首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Epstein-Barr virus (EBV)-associated nuclear antigen (EBNA) was purified 85-fold from a nuclear pellet derived from an EBV-transformed B lyphoblastoid cell line by a five-step procedure consisting of preparation of extract, heating at 80 degrees C in phosphate buffer, ammonium sulfate precipitation, preparative ultracentrifugation, and affinity chromatography on double-stranded DNA-cellulose. The purified complement fixing antigen specifically blocked the anticomplement immunofluorescence assay for EBNA. Several properties indicate a close association of EBNA with chromatin, viz. 1) precipitation of antigenic activity by phosphate buffer and subsequent thermal fractionation; 2) partial sensitivity of antigenic activity to DNase (but not to RNase) and restoration of activity by addition of calf thymus DNA; and 3) specific binding of EBNA to double-stranded DNA-cellulose. Other properties of EBNA, including its unusual heat stability, are described.  相似文献   

2.
Cell lines were established by co-transfection of cloned M-ABA Epstein-Barr virus (EBV) DNA fragments with plasmids conferring resistance to dominant selective markers. A baby hamster kidney cell line carrying the HindIII-I1 fragment exhibits a nuclear antigen of 82 000 daltons, serologically defined as EBV-determined nuclear antigen (EBNA) 1. Furthermore, a Rat-1 cell line transfected with DNA of the clone pM 780-28 containing three large internal repeats (BglII-U) and the adjacent BglII-C fragment expresses a nuclear antigen of 82 000 daltons which can be visualized only by a subset of anti EBNA-positive human sera. Sera recognizing the 82 000-dalton protein of the transfected cell line reacted with a protein of the same size in the non-producer line Raji, designated as EBNA 2. Conversely, sera without reactivity to the 82 000-dalton protein failed to react with EBNA 2 of Raji cells. P3HR-1 and Daudi cells with large deletions in BglII-U and -C are devoid of EBNA 2. The data presented provide evidence that a second EBNA protein is encoded by the region of the EBV genome which is deleted in the non-transforming P3HR-1 strain.  相似文献   

3.
D J Hsieh  S M Camiolo    J L Yates 《The EMBO journal》1993,12(13):4933-4944
Replication of the circular, 170 kb genome of Epstein-Barr virus (EBV) during latent infection is performed by the cellular replication machinery under cell-cycle control. A single viral protein, EBNA1, directs the cellular replication apparatus to initiate replication within the genetically defined replication origin, oriP, at a cluster of four EBNA1 binding sites, referred to here as the physical origin of bidirectional replication, or OBR. A second cluster of EBNA1 binding sites within oriP, the 30 bp repeats, serves an essential role as a replication enhancer and also provides a distinct episome maintenance function that is unrelated to replication. We examined the functional elements of oriP for binding by EBNA1 and possibly other proteins in proliferating Raji cells by generating in vivo footprints using two reagents, dimethylsulfate (DMS) and KMnO4. We also employed deoxyribonuclease I (DNase I) with permeabilized cells. The in vivo and permeabilized cell footprints at the EBNA1 binding sites, particularly those obtained using DMS, gave strong evidence that all of these sites are bound by EBNA1 in asynchronously dividing cells. No consistent evidence was found to suggest binding by other proteins at any other sites within the functional regions of oriP. Thymines at symmetrical positions of the OBR within oriP were oxidized when cells were treated with permanganate, suggestive of bends or other distortions of DNA structure at these positions; binding of EBNA1 in vitro to total DNA from Raji cells induced reactivity to permanganate at identical positions. The simplest interpretation of the results, which were obtained using asynchronously dividing cells, is that EBNA1 binds to its sites at oriP and holds the OBR in a distorted conformation throughout most of the cell cycle, implying that replication is initiated by a cellular mechanism and is not limited by an availability of EBNA1 for binding to oriP.  相似文献   

