showed that after 1 week of exposure to ethanol, there was a small but significant increase in the frequency of DNA strand breaks induced by NDMA (P<0.05); after 4 weeks the increase was 1.4-fold (P<0.01).Our results indicate that exposures to ethanol, which resulted in blood ethanol concentrations similar to those seen in chronic alcoholics and increased levels of expression of the CYP 2E1 protein can exacerbate the DNA damaging effects of endogenous and exogenous alkylating agents. These observations provide indications of possible mechanisms for the carcinogenic or co-carcinogenic action of ethanol.  相似文献   

4.
It is widely accepted that oxidative stress plays a central role in alcohol-induced pathogenesis. The protective effect of binaphthyl diselenide (NapSe)2 was investigated in ethanol (Etoh)-induced brain injury. Thirty male adult Wistar rats were divided randomly into five groups of six animals each and treated as follows: (1) The control group received the vehicle (soy bean oil, 1 mL/kg, p.o.). (2) Ethanol group of animals was administered with ethanol (70% v/v, 2 mL/kg, p.o.). (3) (NapSe)2 1 mg/kg, 1 mL/kg plus ethanol 70% (v/v, 2 mL/kg, p.o. (5) (NapSe)2 10 mg/kg, 1 mL/kg) plus ethanol 70% (v/v, 2 mL/kg, p.o). After acute treatment, all rats were sacrificed by decapitation. Evidence for oxidative stress in rat brain was obtained from the observed levels of thiobarbituric acid reactive species, of non-protein thiol (NPSH) groups, and of ascorbic acid, as well as from the activities of catalase (CAT) and of superoxide dismutase (SOD). (NapSe)2 compensated the deficits in the antioxidant defense mechanisms (CAT, SOD, NPSH, and ascorbic acid), and suppressed lipid peroxidation in rat brain resulting from Etoh administration. It was concluded that ethanol exposure causes alterations in the antioxidant defense system and induces oxidative stress in rat brain. (NaPSe)2 at 5 mg/kg restored the antioxidant defenses in rat brain and mitigated the toxic effects of alcohol, suggesting that could be used as a potential therapeutic agent for alcohol-induced oxidative damage in rat brain.  相似文献   

5.
Long-term ethanol alters the binding of 3H-opiates to brain membranes   总被引:1,自引:0,他引:1  
In order to examine whether ethanol treatment has selective or differential effects on brain binding sites for opiates, male Sprague Dawley rats were fed for 15 or 21 days with a complete liquid diet containing 6.5% ethanol (v:v) or an isocaloric amount of sucrose. The binding of 3H-DADL-enkephalin, 3H-dihydromorphine and 3H-naloxone to the brain membranes from rats treated with ethanol was increased. However, addition of ethanol directly in the incubation medium decreased the binding of 3H-DADL enkephalin and increased the binding of 3H-dihydromorphine to brain membranes from both control and ethanol treated rats. Direct exposure of brain membranes to ethanol caused no significant change in the binding of 3H-naloxone. Thus chronic ethanol ingestion alters the binding of opiate ligands to brain membranes. Furthermore, the direct effect of ethanol appears to be different for the different classes of opiate binding sites.  相似文献   

6.
Transient exposure of lysogenic Escherichia coli cells to small alcohols stimulated the frequency of mutations suppressing the lethal loss of replication control from a prophage fragment of bacteriophage lambda. The stimulation in mutation frequency paralleled the effect of mutagenic agents, and in this sense the alcohols behaved as mutagens. 10-min treatments above distinct threshold concentrations at 23%, 18%, 10% and 4% (v/v) were required in order for methanol, ethanol, isopropanol and propanol to evoke mutagenic effects. The selected mutant cells were, in general, equally or more sensitive to ethanol than the starting cells. The mutagenicity of methanol and ethanol was detected only with E. coli strains with lambda fragments that included the site-specific and general recombination genes found within the phage int-kil gene interval; whereas, stimulation of the frequency of phenotypically identical mutations by nitrosoguanidine or ionizing radiation did not require that the lambda fragment encode these genes. Treatments of lysogenic cells with mutagenic concentrations of ethanol did not trigger prophage induction and were concluded not to induce a cellular SOS response nor to denature the prophage repressor, or to disrupt repressor-operator binding. The toxicity of ethanol was pH-dependent. Cellular sensitivity to ethanol toxicity was unaffected by the integrated lambda fragment(s) or by an intact lambda prophage; but, it was increased by deletions of the E. coli chromosome extending rightward from bio into uvrB, and rightward from chlA.  相似文献   

