首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowing the effects of climate and habitat on the distributions of insect pests and their natural enemy would help target the search for natural enemies, increase establishment of intentional introductions, improve risk assessment for accidental introductions and the effects of climate change. Most existing methods used to predict geographical distributions of insects either involve subjective comparisons of climate or require data concerning insect responses to climate. Here we have used geographical distributions of insects to develop statistical models for the effects of climate and habitat on these distributions. We tested this approach using six insect pests found in the United States: Ostrinia nubilalis (European corn borer), Diuraphis noxia (Russian wheat aphid), Helicoverpa zea (Corn earworm), Leptinotarsa decemlineata (Colorado potato beetle), Solenopsis invicta (Red imported fire ant), and Conotrachelus nenuphar (Plum curculio). By randomly separating the data into model-building and test sets, we were able to estimate prediction accuracy. For each species, a unique combination of predictor variables was identified. The models correctly predicted presence for more than 92% of the data on each insect species. The models correctly predicted absence for 59% to 77% of the data on five of six species. Absence predictions were poor for H. zea (21% correct), because distribution data were limited and inaccurate. Predictions of insect absence were more difficult because absence data were less abundant and perhaps less reliable. This approach offers potential for the analysis of existing data to produce predictions about insect establishment. However, accurate prediction depends heavily on data quality, and in particular, more data are needed from locations where insects are sampled but not found.  相似文献   

2.
3.
Models that project introduced species distributions based on the climates in native and potential introduced ranges can provide valuable insights on the extent of a species' future spread. Yet, the lack of direct field evaluation of these range projections remains a major limitation. We evaluated results from the climex model in conjunction with results from seed and plant field trials in assessing environmental constraints to spread of the invasive tree Triadica sebifera (Chinese tallow tree) in the southeastern USA. climex incorporates key climatic parameters to generate large‐scale projections of potential distributions based on the climate across the species' current distribution. By employing field trials within microhabitats within and beyond the tree's current range, we were able to determine seed and young plants' response to the heterogeneity of the environment at regional scales. Based on projections of the climex model, T. sebifera has the potential to spread 500 km northward beyond its current distribution in the southeastern USA; minimum temperature and limited precipitation are the key climatic constraints in the eastern and western USA, respectively. climex results correlate strongly with seed germination across sites in the southeastern USA. These results do not however correlate with plant growth rates, which were often higher in sites with low projected climatic suitability. Competition and herbivory were not constraints on the growth of T. sebifera in our field trials and were therefore not responsible for the lack of correlation between model results and plant growth rates. If the minimum and maximum temperatures were to rise by 2 °C, the range of T. sebifera could extend northward 700 km beyond its current distribution. While both climex and the field trials indicate that T. sebifera is capable of extensive northward spread in the eastern USA, results of field trials indicate that the patterns of invasion within the region are likely to vary substantially with local site conditions.  相似文献   

4.
The radial growth of twenty isolates of the entomopathogenic fungus Beauveria bassiana sensu lato from different natural zones of Western Siberia and Kazakhstan (from 65 to 43°N) was tested under different temperatures (5–35°C). It was shown that the thermotolerance of the fungal isolates increased significantly from the north to south. The cold activity of the cultures did not significantly correlate with the latitude of origin and the sum positive temperatures of the regions. A distinct group of the steppe thermotolerance isolates was shown by the analysis of genomic polymorphism using seven intermicrosatellite DNA markers (ISSR). The steppe isolates had high levels of virulence to the wax moth Galleria mellonella and the Colorado potato beetle Leptinotarsa decemlineata at high temperatures (>30°C) compared to that of the forest-steppe isolates. The obtained data indicate that the use of isolates from the steppe zone will be most promising for the insect pest control under the conditions of continental and arid climate.  相似文献   

