首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
1. Owing to a (3)H isotope effect, the mitochondrial sn-glycerol 3-phosphate oxidase (EC 1.1.99.5) had a mean activity which was 8.4 times less with sn-[2-(3)H]-rather than with sn-[1-(14)C]glycerol 3-phosphate as a substrate. 2. A method for measuring the simultaneous synthesis of lipid from glycerol phosphate and dihydroxyacetone phosphate in rat liver mitochondria is described. 3. The lipid synthesized by rat liver mitochondria from sn-[1-(14)C]glycerol 3-phosphate was mainly phosphatidate and lysophosphatidate, whereas that synthesized from dihydroxy[1-(14)C]acetone phosphate was mainly acyldihydroxyacetone phosphate. 4. Additions of NADPH facilitated the conversion of acyldihydroxyacetone phosphate into lysophosphatidate and phosphatidate. 5. Hydrazine (1.4mm) or KCN (1.4mm) inhibited the synthesis of lipids from dihydroxyacetone phosphate but not from glycerol phosphate. 6. Clofenapate (1-2.5mm) inhibited the synthesis of lipids from dihydroxyacetone phosphate but slightly stimulated synthesis from glycerol phosphate. 7. The methanesulphonate of N-(2-benzoyloxyethyl)norfenfluramine, at 0.25-0.75mm, inhibited lipid synthesis from both glycerol phosphate and dihydroxyacetone phosphate.  相似文献   

2.
Rates of phosphatidate synthesis from dihydroxyacetone phosphate via acyl dihydroxyacetone phosphate or glycerol phosphate are compared in homogenates of 13 tissues, most of which are deficient in glycerol phosphate dehydrogenase (EC 1.1.1.8). In all tissues examined, dihydroxyacetone phosphate entered phosphatidate more rapidly via acyl dihydroxyacetone phosphate than via glycerol phosphate. Tissues with a relatively low rate of phosphatidate synthesis via glycerol phosphate, showed no compensating increase in the rate of synthesis via acyl dihydroxyacetone phosphate. The rates at which tissue homogenates synthesize phosphatidate from dihydroxyacetone phosphate via glycerol phosphate increase as glycerol phosphate dehydrongenase increase. Both glycerol phosphate dehydrogenase and glycerol phosphate: acyl CoA acyltransferase (EC 2.3.1.15) are more active than dihydroxyacetone phosphate : acyl CoA acyltransferase (EC 2.3.1.42). Thus, all the tissue homogenates possessed an apparently greater capability to synthesize phosphatidate via glycerol phosphate than via acyl dihydroxyacetone phosphate, but did not express this potential. This result is discussed in relation to in vivo substrate limitations.  相似文献   

3.
The chloroplastic and cytosolic forms of spinach (Spinacia oleracea cv Long Standing Bloomsdale) leaf NADH:dihydroxyacetone phosphate (DHAP) reductase were separated and partially purified. The chloroplastic form was stimulated by dithiothreitol, reduced thioredoxin, dihydrolipoic acid, 6-phosphogluconate, and phosphate; the cytosolic isozyme was stimulated by fructose 2,6-bisphosphate but not by reduced thioredoxin. End product components that severely inhibited both forms of the reductase included lipids and free fatty acids, membranes, and glycerol phosphate. In addition, two groups of inhibitory peptides were obtained from the fraction precipitated by 70 to 90% saturation with (NH4)2SO4. Chromatography of this fraction on Sephadex G-50 revealed a peptide peak of about 5 kilodaltons which inhibited the chloroplastic DHAP reductase and a second peak containing peptides of about 2 kilodaltons which inhibited the cytosolic form of the enzyme. Regulation of the reduction of dihydroxyacetone phosphate from the C3 photosynthetic carbon cycle or from glycolysis is a complex process involving activators such as thioredoxin or fructose 2,6-bisphosphate, peptide and lipid inhibitors, and intermediary metabolites. It is possible that fructose 2,6-bisphosphate increases lipid production by stimulating DHAP reductase for glycerol phosphate production as well as inhibiting fructose 1,6-bisphosphatase to stimulate glycolysis.  相似文献   