7.
The influence of two water miscible solvents (ethanol and isopropanol) on the activity of Bacillus amyloliquefaciens -amylase was studied.In ethanol-aqueous buffer (1:4, v/v) retained about 60% of the activity shown in water alone, both after l h hydrolysis. Isopropanol - aqueous buffer (1: 4,v/v) reduced the activity at 40%. The amount and the quality of produced oligosaccharides were effected by ethanol and isopropanol presence. In the mixture of produced oligosaccharides formed in the presence of the solvents only DP2, DP3 and DP6 were found. The disappearance of DP4, DP5 and DP7 which were formed in aqueous buffer suggest that a change in substrate affinity at the active centre is induced in the ethanol or isopropanol presence in buffer.Abbreviations DP degree of polymerization  相似文献   

8.
Exposure of early third instar larvae of Drosophila melanogaster to a nonlethal dose of ethanol was detrimental to larvae lacking alcohol dehydrogenase (ADH) but beneficial to wild-type larvae in terms of surviving a later ethanol tolerance test, indicating that one of the important functions of the ADH system is to supply derivatives of ethanol to larvae that in turn promote ethanol tolerance. High intracellular concentrations of ethanol in ADH-deficient (Adhn2) larvae fed ethanol were accompanied by a decrease in the cell membrane infoldings of fat body cells, suggesting that the capacities to absorb and release molecules were reduced. Marked effects of ethanol on the endoplasmic reticulum and mitochondria of ADH-deficient larvae were also evident. The absence of similar changes in wild-type larvae that were fed moderate levels of ethanol showed that the ADH system kept the intracellular level of ethanol at a concentration low enough to avoid cell damage. A cytometric analysis of electron micrographs showed that there were ethanol-induced reductions in glycogen, lipid, and protein stores in the fat body cells of ADH-deficient larvae fed 1.25% ethanol (v/v) compared with null larvae fed an ethanol-free diet. This finding implied that the capacities to synthesize or store these compounds may be limited by high intracellular concentrations of ethanol. The cytometric analysis also revealed that the consumption of diets containing 2.5% and 4.5% ethanol by Canton-S wild-type larvae for 3 days after 4 days of feeding on an ethanol-free diet resulted in decreases in glycogen and protein deposits in fat body cells, but increased the amount of lipid deposits compared to larvae fed an ethanol-free diet. This observation, coupled with the greater weight of wild-type adults that were fed a growth-limiting concentration of ethanol compared with control adults, suggested that a metabolic defense mechanism in larvae is to convert toxic ethanol to nontoxic storage products. Dietary ethanol alone and in combination with isopropanol stimulated an increase in the size of the NAD-pool in larvae, a condition that may favor the activity of ADH. A low dietary level of isopropanol (1%) completely blocked glycogen deposition in wild-type larvae, whereas ethanol did not. Thus ethanol and isopropanol exert some different toxic effects on larval fat bodies.  相似文献   

9.
A single intraperitoneal administration of ethanol (3.5 g/kg) to rats induced a marked increase in lipid peroxidation and a decrease of antioxidative activity in the liver after 1 h when assessed by chemi-luminescence in liver homogenates. The pretreatment with aldehyde dehydrogenase inhibitor, disulfiram (200 mg/kg 24 hr before ethanol), caused a 10-fold elevation of the blood acetaldehyde levels, with no effect on the hepatic lipid peroxidation compared to control. Cyanamide (50 mg/kg, 2 h before the ethanol) increased approximately 100-fold the acetaldehyde levels, however, the changes in lipid peroxidation were not significantly different from that produced by ethanol alone. The present results suggest, that the metabolism of acetaldehyde and not acetaldehyde itself is responsible for the in vivo activation of lipid peroxidation during acute alcohol intoxication. Disulfiram prevents the ethanol-induced lipid peroxidation in the rat liver.  相似文献   

