首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee YS  Nakahara K  Pham JW  Kim K  He Z  Sontheimer EJ  Carthew RW 《Cell》2004,117(1):69-81
The RNase III enzyme Dicer processes RNA into siRNAs and miRNAs, which direct a RNA-induced silencing complex (RISC) to cleave mRNA or block its translation (RNAi). We have characterized mutations in the Drosophila dicer-1 and dicer-2 genes. Mutation in dicer-1 blocks processing of miRNA precursors, whereas dicer-2 mutants are defective for processing siRNA precursors. It has been recently found that Drosophila Dicer-1 and Dicer-2 are also components of siRNA-dependent RISC (siRISC). We find that Dicer-1 and Dicer-2 are required for siRNA-directed mRNA cleavage, though the RNase III activity of Dicer-2 is not required. Dicer-1 and Dicer-2 facilitate distinct steps in the assembly of siRISC. However, Dicer-1 but not Dicer-2 is essential for miRISC-directed translation repression. Thus, siRISCs and miRISCs are different with respect to Dicers in Drosophila.  相似文献   

2.
Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs (miRNAs) from pre-miRNA. What makes the two Dicers specific for their biological substrates? We find that purified Dicer-2 can efficiently cleave pre-miRNA, but that inorganic phosphate and the Dicer-2 partner protein R2D2 inhibit pre-miRNA cleavage. Dicer-2 contains C-terminal RNase III domains that mediate RNA cleavage and an N-terminal helicase motif, whose function is unclear. We show that Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is required for Dicer-2 to process long dsRNA, but not pre-miRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, can generate siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate.  相似文献   

3.
PACSINs are intracellular adapter proteins involved in vesicle transport, membrane dynamics and actin reorganisation. In this study, we report a novel role for PACSIN proteins as components of the centrosome involved in microtubule dynamics. Glutathione S-transferase (GST)-tagged PACSIN proteins interacted with protein complexes containing α- and γ-tubulin in brain homogenate. Analysis of cell lysates showed that all three endogenous PACSINs co-immunoprecipitated dynamin, α-tubulin and γ-tubulin. Furthermore, PACSINs bound only to unpolymerised tubulin, not to microtubules purified from brain. In agreement, the cellular localisation of endogenous PACSIN 2 was not affected by the microtubule depolymerising reagent nocodazole. By light microscopy, endogenous PACSIN 2 localised next to γ-tubulin at purified centrosomes from NIH 3T3 cells. Finally, reduction of PACSIN 2 protein levels with small-interfering RNA (siRNA) resulted in impaired microtubule nucleation from centrosomes, whereas microtubule centrosome splitting was not affected, suggesting a role for PACSIN 2 in the regulation of tubulin polymerisation. These findings suggest a novel function for PACSIN proteins in dynamic microtubuli nucleation.  相似文献   

4.
The miRNA pathway has been shown to regulate developmentally important genes. Dicer-1 is required to cleave endogenously encoded microRNA (miRNA) precursors into mature miRNAs that regulate endogenous gene expression. RNA interference (RNAi) is a gene silencing mechanism triggered by double-stranded RNA (dsRNA) that protects organisms from parasitic nucleic acids. In Drosophila, Dicer-2 cleaves dsRNA into 21 base-pair small interfering RNA (siRNA) that are loaded into RISC (RNA induced silencing complex) that in turn cleaves mRNAs homologous to the siRNAs. Dicer-2 co-purifies with R2D2, a low-molecular weight protein that loads siRNA onto Ago-2 in RISC. Loss of R2D2 results in defective RNAi. However, unlike mutants in other RNAi components like Dicer-2 or Ago-2, we report here that r2d21 mutants have striking developmental defects. r2d21 mutants have reduced female fertility, producing less than 1/10 the normal number of progeny. These escapers have normal morphology. We show R2D2 functions in the ovary, specifically in the somatic tissues giving rise to the stalk and other follicle cells critical for establishing the cellular architecture of the oocyte. Most interestingly, the female fertility defects are dramatically enhanced when one copy of the dcr-1 gene is missing and Dicer-1 protein co-immunoprecipitates with R2D2 antisera. These data show that r2d21 mutants have reduced viability and defective female fertility that stems from abnormal follicle cell function, and Dicer-1 impacts this process. We conclude that R2D2 functions beyond its role in RNA interference to include ovarian development in Drosophila.  相似文献   

