首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A metamorphosis-inducing factor was isolated from medium conditioned by either metamorphosing larvae or 3-day postmetamorphic primary polyps. The factor has a molecular weight 8 kDa and is heatlabile. It does not induce metamorphosis of isolated posterior fragments and is therefore not identical to the internal signal described by Schwoerer-Böhning et al. (1990). The biological significance of the substance is currently unclear, therefore its inducing activity may be a side effect.  相似文献   

2.
Summary Whilst the significance of the phosphoinositide cycle in the activation of developmental events by extra-cellular signals is well established, the involvement of the phosphatidylcholine (PC) cycle is a matter just emerging. In the present study, the metabolism of phosphatidylcholine in early metamorphosis of Hydractinia echinata (Coelenterata; Hydrozoa) was investigated by incubation of planula larvae with 3H-choline, extraction of the metabolites and isolation of the metabolites by thin-layer chromatography (TLC). Phosphatidylcholine (PC), lysophosphatidylcholine (LPC), acetylcholine and glycerophosphocholine were the labelled metabolites. Induction of metamorphosis did not stimulate an increased incorporation of choline into PC. In larvae preincubated with 3H-choline to a steady state level of incorporation, a significant transient elevation of the radioactive label in LPC was observed 90 min after addition of metamorphosis stimulating agents. LPC probably derived from PC by the action of a phospholipase A2 (PLA2). LPCs from bovine and soybean origin as well as isolated larval LPC did not influence metamorphosis. PLA2 from bee venom promoted Cs+-induced metamorphosis but did not influence phorbol ester-induced metamorphosis. The data suggest that a PLA2 is activated during metamorphosis. This PLA2 activation does not occur in those putative receptor cells which receive the primary external inducing stimulus but in the many larval cells which resume proliferation or differentiation in response to a second, internally propagated signal. Offprint requests to: T. Leitz  相似文献   

3.
Summary In the marine colonial hydroidHydractinia echinata metamorphosis from the larval to the adult (polyp) stage is induced by various agents, including CsCI and dioctanoylglycerol (diC8). Induction is prevented when the inhibitors of protein synthesis cycloheximide or ementine were applied simultaneously with the metamorphosis-inducing agents. With diC8 treatment, the inhibitors caused most animals to transform into mosaics consisting of larval and polyp body parts instead of normal shaped polyps. In contrast, treatment with cycloheximide or ementine just before or after incubation with the metamorphosis-inducing agents did not prevent larvae from metamorphosis. No substantial quantitative changes in protein synthesis occur during induction of metamorphosis, however, the protein pattern is changed upon induction. The most prominent new polypeptides (25 and 73 kD) were observed when CsCI was used to trigger metamorphosis. In addition, both in CsCl- and in diC8-treated larvae, the synthesis of a new 23 kD protein occurred, whilst synthesis of others ceased (41 and 44 kD).  相似文献   

4.
Summary During embryogenesis and planula development of the colonial hydroidHydractinia echinata cell proliferation decreases in a distinct spatio-temporal pattern. Arrest in S-phase activity appears first in cells localized at the posterior and then subsequently at the anterior pole of the elongating embryo. These areas do not resume S-phase activity, even during the metamorphosis of the planula larva into the primary polyp. Tissue containing the quiescent cells gives rise to the terminal structures of the polyp. The posterior area of the larva becomes the hypostome and tentacles, while the anterior part of the larva develops into the basal plate and stolon tips. In mature planulae only a very few cells continue to proliferate. These cells are found in the middle part of the larva. Labelling experiments indicate that the prospective material of the postmetamorphic tentacles and stolon tips originates from cells which have exited from the cell cycle in embryogenesis or early in planula development. Precursor cells of the nematocytes which appear in the tentacles of the polyp following metamorphosis appear to have ceased cycling before the 38th hour of embryonic development. The vast majority of the cells that constitute the stolon tips of the primary polyp leave the cell cycle not later than 58 h after the beginning of development. We also report the identification of a cell type which differentiates in the polyp without passing through a post-metamorphic S-phase. The cell type appears to be neural in origin, based upon the identification of a neuropeptide of the FMRFamide type.  相似文献   