10.
Renal (Na + K)-ATPase was studied to ascertain whether it follows the pattern of adaptation of membrane-bound enzymes that are inhibited by acute ethanol exposure and develop greater activity after chronic ethanol treatment. A colony of rats was given 20 per cent (v/v) ethanol as sole drinking solution throughout gestation, lactation and following weaning. (Na + K)-ATPase and ouabain-insensitive Ca(2+)-ATPase activities were determined; regional distribution of these enzymes was assessed in renal cortex and outer medulla. Control rats drank tap water. (Na + K)-ATPase in whole homogenate of kidney increased with age in controls and ethanol-fed rats, but the latter showed higher values at every age studied. Between 15 and 60 days of age, the control group showed 2-fold increases in cortex and 5-fold in outer medulla, whereas ethanol-fed rats reached a 3-fold increase in the enzyme activity in both renal regions. Ca(2+)-ATPase showed the same time course in developing kidney of both groups. Chronic ethanol treatment of adult rats resulted in an increase of (Na + K)-ATPase activity in cortex and outer medulla, but no change in other ATPases. Since an earlier maturational development of renal (Na + K)-ATPase was displayed by ethanol-fed rats, underlying mechanisms that may account for these results are discussed.  相似文献   

11.
Candida utilis grew on ehtanol and an ethanol-isopropanol-water (22:2:1 vols) mixture but not on isopropanol alone. Acetone accumulated in all cultures containing isopropranol but its presence in the alcohol mixture did not lower growth rate or yield significantly when compared with growth experiments on ethanol alone. Growth rate and yield declined at ethanol concentrations greater than 1% (v/v) and 0.3% (v/v) respectively. In a 0.3% (v/v) alcohol mixture, acetate was found only during the exponential growth phase. In a 3% (v/v) mixture, acetate and ethyl acetate accumulated during growth whereas acetaldehyde was present only during the exponential growth phase.  相似文献   

12.
The normal phase mode liquid chromatographic enantiomer separation capability of a quinine tert-butyl-carbamate-type chiral stationary phase (CSP) has been investigated for a set of polar [1,5-b]-quinazoline-1,5-dione derivatives. This class of chiral heterocycles is currently under development as potential alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and/or N-methyl-D-aspartic acid (NMDA) receptor antagonists. The effect of the nature and concentration of polar modifier, i.e., ethanol and isopropanol, in n-hexane-based mobile phases, as well as the substituent pattern of the phenyl ring attached to the quinazolone framework on retention factor, enantioselectivity, and resolution was investigated. The Soczewiński competitive adsorption model was used to describe the relationship between the retention and the binary mobile phase compositions. According to this model, linear plots of the logarithms of retention factor versus molar fractions of the polar modifiers were obtained over a wide concentration range (X(B) between 0.15 and 0.35). Addition of equimolar ethanol yields higher resolution than isopropanol, R(S) values ranging between 1.54 and 2.75, whereas the latter allows to achieve moderately increased enatioselectivity. The resolution was further improved by using a ternary mixture of n-hexane:methanol:isopropanol/85:5:10 (v/v). The most pronounced selectivity factor alpha and resolution R(S) values were obtained for the para-hydroxy substituted compound, indicating that chiral recognition is sensitive to steric and stereoelectronic factors. In the course of optimization, the temperature-dependence on the chiral separation was also investigated. It turned out that the enantiomer separation is predominantly enthalpically driven in normal phase mode.  相似文献   

13.
The method reported here was designed to produce paraffin serial sections as thin as 5 Mm of insects or other arthropods with a hard cuticle. Heads and abdomens of Apis mellifera, Eristalomyia tenax and Tenebrio molitor were fixed with Schaffer's liquid, dehydrated with 80% ethanol, 90% ethanol, two changes of 100% isopropanol (2 hr each) and 12 hr in a 1:1 mixture of paraffin (58 C melting point) at 60 C. They were molded in paraffin after 12 hr of infiltration under a partial vacuum at 60 C. Large body openings of objects were sealed with paraffin to prevent infiltration of solvents.