5.
末次盛冰期以来红豆树在不同气候变化情景下的分布动态   总被引:1,自引:0,他引:1  
红豆树(Ormosia hosiei Hemsl. et Wils.)是中国的特有种,具有极高的经济价值、景观价值和药用价值。由于木材珍贵,人工盗伐严重,其种群数量和分布范围不断减少,被世界自然保护联盟(IUCN)濒危物种红色名录列为近危物种。气候变化会对物种的分布造成严重影响,理解该影响将有助于物种保护策略的制定,尤其是为濒危物种未来的保护提供重要参考。本研究基于红豆树在中国的地理分布数据,借助经相关性分析后筛选出的9个变量因子,利用最大熵模型(MaxEnt)模拟红豆树在末次盛冰期、全新世中期、当代和未来气候情景下的潜在分布区和影响其分布的主导环境因子,并且通过空间分析模拟其在不同气候变化情景下空间分布格局的变化。结果表明MaxEnt在各时期训练集和测试集的AUC(受试者工作特征曲线下的面积)均值均达到0.9以上,表明模型有很好的预测能力。刀切法(Jackknife)表明年均降水量、温度季节性变化标准差和昼夜温差月均值是主导其分布的三大因子,累计贡献率达到91.8%。将模拟结果导入到ArcGIS后,处理得到不同时期红豆树适生区空间分布格局变化。结果表明,自末次盛冰期以来,红豆树的适生区面积收缩且向北迁移;随着全球气候变暖,未来4种气候情景下红豆树适生区也有较大面积的减少,特别是在高浓度排放情景(RCP8.5)下,丧失率最高达到45.6%。重庆、江西及位于粤桂两省中南部的大面积适生区可能都将丧失。而新增区域仅存在于适生区的边缘,新增率仅为1%—2%。本研究表明红豆树的分布受气候变化的影响较大,该研究结果将对未来红豆树的迁地保护与栽培提供重要参考。  相似文献   

6.
明确区域尺度上外来入侵种的潜在分布格局及其对气候变化的响应对入侵种的预防和控制具有重要意义。以外来入侵植物刺苍耳(Xanthium spinosum L.)为研究对象,以其扩散蔓延的新疆地区为研究区域,结合中国国家气候中心开发的BCC—CSM1—1模式下的将来气候条件,应用MaxEnt模型和ArcGIS空间分析技术构建了未来不同气候变化情景(RCP4.5,8.5)下2050s和2070s的刺苍耳适宜生境预测模型,定量的展示了气候变化情景下刺苍耳在新疆的扩散趋势及其适宜生境的面积空间变化和分布区中心移动轨迹。结果表明:年降雨量、下层土壤有机碳含量、上层土壤pH值、年温度变化范围、降雨量的季节性变化和年平均温度是影响刺苍耳地理分布的主导环境因子;博州、塔城、阿勒泰西北部、哈密中部、巴州北部、克州中部、阿克苏北部、奎屯市、克拉玛依市、五家渠市、喀什市等地为高危入侵风险区;两种气候模式下刺苍耳的各级适生区面积和总适生面积均呈持续增加的变化趋势,且在RCP8.5情景(最高温室气体排放情景)下响应更为敏感;总体上看,刺苍耳在新疆的分布未达到饱和,呈现以塔城中部为中心,向天山北麓和塔克拉玛干北缘方向辐射状扩散,且两种气候变化情景下至2070s分布区中心均向伊犁州奎屯方向移动。  相似文献   

7.
Analysis of population genetic structure is a key aspect to understand insect pest population dynamics in agricultural scenarios. Here the role of geography, hosts and time on the population genetic structure of codling moth Cydia pomonella (Linnaeus) (Lep., Tortricidae) populations is described. Temporal variation was examined in two French orchards among each of three adult flights during two successive years. Analyses were conducted using two insecticide resistance markers (variation at the sodium channel gene and enzymatic activity of cytochrome P450 oxidases) and three microsatellite loci. Levels of genetic variation among temporal populations were not significant based on variation in the sodium channel gene and microsatellite loci. However, P450 oxidase activity differed significantly during both flights and years, decreasing during the three flights of the first year and increasing during the second. These results suggest that phytosanitary measures are among the factors shaping the genetic structure of C. pomonella populations over temporal and geographical scales. We discuss the relative importance of natural and passive dispersal related to anthropogenic activities affecting C. pomonella population genetics and highlight population genetic research needs in order to design more efficient pest management practices.  相似文献   