4.
Two isozymes of dihydroxyacetone phosphate reductase in dunaliella   总被引:1,自引:0,他引:1       下载免费PDF全文
Two isoforms of dihydroxyacetone phosphate reductase were present in Dunaliella tertiolecta. The major form was located in the chloroplast and the minor form in the cytosol. The chloroplastic reductase eluted first from a DEAE cellulose column followed immediately by the cytosolic form. Both forms were unstable and cold labile. Addition of 5 millimolar dithiothreitol helped to stabilize the enzymes. The cytosolic isoform of DHAP reductase was detected only if the cells were in an active log phase of growth. Then its activity was 20 to 30% of the total reductase activity. When cell cultures entered late log phase of growth the activity of the cytosolic form of the enzyme disappeared, but the chloroplastic form remained. The cytosolic DHAP reductase from Dunaliella has some properties similar to the cytosolic isoform from spinach leaves. Detergents inhibited both enzymes. However, neither form of the algal dihydroxyacetone phosphate reductase was stimulated by fructose 2,6-bisphosphate. In Dunaliella the properties of the chloroplastic form were those expected for glycerol production for osmoregulation, whereas the cytosolic form, like the reductases in leaves, is more likely involved in glycerol phosphate formation for lipid synthesis.  相似文献   

5.
Mature boar spermatozoa oxidized glycerol to carbon dioxide in the absence of any detectable activity of glycerol kinase. With triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase inhibited by the presence of 3-chloro-1-hydroxypropanone (CHOP), dihydroxyacetone phosphate accumulated in incubates when glycerol-3-phosphate was the substrate, but not when it was glycerol. Both dihydroxyacetone and glyceraldehyde could be used as substrates; in the presence of CHOP, dihydroxyacetone phosphate and fructose-1,6-bisphosphate accumulated when dihydroxyacetone was the substrate, but not when it was glyceraldehyde. The metabolic pathways glycerol----glyceraldehyde----glyceraldehyde 3-phosphate and dihydroxyacetone----dihydroxyacetone phosphate have been shown to operate in these cells.  相似文献   

6.
1. Brown adipose tissue of the hamster possesses high specific activities of soluble, cytoplasmic NAD-linked, as well as mitochondrial flavin-coupled, glycerol-3-phosphate dehydrogenases. The ratio of the two enzyme activities is high (close to 1), when compared with other tissues of the hamster. 2. In the presence of rotenone, NADH is oxidised very poorly by homogenates of brown adipose tissue. A high rate of oxidation is obtained upon further addition of dihydroxyacetone phosphate, which itself is negligible oxidised. When followed fluorimetrically glycerol 3-phosphate can also be observed to induce NADH oxidation, but only after a significant lag time. Similar results are obtained with isolated mitochondria plus high-speed supernatant. With high-speed supernatant alone, only dihydroxyacetone phosphate has any effect, whereas with isolated mitochondria neither dihydroxyacetone phosphate nor glycerol 3-phosphate induce any NADH disappearance. 3. Respiration induced by NADH plus dihydroxyacetone phosphate in homogenates equals 56% of the respiration induced by glycerol 3-phosphate alone. 4. Respiration induced by NADH plus dihydroxyacetone phosphate, as well as that induced by glycerol 3-phosphate, is inhibited by the same concentrations of inhibitors as are required for inhibition of the mitochondrial dehydrogenase i.e. EDTA, long-chain unsaturated fatty acids, long-chain fatty acyl CoA esters. 5. In isolated brown adipocytes in the presence of rotenone, norepinephrine significantly inhibits respiration induced by glycerol 3-phosphate. 6. The results obtained are discussed with respect to the role of glycerol 3-phosphate as an electron sink for cytosolic reducing equivalents to maintain a low level of extramitochondrial NADH. A means of maintaining a level of glycerol 3-phosphate adequate for triglyceride synthesis is also considered.  相似文献   