5.
Summary Patterning processes during embryonic development of Hydractinia echinata were analysed for alterations in morphology and physiology as well as for changes at the cellular level by means of treatment with proportioning altering factor (PAF). PAF is an endogenous factor known to change body proportions and to stimulate nerve cell differentiation in hydroids (Plickert 1987, 1989). Applied during early embryogenesis, this factor interferes with the proper establishment of polarity in the embryo. Instead of normal shaped planulae with one single anterior and one single posterior end, larvae with multiple termini develop. Preferentially, supernumerary posterior ends, which give rise to polyp head structures during metamorphosis, form while anterior ends are reduced. The formation of such polycaudal larvae coincide with an increase in the number of interstitial cells and their derivatives at the expense of epithelial cells. Treatment of further advanced embryonic stages causes an increase in length, presumably due to the general stimulation of cell proliferation observed in such embryos. Also, the spatial arrangement of cells (i.e. cells in proliferation and RFamide (Arg-Phe-amide immunopositive nerve cells) is altered by PAF. Larvae that develop from treated embryos display altered physiological properties and are remarkably different from normal planulae with respect to their morphogenetic potential: (1) Larvae lose their capacity to regenerate missing anterior parts; isolated posterior larva fragments form regenerates of a bicaudal phenotype. (2) In accordance with the frequently observed reduction of anterior structures, the capacity to respond to metamorphosis-inducing stimuli decreases. (3) The morphogenetic potential to form basal polyp parts is found to be reduced. In contrast, the potential to form head structures during metamorphosis increases, since primary polyps with supernumerary hypostomes and tentacles metamorphose from treated animals.  相似文献   

6.
A wealth of information has suggested the involvement of protein kinase C (PKC) in metamorphosis of Hydractinia echinata and in pattern formation of Hydra magnipapillata. We have identified a Ca2+- and phospholipid-dependent kinase activity in extracts of both species. The enzyme was characterized as being similar to mammalian PKC by ion exchange chromatography. Gel filtration experiments revealed a molecular weight of about 70 kD. In phosphorylation assays of endogenous Hydractinia proteins, a protein with a molecular weight of 22.5 kD was found to be phoshorylated upon addition of phosphatidylserine. Bacterial induction of metamorphosis of Hydractinia echinata caused an increase in endogenous diacylglycerol, the physiological activator of PKC, suggesting that the bacterial inducer acts by activating receptor-regulated phospholipid metabolism. Exogenous diacylglycerol leads to membrane translocation of PKC, indicative of an activation. On the basis of our results and those of Freeman and Ridgway (1990) a model for the biochemical events during metamorphosis is presented.  相似文献   

7.
Many marine invertebrates reproduce through a larval stage. The settlement and metamorphosis of most of the species are synchronised and induced by environmental organisms, mainly bacteria. The hydrozoan Hydractinia echinata has become a model organism for metamorphosis of marine invertebrates. In this species, bacteria, e.g. Pseudoalteromonas espejiana, are the natural inducers of metamorphosis. Like in other species of marine invertebrates, metamorphosis can be induced artificially by monovalent cations, e.g. Cs+. In this study, we present systematic data that metamorphosis—with both inducing compounds, the natural one from bacteria and the artificial one Cs+—are indeed similar with respect to (a) the morphological progression, (b) the localisation of the primary induction signal in the larva, (c) the pattern of apoptotic cells occurring during the initial 10 h of metamorphosis and (d) the disappearance of RFamide-dependent immunocytochemical signals in sensory neurons during this process. However, a difference occurs during the development of the anterior end, insofar as apoptotic cells and settlement appear earlier in planulae induced with bacteria. Thus, basically, Cs+ may be used as an artificial inducer, mimicking the natural process. However, differences in the appearance of apoptotic cells and in settlement raise the question of how enormous developmental plasticity in hydrozoans actually can be, and how this is related to the absence of malignant devolution in hydrozoans.  相似文献   

8.
Like many other cnidarians, corals undergo metamorphosis from a motile planula larva to a sedentary polyp. In some sea anemones such as Nematostella this process is a smooth transition requiring no extrinsic stimuli, but in many corals it is more complex and is cue-driven. To better understand the molecular events underlying coral metamorphosis, competent larvae were treated with either a natural inducer of settlement (crustose coralline algae chips/extract) or LWamide, which bypasses the settlement phase and drives larvae directly into metamorphosis. Microarrays featuring > 8000 Acropora unigenes were used to follow gene expression changes during the 12 h period after these treatments, and the expression patterns of specific genes, selected on the basis of the array experiments, were investigated by in situ hybridization. Three patterns of expression were common—an aboral pattern restricted to the searching/settlement phase, a second phase of aboral expression corresponding to the beginning of the development of the calicoblastic ectoderm and continuing after metamorphosis, and a later orally-restricted pattern.  相似文献   