4.
5.
A 65,000-dalton (65K) antigen found in Raji cells by fluoroimmunoelectrophoresis and radioimmunoelectrophoresis has been identified as an Epstein-Barr virus nuclear antigen (EBNA). This identification is based on the following evidence. The 65K antigen is detected in Raji cells but not in three Epstein-Barr virus (-) human B cell lines. It is not detected with EBNA (-) sera. The 65K antigen is found predominantly in the nucleus and co-elutes with EBNA during partial purification by DNA-Sepharose and Blue Dextran-Sepharose chromatography. Finally, the partially purified 65K antigen is an effective absorbant of EBNA antibody as measured in an anticomplement immunofluorescence assay. Antigens with molecular weights of 72, 70, and 73K have been detected in B95-8, P3HR-1, and Namalwa cells, respectively. These antigens are the likely homologues of the 65K Raji EBNA. In addition, an Epstein-Barr virus-associated, 81K DNA-binding antigen has been detected in both B95-8 and Raji cells.  相似文献   

6.
EB virus (EBV) preparations derived from various producing lymphoblastoid cell lines (LCL) differed in their biological properties, as judged by the following four tests: (1) cord blood lymphocyte (CBL) transformation into EBV-carrying LCL; (2) early antigen (EA) induction in Raji cells; (3) inhibition of Raji cell growth; (4) induction of the EBV-determined nuclear antigen (EBNA) in CBL. B95-8 virus transformed and induced EBNA in CBL but did not induce EA in Raji cells, nor did it inhibit their growth. P3HR-1 virus did not transform CBL, induced no EBNA or EA in CBL, but induced EA in Raji cells and inhibited their growth. EBV isolated from the QIMR-WIL, 833L, F137 and cb-8-7 LCL resembled the B95-8 virus with regard to its biological activity (CBL transformation, EA induction in and growth inhibition of Raji cells). Transformation of CBL as contrasted to EA induction in, and growth inhibition of Raji cells thus appear as mutually exclusive viral functions.  相似文献   

7.
The complexity and abundance of Epstein-Barr (EBV)-specific RNA in cell cultures restringently, abortively, and productively infected with EBV has been analyed by hybridization of the infected cell RNA with purified viral DNA. The data indicate the following. (i) Cultures containing productively infected cells contain viral RNA encoded by at least 45% of EBV DNA, and almost all of the species of viral RNA are present in the polyadenylated and polyribosomal RNA fractions. (ii) Restringently infected Namalwa and Raji cultures, which contain only intranuclear antigen, EBNA, and enhanced capacity for growth in vitro, contain EBV RNA encoded by at least 16 and 30% of the EBV DNA, respectively. The polyadenylated and polyribosomal RNA fractions of Raji and Namalwa cells are enriched for a class of EBV RNA encoded by approximately 5% of EBV DNA. The same EBV DNA sequences encode the polyadenylated and polyribosomal RNA of both Raji and Namalwa cells. (iii) After superinfection of Raji cultures with EBV (HR-1), the abortively infected cells contain RNA encoded by at least 41% of EBV DNA. The polyadenylated RNA of superinfected Raji cells is enriched for a class of EBV RNA encoded by approximately 20% of EBV HR-1 DNA. Summation hybridization experiments suggest that the polyadenylated RNA in superinfected Raji cells is encoded by the same DNA sequences as encode RNA present in Raji cells before superinfection, most of which is not polyadenylated. That the same EBV RNA sequences are present in the polyadenylated and polyribosomal fractions of two independently derived, restringently infected cell lines suggests that these RNAs may specify functions related to maintenance of the transformed state. The complexity of this class of RNA is adequate to specify a sequence of a least 5,000 amino acids. That only some RNA species are polyadenylated in restringent and abortive infection suggests that polyadenylation or whatever determines polyadenylation may play a role in the restricted expression of the EVB genome.  相似文献   