8.
Female Edovum puttleri Grissell [Hymenoptera: Eulophidae], reared from eggs of Leptinotarsa decemlineata (Say) or Leptinotarsa texana Schaeffer [Coleoptera: Chrysomelidae], were videotaped as they attacked egg masses of L. decemlineata containing 20 host eggs. We identified 15 components of ovipositional behavior. Parasitoids reared on L. texana attacked and oviposited in significantly more host eggs than did females reared on L. decemlineata. Ethometric analyses of behavioral transitions and a clustering analysis of 34 behavioral parameters showed that females reared on L. texana attacked the host egg mass in a different manner than those reared from L. decemlineata. It was concluded that differences were associated with the host species upon which they were reared. Contrary to previous reports, mortality of unparasitized hosts was caused by an ovipositor probe of short duration, which was not related to host-feeding.  相似文献   

9.
气候变化将改变物种的生存环境,影响其分布范围,甚至威胁到某些物种的生存。本文通过ArcGIS软件和最大熵(MaxEnt)模型模拟蒙古扁桃(Amygdalus mongolica)在祁连山当前(1970—2000年)和未来(2081—2100年)2个气候时期背景下的地理分布格局,并分析其主要的环境影响因素。结果表明:(1)在当前气候条件下,蒙古扁桃在祁连山的东南部有较好的适生性;(2)未来4种气候情景下(SSP126,SSP245,SSP245和SSP585),蒙古扁桃在祁连山南部及东南部的适生区有消失的风险,扩张区主要集中在祁连山中北部的国家公园附近;(3)蒙古扁桃的分布格局主要向祁连山北部和高纬度地区迁移;(4)最湿月降水量(Bio13)、坡度(Slope)、最冷季度均温(Bio11)和最热月最高温(Bio5)的累计贡献率达到了80%以上,是影响蒙古扁桃适生分布的主要因子。本研究模拟、分析、预测了当前和未来不同情景下蒙古扁桃在祁连山的潜在分布及其变化,为祁连山生态及物种多样性的保护提供科学依据。  相似文献   

10.
Aim To determine the potential combined effects of climate change and land transformation on the modelled geographic ranges of Banksia. Location Mediterranean climate South West Australian Floristic Region (SWAFR). Methods We used the species distribution modelling software Maxent to relate current environmental conditions to occurrence data for 18 Banksia species, and subsequently made spatial predictions using two simple dispersal scenarios (zero and universal), for three climate‐severity scenarios at 2070, taking the impacts of land transformation on species’ ranges into account. The species were chosen to reflect the biogeography of Banksia in the SWAFR. Results Climate‐severity scenario, dispersal scenario, biogeographic distribution and land transformation all influenced the direction and magnitude of the modelled range change responses for the 18 species. The predominant response of species to all climate change scenarios was range contraction, with exceptions for some northern and widespread species. Including land transformation in estimates of modelled geographic range size for the three climate‐severity scenarios generally resulted in smaller gains and larger declines in species ranges across both dispersal scenarios. Including land transformation and assuming zero dispersal resulted, as expected, in the greatest declines in projected range size across all species. Increasing climate change severity greatly increased the risk of decline in the 18 Banksia species, indicating the critical role of mitigating future emissions. Main conclusions The combined effects of climate change and land transformation may have significant adverse impacts on endemic Proteaceae in the SWAFR, especially under high emissions scenarios and if, as expected, natural migration is limiting. Although these results need cautious interpretation in light of the many assumptions underlying the techniques used, the impacts identified warrant a clear focus on monitoring across species ranges to detect early signs of change, and experiments that determine physiological thresholds for species in order to validate and refine the models.  相似文献   

11.
In central Mexico, the center of origin forLeptinotarsa decemlineata (Say) and its principal host plants,L. decemlineata is associated with a diverse complex of natural enemies. Observations during 2 years in Morelos, Mexico revealed 4 species of asopine pentatomids, 7 species of foliar searching carabids, and 2 coccinellids among the predators ofL. decemlineata. Parasitoids include 3 species of tachinids andEdovum puttleri Grissel, an eulophid egg parasitoid. These natural enemies include several predators that have not previously been reported attackingL. decemlineata. University of Maine Agriculture Experiment Station No. 1553  相似文献   