Thereafter, the outer paraffin was removed manually and with xylene (15 min); the cuticle was rehydrated with 100% isopropanol and 100% ethanol (15 min each). The objects were then treated with Sputofluol (Merck; a mixture of NaOH and NaCIO) until they became white or their colorless endocuticle was stainable with aniline blue WS (C.I. 42755) after rinsing in a 50% acetic acid solution (v/v). They were then dehydrated with 100% ethanol and 100% isopropanol (15 min each) and subsequently re-embedded in paraffin. They were molded, sectioned, stained and mounted as usual.  相似文献   

14.
The effect of ethanol on chromosomal segregation was investigated in Drosophila melanogaster females homozygous for a structurally normal X chromosome marked with the recessive mutation yellow (y/y). For chronic treatments the females were kept from eclosion in food supplemented with 10% or 15% (v/v) ethanol, mated 24 or 48 h later to wild-type males and brooded in freshly prepared ethanol food. For the acute treatments 24- or 48-h-old females were exposed for 60 min to a 75% (v/v) ethanol solution by means of soaked tissue paper placed at the bottom of regular culture vials and brooded daily after mating. The results obtained show that: (1) both treatments significantly increased the frequency of X-chromosome nondisjunction; (2) after acute treatment this effect declined in later broods; (3) the yield of malformed flies in the progeny of acutely treated females was significantly higher than control values and also declined in later broods; (4) ovary analysis showed that chronic ethanol treatments caused a cessation of egg production. The induction pattern of nondisjunction and malformed flies is interpreted as giving support to the assumption that these effects may result from a direct action of ethanol. Ethanol toxicity was assessed by exposing females of different ages to a 50% or a 75% (v/v) solution for 60 min and counting the surviving flies 24 h later. The surviving fraction decreased steeply from 1-day-old (100%) to 5-day-old females (1.8%). It is suggested that toxicity may have been due to the action of a metabolite of ethanol, probably acetaldehyde.  相似文献   

15.
The effect of ethanol ingestion on regional brain biogenic amine levels in cadmium exposed animals was examined. The rats were given either ethanol (1 g/kg, first week, 5 g/kg, second week and 10 g/kg for rest of the weeks) or cadmium (40 ppm in drinking water) or a combination of both for 8 weeks. Simultaneous exposure to cadmium and ethanol produced a greater elevation of norepinephrine in hypothalamus and mid brain when compared with rats receiving only cadmium. A significant elevation of 5-hydroxy-tryptamine in medulla oblongata was also noticed in cadmium and ethanol treated rats compared to cadmium alone treatment animals. The present results suggest industrial workers consuming alcohol may be more susceptible to cadmium neurotoxicity.  相似文献   

16.
The effect of chronic enteral ethanol on pancreatic hypoxia was investigated using the hypoxia marker, pimonidazole. Male Wistar rats were fed an ethanol-containing diet for 3 weeks using an enteral model shown to cause pancreatic damage; pimonidazole (120 mg/kg i.v.) was injected 1h before sacrifice. Pimonidazole and 4-hydroxynonenal (an index of lipid peroxidation) adducts were detected immunochemically. Breathing air with low oxygen content (8% O(2)) for 1h increased pimonidazole adduct accumulation approximately 2-fold in pancreata of nai;ve rats, confirming that this technique will detect increases in hypoxia in pancreata. Pancreata of rats fed ethanol began to show signs of damage after 3 weeks. Ethanol feeding also significantly increased pimonidazole adducts in pancreas approximately 2-fold (1 or 3 weeks of ethanol produced similar values). Concomitant with increasing hypoxia in the pancreas, alcohol also caused a significant increase in 4-hydroxynonenal adducts, indicative of increased oxidative stress. These results indicate that chronic ethanol causes hypoxia at the cellular level in the pancreas in vivo; further, the data support the hypothesis that hypoxia is involved in mechanisms of chronic alcoholic pancreatitis.  相似文献   