7.
The cerebro-hepato-renal (Zellweger) syndrome is an autosomal recessive disorder biochemically characterized by the absence of morphologically distinguishable peroxisomes. Key enzymes involved in the biosynthesis of ether phospholipids, i.e., dihydroxyacetone phosphate acyltransferase and alkyl dihydroxyacetone phosphate synthase, are located in mammalian (micro)peroxisomes. We have previously shown a strikingly reduced activity of dihydroxyacetone phosphate acyltransferase in liver, brain, and cultured skin fibroblasts from Zellweger patients (Schutgens et al. 1984. Biochim. Biophys. Res. Commun. 120: 179-184). We have now extended these investigations by studying alkyl dihydroxyacetone phosphate synthase in cultured human skin fibroblasts. Enzymatic activity was determined by measuring the formation of radioactive alkyl dihydroxyacetone phosphate from palmitoyl dihydroxyacetone phosphate and [1-14C]hexadecanol as substrates. The enzyme was optimally active at pH 8.5 and was stimulated (about 2-3-fold) by the presence of 0.05% (v/v) Triton X-100. The apparent KM values for the enzyme in control fibroblasts amounted to 35 microM for palmitoyl dihydroxyacetone phosphate and 90 microM for hexadecanol. The reaction became inhibited at higher concentrations of both Triton X-100 and palmitoyl dihydroxyacetone phosphate. Control skin fibroblasts showed alkyl dihydroxyacetone phosphate synthase activity of 69 +/- 28 pmol X min-1 X mg-1 (n = 7), while fibroblasts from patients had an activity of only 6.3 +/- 1.7 pmol X min-1 X mg-1 (n = 7). Alkyl dihydroxyacetone phosphate synthase was also found to be deficient in tissue homogenates of Zellweger patients. The specific activity of this enzyme in liver, kidney, and brain homogenates from Zellweger patients was less than 15% of that in the corresponding tissues from controls.  相似文献   

8.
The glycerol-3-phosphate dehydrogenase (NAD-dependent) reaction was studied in a chloroplast-enriched fraction fromDunaliella tertiolecta. The reaction has widely separated pH optima for each direction. Reduction of dihydroxyacetone phosphate proceeded with Michaelis-Menten kinetics but sigmoidal double reciprocal plots were obtained with glycerol phosphate as variable substrate. NADP served as an alternative substrate but it was somewhat less effective than NAD. The reaction was inhibited by inorganic orthophosphate and by adenine nucleotides in a manner indicative of anion inhibition. Inhibition by inorganic phosphate was competitive with DHAP and possibly also with NADH. The enzyme was activated by Na+ at concentrations below 200 m and inhibited at higher concentrations, the region of maximum activation being affected by substrate concentration. Inhibition by Na+, present as a counterion of the substrate, was evidently responsible for apparent substrate inhibition by glycerol phosphate. Several important differences were apparent between the reaction in the unfractionated chloroplast-enriched fraction and the properties of a partly purified enzyme described by Haus and Wegmann (1984a, b).In toto, the results suggest that the regulatory potential of the reaction is probably more relevant to homeostatic control of glycerol content under steady state conditions than to controlling response to water stress.Abbreviations DHAP Dihydroxyacetone phosphate - CHES 2-(N-cyclohexylamino)ethanesulphonic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid  相似文献   

9.
Methylglyoxal synthetase, which catalyzes the conversion of dihydroxyacetone phosphate to methylglyoxal and inorganic phosphate, has been isolated and crystalized in good yields from Proteus vulgaris. The enzyme was shown to be homogeneous by a variety of criteria and was found to be a dimer (Mr = 135,000; s20,w = 7.2 S) composed of two apparently identical catalytic and physical properties and their interconvertible nature suggest that they do not represent true isozymes. The enzyme is specific for dihydroxyacetone phosphate and does not form methylglyoxal from glyceraldehyde 3-phophate, glyceraldehyde, or dihydroxyacetone. Nonphosphorylated analogs are neither substrates nor competive inhibitors, but a variety of phosphorylated analogs are competitive with respect to dihydroxyacetone phosphate. The enzyme is inhibited by inorganic orthophosphate in a complex manner which is overcome by dihydroxyacetone phosphate in a signoidal manner  相似文献   