9.
Summary In most sessile marine invertebrates, metamorphosis is dependent on environmental cues. Here we report that heat stress is capable of inducing metamorphosis in the hydroid Hydractinia echinata. The onset of heat-induced metamorphosis is correlated with the appearance of heat-shock proteins. Larvae treated with the metamorphosis-inducing agents Cs+ or NH4 + also synthesize heat-shock proteins. In heat-shocked larvae, the internal NH4 +-concentration increases. This fits the hypothesis that methylation plays a central role in control of metamorphosis. In the tunicate Ciona intestinalis, a heat shock is able to induce metamorphosis too. Offprint requests to: M. Walther  相似文献   

10.
Hydractinia echinata and Aurelia aurita produce motile larvae which undergo metamorphosis to sessile polyps when induced by external cues. The polyps are found at restricted sites, A. aurita predominantly on rocks close to the shore, H. echinata on shells inhabited by hermit crabs. It has been argued that the differential distribution of the polyps in their natural environment largely reflects the distribution of the natural metamorphosis-inducing cues. In the case of H. echinata, bacteria of the genus Alteromonas were argued to meet these conditions. We found that almost all substrates collected in the littoral to induce metamorphosis in H. echinata, and several bacterial strains isolated from the sea, including the common E. coli, induce metamorphosis efficiently. In A. aurita metamorphosis may be induced by the water–air interface, whereby metamorphosis precedes (final) settlement. Received: 7 December 1998 / Accepted: 8 July 1999  相似文献   

11.
Plickert  Günter  Schneider  Birgit 《Hydrobiologia》2004,515(1-3):49-57
Peptides of the RFamide family occur in neurosecretory cells of all nervous systems of Cnidaria so far studied. Photoreceptive organs – if evolved in a cnidarian species – are always associated with neural cells showing RFamide immunoreactivity. Experimental evidence for the function of RFamides and other neuropeptides in nervous systems and photoreceptive organs is, however, scarce or lacking. RFamide and LWamide immunoreactivity were surveyed in photoreceptive organs of the hydromedusa Cladonema radiatum, in rhopalia of the scyphozoan Aurelia aurita, and in rhopalia of the cubomedusa Tripedalia cystophora. A possible function of neuropeptides in transmission of photic stimuli was assayed by analysing photic behavior in Tripedalia, which has highly developed eyes, and in the simply constructed planula of the hydroid Hydractinia echinata, in which the mode of light perception is unknown. In both species, light orientation was effectively prevented by RFamides administered to the animals in micromolar concentration. In contrast, among four other neuropeptides occurring in the larva of Hydractinia, only one interfered with phototaxis and then only at 10× higher concentrations. Planulae depleted of bioactive peptideamides also lost phototaxis while still locomotorily active. The results support the hypothesis that one possible function of RFamides in Cnidaria is to transmit photic stimuli to epitheliomuscular targets.  相似文献   

12.
Summary Planulae are simply structured larvae lacking an overt longitudinal organization. In the course of a rapid metamorphosis, however, they transform into polyps, which display striking structural patterns. Metamorphosis takes place only in response to external stimuli. Surgical removal and transplantation of larval parts reveal that external stimuli, including artificial inducers such as cesium ions, tumor promoters and diacylglycerol, act on the anterior quarter of the larva where sensory cells containing Arg-Phe-amide-like peptides are located. The external stimuli initiate the release of an internal signal, which is transmitted to the posterior end causing the successive transformation of larval into adult tissue. The transformation front moves from the anterior to the posterior quarter in 60 min. The internal signal can be released or bypassed by a transitory lowering of the Mg2+ content of the seawater. By using this procedure, or by administering an extract containing the putative internal signal substance, each isolated part of the larva can be induced to metamorphose separately. Provided there is no time for regeneration after cutting before metamorphosis is initiated, the most anterior fragment forms only stolons, the most posterior fragment forms only a head. The overt pattern of the polyp is, therefore, generated under the influence of a covert anterior-posterior prepattern of the larva.  相似文献   