8.
J Luka  H Jrnvall    G Klein 《Journal of virology》1980,35(3):592-602
The Epstein-Barr virus-determined nuclear antigen (EBNA) was purified 700-fold to apparent homogeneity from Raji and Namalwa cell extracts by a three-step procedure involving heat treatment, DNA-cellulose chromatography, and hydroxyapatite chromatography. Acid-fixed nuclear binding and complement fixation were used to monitor antigenic specificity. Purified EBNA was also capable of specifically inhibiting the regular anticomplement immunofluorescence reaction for EBNA against Raji target cells. The purified antigen had a molecular weight of 170,000 to 200,000. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it yielded a single 48,000-dalton (48K) monomer. An EBNA-associated protein was also purified from the same cell extract. It had a molecular weight of about 200,000 and yielded a single 53K protein band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The same protein was also found in Epstein-Barr virus negative B-cell lymphoma lines. The two types of protein were characterized by amino acid composition and peptide mapping. The results showed that the 53K and 48K protein components have no long regions in common; this excludes that the smaller product arises by breakdown of the larger product. Residue distributions were different, but an excess of hydrophilic residues was found in both proteins, suggesting a certain overall similarity in properties. 53K components from different cell lines appeared to differ somewhat. Epstein-Barr virus-positive lines carry two 53K components, one of which may be a slightly modified 53K product. Immunocomplexing assay showed that the 48K, but not the 53K, protein carries EBNA specificity. In mixtures, the 53K protein is co-precipitated with the 48K protein. The data suggest that EBNA may form a complex with the 53K proten within the cell.  相似文献   

9.
The Epstein-Barr virus in the Burkitt lymphoma-derived cell line Raji has a deletion in the EBNA3C gene. When Raji cells are allowed to grow to high density and most of the cells become growth arrested in the G1 phase of the cell cycle, the level of detectable latent membrane protein 1 (LMP1) is substantially reduced. After dilution of the cells with fresh growth medium, within 8 h, there is a large increase in LMP1 mRNA, and by 12 h, LMP1 is expressed to a high level (H. Boos, M. Stoehr, M. Sauter, and N. Mueller-Lantzch, J. Gen. Virol. 71:1811-1815, 1990). Here we show that in Raji cells which constitutively express a transfected EBNA3C gene, the down-regulation of LMP1 in growth-arrested cells does not take place. Furthermore, we show that in wild-type Raji cells, low-level LMP1 expression occurs when most of the cells are arrested at a point(s) early in G1 (or G0) when the product of the retinoblastoma gene, pRb, is hypophosphorylated. The dramatic synthesis of LMP1 coincides with the progression of these cells to late G1 when pRb becomes hyperphosphorylated. Thus, in Raji cells, the LMP1 gene is apparently regulated in a cell cycle- or proliferation-dependent manner, but when EBNA3C is present, sustained LMP1 expression occurs as it does in a lymphoblastoid cell line. EBNA3C appears to either relieve the apparent repression of LMP1 in cells progressing through early G1 or possibly alter the stage at which the cells growth arrest to one where they are permissive for LMP1 expression.  相似文献   

10.
J Luka  T Lindahl    G Klein 《Journal of virology》1978,27(3):604-611
The Epstein-Barr virus-determined nuclear antigen (EBNA) was purified from extracts of the human lymphoid cell lines Raji, Namalwa, and B95-8/MLD by two different methods. In the first approach, the apparently native antigen was purified 1,200-fold by a four-step procedure involving DNA-cellulose chromatography, blue dexptran-agarose chromatography, hydroxyapatite chromatography, and gel filtration, employing complement fixation as the assay procedure. Such EBNA preparations specifically inhibited the anticomplement immunofluorescence test for EBNA and bound to methanol/acetic acid-fixed metaphase chromosomes. The purified antigen, which has a molecular weight of 170,000 to 200,000, yielded a single protein band of molecular weight about 48,000 by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. These data indicate that native EBNA has a tetrameric structure. In the second purification method, EBNA-containing cell extracts containing radioactively labeled proteins were incubated with anti-EBNA-positive sera, and antigen-antibody complexes were adsorbed to matrix-bound staphylococcal protein A. The bound proteins were then released with an SDS-containing buffer, and denatured EBNA was separated from antibody chains by SDS-polyacrylamide gel electrophoresis and visualized by fluorography. The denatured EBNA obtained in radiochemically pure form by this procedure has a molecular weight of about 48,000, so both methods yield an EBNA monomer of the same size.  相似文献   