12.
Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to model the effects of climate change, gypsy moth (Lymantria dispar L.) defoliation, and wildfire on the C dynamics of the forests of the New Jersey Pine Barrens over the next century. Climate scenarios were simulated using current climate conditions (baseline), as well as a high emissions scenario (HadCM3 A2 emissions scenario). Our results suggest that long-term changes in C cycling will be driven more by climate change than by fire or gypsy moths over the next century. We also found that simulated disturbances will affect species composition more than tree growth or C sequestration rates at the landscape level. Projected changes in tree species biomass indicate a potential increase in oaks with climate change and gypsy moth defoliation over the course of the 100-year simulation, exacerbating current successional trends towards increased oak abundance. Our research suggests that defoliation under climate change may play a critical role in increasing the variability of tree growth rates and in determining landscape species composition over the next 100 years.  相似文献   

13.
Climate is a major factor delimiting species’ distributions. However, biotic interactions may also be prominent in shaping geographical ranges, especially for parapatric species forming hybrid zones. Determining the relative effect of each factor and their interaction of the contact zone location has been difficult due to the lack of broad scale environmental data. Recent developments in species distribution modelling (SDM) now allow disentangling the relative contributions of climate and species’ interactions in hybrid zones and their responses to future climate change. We investigated the moving hybrid zone between the breeding ranges of two parapatric passerines in Europe. We conducted SDMs representing the climatic conditions during the breeding season. Our results show a large mismatch between the realized and potential distributions of the two species, suggesting that interspecific interactions, not climate, account for the present location of the contact zone. The SDM scenarios show that the southerly distributed species, Hippolais polyglotta, might lose large parts of its southern distribution under climate change, but a similar gain of novel habitat along the hybrid zone seems unlikely, because interactions with the other species (H. icterina) constrain its range expansion. Thus, whenever biotic interactions limit range expansion, species may become ‘trapped’ if range loss due to climate change is faster than the movement of the contact zone. An increasing number of moving hybrid zones are being reported, but the proximate causes of movement often remain unclear. In a global context of climate change, we call for more interest in their interactions with climate change.  相似文献   

14.
Y. Zhang  J. E. Cossentine 《BioControl》1995,40(3-4):457-466
In laboratory host-preference studies,Trichogramma platneri Nagarkatti (Hym.: Trichogrammatidae) females, reared on viable codling moth,Cydia pomonella (L.) (Lep.: Tortricidae) eggs, parasitized significantly more viable than nonviable codling moth eggs produced by cobalt 60 irradiated adults. This ovipositional preference was maintained when competition increased per host egg. Similarly, one, three and fiveT. platneri females consistently oviposited more eggs into viable versus nonviable host eggs. A single femaleT. platneri parasitized a similar number of viableC. pomonella and three-lined leafroller,Pandemis limitata (Robinson) (Lep.: Tortricidae) eggs. However, as the number of females per host eggs increased, a significantly larger number of codling moth versus leafroller eggs were parasitized. One, three and fiveTrichogramma females parasitized significantly moreP. limitata versus nonviableC. pomonella eggs. NonviableC. pomonella eggs deflated to less than 25% of their original volume in four and ten days when held under dry and humid conditions respectively. The blackened prepupal stage of the parasitoid generally occurred in the nonviableC. pomonella eggs four days post-parasitization whereas the parasitized viable eggs blackened zero to one day earlier. Incubation under dry or humid conditions did not appear to influence the number of parasitized eggs that were able to blacken and show evidence of parasitism. Summerland Research Centre Contribution No. 938.  相似文献   

15.
Three Turkish isolates of the entomopathogenic nematodes Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora were evaluated under laboratory conditions (in different temperatures and doses) for their biocontrol efficiency against last instar Leptinotarsa decemlineata. Herein, the effects of infective juveniles in aqueous suspension against L. decemlineata were evaluated. S. feltiae appeared to be the most pathogenic nematode among the tested species.  相似文献   