13.
Summary Planula larvae of the marine hydroids Halocordyle disticha and Hydractinia echinata were treated with the catecholamines epinephrine, norepinephrine and dopamine, as well as with certain of their precursors and agonists. Norepinephrine, l-dopa, dopamine and the dopamine agonist ADTN at concentrations ranging from 0.1 to 0.001 mM induced metamorphosis within 24 h in Halocordyle disticha, with no observable morphogenetic abnormalities. Epinephrine, the adrenergic agonists phenylephrine, isoproterenol and methoxyamine, and the catecholamine precursors phenylalanine and tyrosine were found not to induce metamorphosis at the concentrations employed. None of the compounds was effective in inducing metamorphosis in Hydractinia echinata. A model is presented for neural control of metamorphosis in Halocordyle disticha  相似文献   

14.
Peptides are increasingly attracting attention as primary signals in the control of development. Even though a large number of peptides have been characterized in cnidarians, little experimental evidence addresses their endogenous role. The life cycle of Hydractinia echinata includes metamorphosis from planula larva into the adult stage of the polyp. This process of stage conversion includes internal signalling, which controls cell cycle activity, cell differentiation, cell death and proportion-controlled morphogenesis. LWamide peptides are considered to be part of the control system. We implemented methods to silence gene activity by dsRNAi in Hydractinia and show a substantial knock-down of LWamide gene activity. In addition, LWamide function was knocked-out pharmacologically by targeting the biosynthesis of amidated peptides and thus preventing functional LWamides. Here we show that extinction of bioactive LWamides from planulae causes loss of metamorphosis competence, a deficiency which can be rescued by synthetic LWamide peptides. Thus, it is shown that LWamides are indispensable and act by conveying outer metamorphosis stimuli to target cells within the animal. Considering non-availability of genetic analysis and the so-far limited success in expressing transgenes in hydroids, gene functions are difficult to analyse in hydroids. The approach as outlined here is suitable for functional analysis of genes encoding amidated peptides in hydroids.  相似文献   

15.
The potency (muscle force-generated) of a number of long-chain RFamide neuropeptides was examined in mechanical experiments with the radular-retractor and radular-sac muscles of gastropods Buccinum undatum and Neptunea antiqua. Many of the heptapeptides, octapeptides and the decapeptide LMS were found to induce greater contraction than FMRFamide in both smooth muscles and in both species. RFamide neuropeptides interacted with the neurotransmitter acetylcholine in an additive way and RFamide-induced contractions were inhibited by the neuromodulator serotonin. Pre-treatment with a calcium-free saline completely abolished acetylcholine-induced responses but only partially inhibited RFamide responses in the muscles, suggesting that acetylcholine acts to cause influx of extracellular calcium for contraction. In contrast, RFamide neuropeptides may mobilise intracellular calcium to maintain sustained tonic force in calcium-free conditions. This suggests that an additional involvement of a fast calcium channel may be present in the RFamide responses, since loss of the usual superimposed twitch activity is observed. Force regulation in these muscles appears to result from a complex interaction of RFamide neuropeptides with the primary transmitter acetylcholine and the neuromodulator serotonin.Abbreviations ACh acetylcholine - Ala alanine - Arg arginine - Asn asparagine - Asp aspartic acid - Cys cysteine - FLRFamide Phe-Leu-Arg-Phe-NH2 - FMRFamide Phe-Met-Arg-Phe-NH2 - Gln glutamine - Glu glutamic acid - Gly glycine - His histadine - Ile isoleucine - Leu leucine - LMS leucomyosuppressin - Met methionine - Nle norleucine - Phe phenylalanine - Pro proline - SCPB (small cardioactive peptide B) Met-Asn-Tyr-Leu-Ala-Phe-Pro-Arg-Met-NH2 - Ser serine - Val valine  相似文献   

16.
Summary In Hydractinia metamorphosis from the swimming larval stage to the sessile polyp stage has been found to be inducible by several agents, including Li+, K+, Cs+, Rb+, diacylglycerol (DG), tetradecanoyl-phorbol-acetate (TPA) and some other tumour-promoting phorbol esters. Induction is antagonized by ouabain and compounds which are able to increase the internal level of S-adenosylmethionine (SAM). Based on the finding that Hydractinia larvae contain such compounds in a stored form, including N-methylpicolinic acid, N-methylnicotinic acid and N-trimethylglycine, as well as on the results of experiments with antagonists of SAM production and transmethylation, it has been argued that regulation of the internal SAM level plays a key role in the control of metamorphosis. However, it remains to be clarified whether the inducing agents act by decreasing the SAM level or by via different pathways. In the present study, substances chemically related to the substances known to induce or inhibit metamorphosis were tested for their metamorphosis-inducing abilities. Some were found to be effective, including NH4 +, methylamine, tetraethylammonium ions (TEA+), ethanolamine, Ba2+, Sr2+ and the diuretic, amiloride. It is of particular interest that in many organisms TPA and DG increase cytoplasmic pH while amiloride prevents a rise in pHi. Several of the substances known to trigger metamorphosis may increase the internal NH4 + concentration by hindering the export of the constantly produced NH4 + through K+ channels or through the Na+-H+ antiport. Treatment with Cs+ for 1 h increases the internal level of NH4 +. Produced and applied ammonia, as well as applied methylamine and ethanolamine, may act by accepting methyl groups, thus reducing the SAM level.  相似文献   