11.
Autophosphorylation of a DNA-activated protein kinase (DNA-PK) in Raji Burkitt's lymphoma cells generated a band that corresponded to a phosphoprotein of about 300 kDa on SDS/PAGE. This band corresponds to a 300-350-kDa DNA-PK found previously in HeLa cells. In addition to the 300-kDa phosphoprotein, the band of a highly phosphorylated 58-kDa protein was detected by SDS/PAGE of partially purified DNA-PK preparations after the phosphorylation reaction in the presence of double-stranded DNA. This phosphoprotein was specifically immunoprecipitated by phosphoprotein nor detectable activities of other kinases, phosphorylated recombinant c-Myc proteins in the presence of DNA. The c-Myc phosphorylation by DNA-PK was markedly stimulated by relaxed, double-stranded DNA, but neither by single-stranded DNA nor by RNA. Phosphopeptide mapping and phosphoamino acid analysis indicated that DNA-PK phosphorylates c-Myc in vitro at several serine residues.  相似文献   

12.
Most human lymphoid cell lines contain multiple copies of circular, nonintegrated Epstein-Barr virus (EBV) DNA molecules as well as viral DNA sequences with properties of integrated DNA. The physical state of the EBV DNA in a human lymphoma line that only contains one virus genome equivalent per cell has now been studied by three different methods, neutral CsCl density gradient centrifugation, actinomycin D-CsCl gradient centrifugation, and Hirt fractionation. This cell line, AW-Ramos, has been obtained by EBV infection in vitro of the apparently EBV-negative Ramos lymphoma line. The results indicate that the EBV DNA in AW-Ramos is present exclusively in a linearly integrated form. Similar data were obtained with two other EBV-converted sublines of Ramos cells.  相似文献   

13.
Epstein-Barr nuclear antigen 1 (EBNA1) activates DNA replication from the Epstein-Barr virus latent origin, oriP. This activation involves the direct interaction of EBNA1 dimers with multiple sites within the two noncontiguous functional elements of the origin, the family of repeats (FR) element and the dyad symmetry (DS) element. The efficient interaction of EBNA1 dimers bound to these two elements in oriP results in the formation of DNA loops in which the FR and DS elements are bound together through EBNA1. In order to elucidate the mechanism by which EBNA1 induces oriP DNA looping, we have investigated the DNA sequences and EBNA1 amino acids required for EBNA1-mediated DNA looping. Using a series of truncation mutants of EBNA1 produced in baculovirus and purified to apparent homogeneity, we have demonstrated that the EBNA1 DNA binding and dimerization domain is not sufficient to mediate oriP DNA looping and that an additional region(s) located between amino acids 346 and 450 is required. Single EBNA1-binding sites, separated by 930 bp of plasmid DNA, were also shown to support EBNA1-mediated looping, indicating that the formation of large EBNA1 complexes, such as those observed on oriP FR and DS elements, is not a requirement for looping.  相似文献   

14.
15.
16.
17.
Epstein-Barr virus (EBV) nonproducer Raji cells stably maintain approximately 45 copies of the EBV genome per cell, depending on the presence of the EBV-determined nuclear antigen 1 (EBNA-1) protein. We found that transfection of the EBV BZLF1 gene causes the disappearance of EBNA proteins on Western blots (immunoblots). On the basis of these results, we attempted to eliminate EBV plasmids in Raji cells by transfecting a BZLF1 plasmid. Among 33 clones that were cotransfected with a BZLF1 plasmid and a hygromycin B resistance plasmid and selected resistant for hygromycin B, 24 clones had decreased numbers of EBV plasmids, as revealed by the decrease in the intensity of the EBV band on Southern blots compared with that of nontransfected Raji cells.  相似文献   