16.
Globally, Phytophthora cinnamomi is listed as one of the 100 worst invasive alien species and active management is required to reduce impact and prevent spread in both horticulture and natural ecosystems. Conversely, there are regions thought to be suitable for the pathogen where no disease is observed. We developed a climex model for the global distribution of P. cinnamomi based on the pathogen's response to temperature and moisture and by incorporating extensive empirical evidence on the presence and absence of the pathogen. The climex model captured areas of climatic suitability where P. cinnamomi occurs that is congruent with all available records. The model was validated by the collection of soil samples from asymptomatic vegetation in areas projected to be suitable by the model for which there were few records. DNA was extracted, and the presence or absence of P. cinnamomi was determined by high‐throughput sequencing (HTS). While not detected using traditional isolation methods, HTS detected P. cinnamomi at higher elevations in eastern Australia and central Tasmania as projected by the climex model. Further support for the climex model was obtained using the large data set from south‐west Australia where the proportion of positive records in an area is related to the Ecoclimatic Index value for the same area. We provide for the first time a comprehensive global map of the current P. cinnamomi distribution, an improved climex model of the distribution, and a projection to 2080 of the distribution with predicted climate change. This information provides the basis for more detailed regional‐scale modelling and supports risk assessment for governments to plan management of this important soil‐borne plant pathogen.  相似文献   

17.
18.
Question: What is the effect of climate change on tree species abundance and distribution in the Italian peninsula? Location: Italian peninsula. Methods: Regression tree analysis, Random Forest, generalized additive model and geostatistical methods were compared to identify the best model for quantifying the effect of climate change on tree species distribution and abundance. Future potential species distribution, richness, local colonization, local extinction and species turnover were modelled according to two scenarios (A2 and B1) for 2050 and 2080. Results: Robust Random Forest proved to be the best statistical model to predict the potential distribution of tree species abundance. Climate change could lead to a shift in tree species distribution towards higher altitudes and a reduction of forest cover. Pinus sylvestris and Tilia cordata may be considered at risk of local extinction, while the other species could find potential suitable areas at the cost of a rearrangement of forest community composition and increasing competition. Conclusions: Geographical and topographical regional characteristics can have a noticeable influence on the impact of predicted climate change on forest ecosystems within the Mediterranean basin. It would be highly beneficial to create a standardized and harmonized European forest inventory in order to evaluate, at high resolution, the effect of climate change on forest ecosystems, identify regional differences and develop specific adaptive management strategies and plans.  相似文献   

19.
Sensillae on the antennae of the Colorado potato beetle,Leptinotarsa decemlineata are described using scanning (SEM) and transmission (TEM) electron microscopy and compared with SEM observations of antennal sensilla inL. haldemani andL. texana. In all the three species, 13 distinct sensillar types were identified with a higher density of sensilla in the more polyphagous species,L. decemlineata than in the moderately host specificL. haldemani and the highly host specificL. texana. Cuticular specializations and the predominance of olfactory sensilla are discussed in relation to host specificity in the three species.  相似文献   

20.
Abstract

Codling moth, Cydia pomonella, is one of the most serious pests of apple and pear worldwide. This study evaluates the efficacies of a granulovirus, a Bacillus thuringiensis (Bt) strain and their combination in the control of C. pomonella in China. A Cydia pomonella granulovirus (CpGV) was isolated from C. pomonella cadavers in an orchard in Gansu, China. Droplet-feeding bioassays showed the median lethal concentration (LC50) of this CpGV isolate (CpGV-C1) against the third instar C. pomonella larvae was 770 OBs µl?1. The LC50 values of Bt C-33 and kurstaki HD-1 against the third instar larvae were 26.3 µg ml?1 and 15.7 µg ml?1, respectively. Field tests indicated the control efficacies of CpGV-C1 and the combination of CpGV-C1 and Bt against C. pomonella larvae in apple orchards were similar to that of beta-cypermethrin. Our data demonstrated that the combination of CpGV and Bt might effectively protect apple fruits from the damage of C. pomonella larvae and had the potential to be developed as a low-cost, highly effective insecticide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号