17.
Rats exposed chronically to a cold environment (5 degrees C/4 degrees F) develop hypertension. This cold-induced hypertension (CIH) is a non-genetic, non-pharmacological, non-surgical model of environmentally induced hypertension in rats. The renin-angiotensin system (RAS) appears to play a role in both initiating and/or maintaining the high blood pressure in CIH. The goal of the present study was to evaluate the role of central and peripheral circulating RAS components, angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and angiotensin (Ang) II, in CIH. Seventy-two Sprague-Dawley adult male rats were used. Thirty-six rats were kept in cold room at 5 degrees C while the other 36 were at 24 degrees C as controls for 5 weeks. Systolic blood pressure (SBP) was recorded by tail cuff. The SBP was increased in rats exposed to cold within 1 week, and this increase was significant for the next 2-5 weeks of the cold exposure (p<0.01). Three subgroups of the cold-treated and control rats (n=12) were sacrificed at 1, 3 and 5 weeks. The brain and liver were removed and plasma was saved. The AGT mRNA significantly increased in the hypothalamus and liver in cold-treated rats from the first week of exposure to cold, and was maintained throughout the time of exposure to cold (n=4, p<0.01). The AGT protein levels in the brain, liver and plasma did not differ significantly between cold-treated and control rats (p>0.05, n=4). The hypothalamic Ang II levels were significantly increased, whereas plasma Ang II levels significantly decreased, in the rats of 5 weeks of cold exposure (n=8, p<0.05). Plasma ACE significantly increased in the rats of 1 week of cold exposure (p<0.05, n=12). The results show differential regulation of RAS components, AGT, ACE and Ang II, between brain and periphery in cold-exposed rats. We conclude that the exposure to low temperature initially increases plasma RAS but with continuous exposure to cold, the brain RAS maintains the hypertension, probably by sustained sympathetic activation, which would provide increased metabolism but also vasoconstriction leading to hypertension.  相似文献   

18.
Liver mitochondria were isolated from male rats exposed for 2 months to low doses of ethanol (3% v/v in drinking water), a condition not associated with tolerance or dependence. The results show no significant changes in the content of reduced or oxidized glutathione in the liver mitochondria of ethanol treated rats with respect to controls. However, a slight but significant increase in lipid peroxidation, accompanied by an increased content of oxidized proteins, was found in ethanol exposed animals. Mitochondrial content of cytochrome complexes was not significantly affected by ethanol intake. The specific enzymatic activity of cytochrome oxidase showed, however, a significant decrease in ethanol-treated rats. The slight mitochondrial alterations found in the liver of rats exposed chronically to low doses of ethanol might represent the beginning of a more extensive damage previously observed in rats exposed to high doses of this substance.  相似文献   

19.
The effects of one-time ethanol intoxication on ascorbic acid and lipid metabolism and on drug-metabolizing enzymes in liver of rats were investigated. Male Donryu rats that had been fed semi-purified feed were given 5 g/kg ethanol solution (25%, w/v) via a stomach tube and killed 16 h after intubation. The amount of ascorbic acid excreted in the urine after ethanol administration increased, but renal and adrenal concentrations of ascorbic acid decreased. The serum levels of total cholesterol, high-density-lipoprotein cholesterol, triglycerides, phospholipids, and non-esterified fatty acids were elevated in rats given ethanol, but hepatic level of total lipids, cholesterol, triglycerides, phospholipids were not. The hepatic concentrations of cytochrome P-450 and cytochrome b5 did not increase, but this large dose of ethanol increased the activities of aminopyrine N-demethylase and cytochrome c reductase.

These results indicated that the single dose of ethanol affected the ascorbic acid and lipid metabolism of rats, and induced drug-metabolizing enzymes in their liver.  相似文献   

20.
The K+-stimulated ATPase associated with the purified gastric microsomal fraction can be completely inactivated by treatment with 15% (v/v) ethanol for 60s at 37 degrees C, but not at 25 degrees C. Sequential exposure of the microsomal fraction to 15% ethanol at 25 degrees C and 37 degrees C caused release of 2.5% and 2.9% of the total membrane phospholipids respectively. Restoration of the enzyme activity was achieved by sonication with phosphatidylcholine in the presence of Mg2+, K+ and ATP, which were essential for the reconstitution. Our data suggest that the phospholipids extracted by 15% ethanol at 37 degrees C are derived primarily from the immediate lipid environment of the enzyme, and ATP, together with the metal ions, helps the partially delipidated enzyme to retain the appropriate configuration for the subsequent reconstitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号