17.
Coral planulae settle, then metamorphose and form polyps. This study examined the morphological process of metamorphosis from planulae into primary polyps in the scleractinian corals Acropora nobilis and Acropora microphthalma, using the cnidarian neuropeptide Hym-248. These two species release eggs that do not contain Symbiodinium. The mode of acquisition of freshly isolated Symbiodinium (zooxanthellae) (FIZ) by the non-symbiotic polyp was also examined. Non-Hym-248 treated swimming Acropora planulae did not develop blastopore, mesenteries or coelenteron until the induction of metamorphosis 16 days after fertilization. The oral pore was formed by invagination of the epidermal layer after formation of the coelenteron in metamorphosing polyps. At 3 days after settlement and metamorphosis, primary polyps exposed to FIZ established symbioses with the Symbiodinium. Two–four days after exposure to FIZ, the distribution of Symbiodinium was limited to the gastrodermis of the pharynx and basal part of the polyps. Eight–ten days after exposure to FIZ, Symbiodinium were present in gastrodermal cells throughout the polyps.  相似文献   

18.
 The metamorphosis of many marine invertebrate larvae is induced by environmental signals. Upon reception of the cues, internal signals have to be set in motion to convey information to all cells of the larvae. For hydrozoan larvae it was hypothesised that ectodermal neurosensory cells at the anterior part are those cells receptive of the inducer. Recently, it was shown that novel peptides with a common GLWamide terminus are found in Cnidaria. These peptides are located in a specific subset of the anterior sensory cells. It was hypothesised that the neuropeptides represent an internal signal coordinating the metamorphic process. In the current study we present further evidence for this hypothesis. Induction of metamorphosis is very specific for the GLWamide terminus and amidation is essential. The potency to metamorphose is strongly correlated with the presence of GLWamide-immunoreactive cell bodies. Our data fit our hypothesis about a very important role of GLWamides in the initiation of the morphogenetic processes very well. Received: 16 February 1998 / Accepted: 11 April 1998  相似文献   

19.
Summary Two morphogenetic factors have been isolated from tissue of colonial hydroids. Both exert strong effects on pattern formation during metamorphosis, regeneration and colony development. Polyp-inhibiting factor (PIF) is a bivalent inhibitor which strongly affects head and bud formation but acts weakly on stolon branching. Proportion-altering factor (PAF) is a distalizing factor. It counteracts the formation of stolon and promotes the formation of head structures during metamorphosis and regeneration. PIF and PAF antagonistically influence the spatial arrangement of polyps within a colony. They are capable of dislocating structures and thus appear to interfere with or are even part of the pattern-controlling mechanism. Both factors are of low molecular size (about 500 daltons), hydrophilic and probably not peptides.  相似文献   

20.
Summary Histological changes in the pituitary TSH cells and in the thyroid gland of flounder (Paralichthys olivaceus) larvae during spontaneous or artificially induced metamorphosis were studied. Activity of the immunoreactive TSH cells (IrTSH cells) gradually increased during premetamorphosis, reaching the highest level in prometamorphic larvae, and the cells were degranulated in metamorphic climax. The IrTSH cells were most inactive at the post-climax stage. The thyroid gland was morphologically the most active in metamorphic climax when the degranulation occurred in the pituitary IrTSH cells, and appeared inactive at post-climax. A few weeks after metamorphosis, both the IrTSH cells and the thyroid gland appeared to be activated again in the benthic, juvenile flounder. Administration of thyroxine or thiourea revealed negative feedback regulation of the pituitary-thyroid axis in flounder larvae. These results indicate that activation of the pituitary-thyroid axis induces metamorphosis in the flounder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号