5.
Liu X  Park JK  Jiang F  Liu Y  McKearin D  Liu Q 《RNA (New York, N.Y.)》2007,13(12):2324-2329
Double-stranded RNA-binding proteins (dsRBPs), such as R2D2 and Loquacious (Loqs), function in tandem with Dicer (Dcr) enzymes in RNA interference (RNAi). In Drosophila, Dcr-1/Loqs and Dcr-2/R2D2 complexes generate microRNAs (miRNAs) and small interfering RNAs (siRNAs), respectively. Although R2D2 does not regulate siRNA production, R2D2 and Dcr-2 coordinately bind siRNAs to promote assembly of the siRNA-induced silencing (siRISC) complexes. Conversely, Loqs enhances miRNA production. It is uncertain if Dcr-1 and Loqs facilitate miRNA loading onto the miRISC complexes. Here we used loqs knockout (KO) flies to characterize the physiological functions of Loqs in the miRNA pathway. Northern analysis revealed consistent accumulation of precursor (pre)-miRNAs in loqs(KO) flies. However, the lack of Loqs had differential effects on mature miRNAs: some are diminished, whereas others maintain wild-type levels. Importantly, the data suggest that miRNA production is not the rate-limiting step of the miRNA pathway. We show that Dcr-1, but not Loqs, is critical for assembly of miRISCs by using dcr-1 or loqs null egg extract. Consistent with this, recombinant Dcr-1 could efficiently interact with miRNA duplex in the absence of Loqs. Together, our results indicate that Loqs plays a prominent role in miRNA biogenesis, but is largely dispensable for miRISC assembly. Thus, Loqs and R2D2 represent two distinct functional modes for dsRBPs in the RNAi pathways.  相似文献   

6.
Phospholipases D1 and D2 coordinately regulate macrophage phagocytosis   总被引:5,自引:0,他引:5  
Phagocytosis is a fundamental feature of the innate immune system, required for antimicrobial defense, resolution of inflammation, and tissue remodeling. Furthermore, phagocytosis is coupled to a diverse range of cytotoxic effector mechanisms, including the respiratory burst, secretion of inflammatory mediators and Ag presentation. Phospholipase D (PLD) has been linked to the regulation of phagocytosis and subsequent effector responses, but the identity of the PLD isoform(s) involved and the molecular mechanisms of activation are unknown. We used primary human macrophages and human THP-1 promonocytes to characterize the role of PLD in phagocytosis. Macrophages, THP-1 cells, and other human myelomonocytic cells expressed both PLD1 and PLD2 proteins. Phagocytosis of complement-opsonized zymosan was associated with stimulation of the activity of both PLD1 and PLD2, as demonstrated by a novel immunoprecipitation-in vitro PLD assay. Transfection of dominant-negative PLD1 or PLD2 each inhibited the extent of phagocytosis (by 55-65%), and their combined effects were additive (reduction of 91%). PLD1 and PLD2 exhibited distinct localizations in resting macrophages and those undergoing phagocytosis, and only PLD1 localized to the phagosome membrane. The COS-7 monkey fibroblast cell line, which has been used as a heterologous system for the analysis of receptor-mediated phagocytosis, expressed PLD2 but not PLD1. These data support a model in which macrophage phagocytosis is coordinately regulated by both PLD1 and PLD2, with isoform-specific localization. Human myelomonocytic cell lines accurately model PLD-dependent signal transduction events required for phagocytosis, but the heterologous COS cell system does not.  相似文献   