18.
The EBNA1 protein of Epstein–Barr virus (EBV) activates latent-phase DNA replication by an unknown mechanism that involves binding to four recognition sites in the dyad symmetry (DS) element of the viral latent origin of DNA replication. Since EBV episomes are assembled into nucleosomes, we have examined the ability of Epstein–Barr virus nuclear antigen 1 (EBNA1) to interact with the DS element when it is assembled into a nucleosome core particle. EBNA1 bound to its recognition sites within this nucleosome, forming a ternary complex, and displaced the histone octamer upon competitor DNA challenge. The DNA binding and dimerization region of EBNA1 was sufficient for nucleosome binding and destabilization. Although EBNA1 was able to bind to nucleosomes containing two recognition sites from the DS element positioned at the edge of the nucleosome, nucleosome destabilization was only observed when all four sites of the DS element were present. Our results indicate that the presence of a nucleosome at the viral origin will not prevent EBNA1 binding to its recognition sites. In addition, since four EBNA1 recognition sites are required for both nucleosome destabilization and efficient origin activation, our findings also suggest that nucleosome destabilization by EBNA1 is important for origin activation.  相似文献   

19.
F Wang  L Petti  D Braun  S Seung    E Kieff 《Journal of virology》1987,61(4):945-954
EBNA2 is a nuclear protein expressed in all cells latently infected with and growth transformed by Epstein-Barr virus (EBV) infection (K. Hennessy and E. Kieff, Science 227:1230-1240, 1985). The nucleotide sequence of the EBNA2 mRNA (J. Sample, M. Hummel, D. Braun, M. Birkenbach, and E. Kieff, Proc. Natl. Acad. Sci. USA 83:5096-5100, 1986) revealed that it begins with a 924-base open reading frame that has an unusual potential translational initiation site (CAAATGG). This open reading frame is followed by 138 nucleotides with only one highly unlikely translational initiation site (TACATGC), which would translate a pentapeptide before the next stop codon. The last part of the mRNA is the open reading frame which encodes EBNA2. In this paper, we demonstrate that the 924-base open reading frame translates a 40-kilodalton protein in vitro or in murine cells transfected with the EBNA2 cDNA under control of the murine leukemia virus long terminal repeat. A protein of identical size was detected in EBV-transformed, latently infected human lymphocyte nuclei by using antibody specific for the leader open reading frame expressed in bacteria. Therefore, this is a rare example of a mRNA which translates two proteins from nonoverlapping open reading frames. Since the protein encoded by the leader of the EBNA mRNA is expressed in all nuclei of a latently infected cell line, it was designated EBNA-LP. EBNA-LP localizes to small intranuclear particles and differs in this respect from EBNA1, EBNA2, or EBNA3. EBNA-LP is not expressed in an EBV-transformed marmoset lymphocyte cell (B95-8) or in one EBV-infected Burkitt tumor cell line (Raji) but is expressed in three other Burkitt tumor cell lines (Namalwa, P3HR-1, and Daudi).  相似文献   

20.
Micrococcal nuclease digestion was used to analyze Epstein-Barr virus (EBV) DNA structure in nuclei of transformed cells. Digests of virus-producing (P3HR-1), non-virus-producing (Raji), and superinfected Rajii cell nuclei were fractionated by electrophoresis on agarose gels, transferred to nitrocellulose, and hybridized to 32P-labeled EBV DNA. The viral DNA of Raji nuclei produced a series of bands on electrophoresis whose lengths were integral multiples of a unit size, which was the same as the repeat length of host DNA. Viral DNA in nuclei of P3HR-1 and superinfected Raji cells produced faintly visible bands superimposed on a smear of viral DNA which dominated the hybridization pattern. No differences were detected in the patterns when total DNA digests from Raji, P3HR-1, and an EBV DNA-negative cell line (U-698M) were analyzed by ethidium bromide staining or by hybridization with the use of 32P-labeled lymphoblastoid cell DNA as probe. We conclude that the EBV episomal DNA of Raji cells is folded into nucleosomes, whereas most of the viral DNA of P3HR-1 and superinfected Raji cells is not. This pattern of DNA organization differs signficantly from that in papova group viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号