7.
CRMP-2 binds to tubulin heterodimers to promote microtubule assembly   总被引:1,自引:0,他引:1  
Regulated increase in the formation of microtubule arrays is thought to be important for axonal growth. Collapsin response mediator protein-2 (CRMP-2) is a mammalian homologue of UNC-33, mutations in which result in abnormal axon termination. We recently demonstrated that CRMP-2 is critical for axonal differentiation. Here, we identify two activities of CRMP-2: tubulin-heterodimer binding and the promotion of microtubule assembly. CRMP-2 bound tubulin dimers with higher affinity than it bound microtubules. Association of CRMP-2 with microtubules was enhanced by tubulin polymerization in the presence of CRMP-2. The binding property of CRMP-2 with tubulin was apparently distinct from that of Tau, which preferentially bound microtubules. In neurons, overexpression of CRMP-2 promoted axonal growth and branching. A mutant of CRMP-2, lacking the region responsible for microtubule assembly, inhibited axonal growth and branching in a dominant-negative manner. Taken together, our results suggest that CRMP-2 regulates axonal growth and branching as a partner of the tubulin heterodimer, in a different fashion from traditional MAPs.  相似文献   

8.
9.
Ye R  Wang W  Iki T  Liu C  Wu Y  Ishikawa M  Zhou X  Qi Y 《Molecular cell》2012,46(6):859-870
In plants, DNA methylation can be mediated by a class of Argonaute4 (AGO4)-associated heterochromatic siRNAs (hc-siRNAs), through a pathway termed RNA-directed DNA methylation (RdDM). It has been thought that RdDM is solely a nuclear process, as both the biogenesis and functioning of hc-siRNAs take place in the nucleus. In this study, we unexpectedly found that hc-siRNAs are predominantly present in the cytoplasm. We demonstrated that AGO4 is loaded with hc-siRNAs in the cytoplasm and the formation of mature AGO4/siRNA complexes requires HSP90 and the cleavage activity of AGO4. Intriguingly, siRNA binding facilitates the redistribution of AGO4 into the nucleus, likely through inducing conformational change that leads to the exposure of the nuclear localization signal (NLS). Our findings reveal an unsuspected cytoplasmic step in the RdDM pathway. We propose that selective nuclear import of mature AGO4/siRNA complexes is a key regulatory point prior to the effector stage of RdDM.  相似文献   

10.
The Sm proteins are loaded on snRNAs by the SMN complex, but how snRNP-specific proteins are assembled remains poorly characterized. U4 snRNP and box C/D snoRNPs have structural similarities. They both contain the 15.5K and proteins with NOP domains (PRP31 for U4, NOP56/58 for snoRNPs). Biogenesis of box C/D snoRNPs involves NUFIP and the HSP90/R2TP chaperone system and here, we explore the function of this machinery in U4 RNP assembly. We show that yeast Prp31 interacts with several components of the NUFIP/R2TP machinery, and that these interactions are separable from each other. In human cells, PRP31 mutants that fail to stably associate with U4 snRNA still interact with components of the NUFIP/R2TP system, indicating that these interactions precede binding of PRP31 to U4 snRNA. Knock-down of NUFIP leads to mislocalization of PRP31 and decreased association with U4. Moreover, NUFIP is associated with the SMN complex through direct interactions with Gemin3 and Gemin6. Altogether, our data suggest a model in which the NUFIP/R2TP system is connected with the SMN complex and facilitates assembly of U4 snRNP-specific proteins.  相似文献   

11.
Rad23 is a DNA repair protein that promotes the assembly of the nucleotide excision repair complex. Rad23 can interact with the 26S proteasome through an N-terminal ubiquitin-like domain, and inhibits the assembly of substrate-linked multi-ubiquitin (multi-Ub) chains in vitro and in vivo. Significantly, Rad23 can bind a proteolytic substrate that is conjugated to a few ubiquitin (Ub) moieties. We report here that two ubiquitin-associated (UBA) domains in Rad23 form non-covalent interactions with Ub. A mutant that lacked either UBA sequence was capable of blocking the assembly of substrate-linked multi-Ub chains, although a mutant that lacked both UBA domains was significantly impaired. These studies suggest that the interaction with Ub is required for Rad23 activity, and that other UBA-containing proteins may have a similar function.  相似文献   

12.
Vitamin D signaling is believed to be transduced by a heterodimeric receptor complex that binds to specific sequences of DNA termed vitamin D response elements (VDREs) in the promoter regions of target genes. However, recent studies have suggested that considerable flexibility exists in the types of binding sites the vitamin D receptor (VDR) is capable of recognizing, including some that bind VDR homodimers. In this report, a screening method involving immunoselection and PCR amplification was utilized to examine genomic binding sites for the receptor. Four individual fragments ranging in size from ca. 250-320 bp were nominally isolated from the amplified pool of captured fragments for further analysis. Each of the four sequences was capable of forming specific, unique VDR complexes using recombinant human VDR (rhVDR) alone or rhVDR heteromers formed in conjunction with the addition of recombinant human retinoid X receptor alpha (rhRXRalpha). Two of these fragments exhibited significant hormone-dependent repression of luciferase activity when linked to a thymidine kinase driven reporter vector. DNaseI footprinting revealed specific binding over DR+3 or related half-site sequences found within both of these DNA fragments. The results from this study demonstrate that specific, functional binding sites for the VDR can be successfully isolated from genomic DNA and should aid in the discovery of genes regulated by the steroid hormone.  相似文献   

13.
14.
Septins are GTPases required for cytokinesis and other processes requiring spatial organization of the cell cortex, but their molecular functions in these processes are unknown. In this issue of Developmental Cell, Kinoshita et al. take an important step in elucidating the molecular functions of septins by developing an in vitro assay for septin assembly and exploring the relationship between mammalian septins and actin.  相似文献   

15.
16.
The GENOMES UNCOUPLED4 (GUN4) protein stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits protoporphyrin IX to chlorophyll biosynthesis. This stimulation depends on GUN4 binding the ChlH subunit of Mg-chelatase and the porphyrin substrate and product of Mg-chelatase. After binding porphyrins, GUN4 associates more stably with chloroplast membranes and was proposed to promote interactions between ChlH and chloroplast membranes—the site of Mg-chelatase activity. GUN4 was also proposed to attenuate the production of reactive oxygen species (ROS) by binding and shielding light-exposed porphyrins from collisions with O2. To test these proposals, we first engineered Arabidopsis thaliana plants that express only porphyrin binding–deficient forms of GUN4. Using these transgenic plants and particular mutants, we found that the porphyrin binding activity of GUN4 and Mg-chelatase contribute to the accumulation of chlorophyll, GUN4, and Mg-chelatase subunits. Also, we found that the porphyrin binding activity of GUN4 and Mg-chelatase affect the associations of GUN4 and ChlH with chloroplast membranes and have various effects on the expression of ROS-inducible genes. Based on our findings, we conclude that ChlH and GUN4 use distinct mechanisms to associate with chloroplast membranes and that mutant alleles of GUN4 and Mg-chelatase genes cause sensitivity to intense light by a mechanism that is potentially complex.  相似文献   

17.
BackgroundTherapeutic angiogenesis is a novel strategy for the treatment of ischemic diseases that involves promotion of angiogenesis in ischemic tissues via the use of proangiogenic agents. However, effective proangiogenic drugs that activate the Ang2/Tie2 signaling pathway remain scarce.PurposeWe aimed to investigate the proangiogenic activity of notoginsenoside R1 (NR1) isolated from total saponins of Panax notoginseng with regard to activation of the Ang2/Tie2 signaling pathway.MethodsWe examined the proangiogenic effects of NR1 by assessing the effects of NR1 on the proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs). The aortic ring assay and vascular endothelial growth factor receptor inhibitor (VRI)-induced vascular regression in the zebrafish model were used to confirm the proangiogenic effects of NR1 ex vivo and in vivo. Furthermore, the molecular mechanism was investigated by Western blot analysis.ResultsWe found that NR1 promoted the proliferation, mobility and tube formation of HUVECs in vitro. NR1 also increased the number of sprouting vessels in rat aortic rings and rescued VRI-induced vascular regression in zebrafish. NR1-induced angiogenesis was dependent on Tie2 receptor activation mediated by increased autocrine Ang2 in HUVECs, and inhibition of the Ang2/Tie2 pathway abrogated the proangiogenic effects of NR1.ConclusionsOur results suggest that NR1 promotes angiogenesis by activating the Ang2/Tie2 signaling pathway. Thus, NR1-induced activation of the Ang2/Tie2 pathway is an effective proangiogenic approach. NR1 may be useful agent for the treatment of ischemic diseases.  相似文献   

18.
Journal of Plant Research - Legumes engage in symbiosis with nitrogen-fixing soil bacteria, collectively called rhizobia, under nitrogen-limited conditions. In many legumes, the root invasion of...  相似文献   

19.
Mesenchymal stem cells (MSCs) can differentiate to osteocytes under suitable conditions. In recent years, micro-nucleotides have been progressively used to modulate gene expression in cells due to the consideration of safety. Our present study aimed to investigate whether co-delivery of Noggin-siRNA and antimiR-138 enhances the osteogenic effect of MSCs. Using a murine MSC line, C3H/10T1/2 cells, the delivery efficiency of Noggin-siRNA and antimiR-138 into MSCs was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Cell phenotype and proliferation capacity was assessed by flow cytometry and MTT assay respectively. The osteogenesis of MSCs was tested by Alkaline Phosphatase (ALP) staining, qRT-PCR, and western blot analyses. Our results demonstrated that the expression of Noggin and miR-138 were significantly silenced in MSCs by Noggin-siRNA and/or antimiR-138 delivery, while the phenotype and proliferation capacity of MSCs were not affected. Down-regulation of Noggin and miR-138 cooperatively promoted osteogenic differentiation of MSCs. The ALP positive cells reached about 83.57?±?10.18%. Compared with single delivery, the expression of osteogenic related genes, such as Alp, Col-1, Bmp2, Ocn and Runx2, were the highest in cells with co-delivery of the two oligonucleotides. Moreover, the protein level of RUNX2, and the ratios of pSMAD1/5/SMAD1/5 and pERK1/2/ERK1/2 were significantly increased. The activation of Smad, Erk signaling may constitute the underlying mechanism of the enhanced osteogenesis process. Taken together, our study provides a safe strategy for the clinical rehabilitation application of MSCs in skeletal deficiency.  相似文献   

20.
Bombyx mori nucleopolyhedrovirus (BmNPV) is a primary pathogen in silkworm, and the molecular mechanism of B. mori defense to BmNPV infection is still unclear. RNA interference (RNAi) is well-known as an intracellular conserved mechanism that is critical in gene regulation and cell defense. The antiviral RNAi pathway processes viral double-stranded RNA (dsRNA) into viral small interfering RNAs that guide the recognition and cleavage of complementary viral target RNAs. In this study, a Dicer-2 (Dcr2) gene was identified in B. mori and its antiviral function was explored. Dcr2 messenger RNA (mRNA) expression was the highest in hemocytes and expressed in all stages of silkworm growth. After infection with BmNPV, the expression of Dcr2 mRNA was significantly increased after infection in midgut and hemocytes. The expression of Dcr2 was significantly upregulated by injecting dsRNA (dsBmSPH-1) into silkworm after 48 hr. Knocking down the expression level of Dcr2 using specific dsRNA in silkworm, which modestly enhanced the production of viral genomic DNA. Our results suggested that the Dcr2 gene in B. mori plays an important role in against BmNPV invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号