10.
Phosphonomethyl analogues of phosphate ester glycolytic intermediates   总被引:12,自引:11,他引:1       下载免费PDF全文
Analogues of dihydroxyacetone phosphate and of 3-phosphoglycerate were made in which the phosphate group, –O–PO3H2, is replaced by the phosphonomethyl group, –CH2–PO3H2. The analogue of dihydroxyacetone phosphate is a substrate for aldolase and glycerol 1-phosphate dehydrogenase (Stribling, 1974), but not for triose phosphate isomerase. The analogue of 3-phosphoglycerate oxidizes NADH under the combined action of 3-phosphoglycerate kinase and glyceraldehyde 3-phosphate dehydrogenase if ATP is added. Thus four out of the five glycolytic enzymes tested handle the phosphonomethyl compounds like the natural phosphates.  相似文献   

11.
1. Rat liver slices were employed to study the relative rates of incorporation of a mixture of [2-(3)H]- or [1,3-(3)H]-glycerol and [1-(14)C]glycerol into lipids. 2. With 0.1mm-glycerol approx. 82% of the newly synthesized lipid, calculated from (14)C incorporation, was present as neutral lipid, 13% as phosphatidylcholine and 5% as phosphatidylethanolamine. Increasing the glycerol concentration to 40mm caused a decrease in the percentage of neutral lipid to 59% and a corresponding increase in the percentage of phosphatidylcholine to 36% of the newly synthesized lipid. 3. The (d.p.m. of 2-(3)H)/(d.p.m. of 1-(14)C) ratio in glycerolipid was considerably higher than that in precursor glycerol throughout the range of experimental conditions. In contrast the incorporation of a mixture of [1,3-(3)H]glycerol and [1-(14)C]glycerol into lipid occurred with little or no change in the (3)H/(14)C ratio. 4. Respiring rat liver mitochondria were found to oxidize a mixture of sn-[2-(3)H]- and sn-[1-(14)C]-glycerol 3-phosphate with a resultant increase in the (3)H/(14)C ratio of the remaining sn-glycerol 3-phosphate. This increase is due to a (3)H isotope effect of the mitochondrial sn-glycerol 3-phosphate dehydrogenase (EC 1.1.99.5), which discriminates against sn-[2-(3)H]glycerol 3-phosphate during oxidation. 5. A method is described for the simultaneous determination of the relative contributions of the glycerol phosphate and dihydroxyacetone phosphate pathways of glycerolipid biosynthesis in rat liver slices. The method involves measurement of the (d.p.m. of 2-(3)H)/(d.p.m. of 1-(14)C) ratio in both sn-glycerol 3-phosphate and glycerolipid after incubation of rat liver slices with a mixture of [2-(3)H]glycerol and [1-(14)C]glycerol for various times. 6. By using this method it was shown that 40-50% of the glycerol incorporated into lipid by rat liver slices proceeded via the sn-glycerol 3-phosphate pathway and 50-60% was incorporated via dihydroxyacetone phosphate.  相似文献   

12.
The peroxisomal enzyme dihydroxyacetone phosphate (DHAP) acyltransferase shows a differential response to acetaldehyde. Employing whole peroxisomes, the enzyme displays a 130-400% stimulation of activity when assayed in the presence of 10-250 mM acetaldehyde. Following taurocholate solubilization of the enzyme the response to 0.25 M acetaldehyde is one of almost total inhibition. This inhibition of the taurocholate-solubilized enzyme is not observed at acetaldehyde concentrations below 200 mM. The stimulation of DHAP acyltransferase by acetaldehyde is solely a response of the peroxisomal enzyme as evidenced by its insensitivity to N-ethylmaleimide and 5 mM glycerol 3-phosphate. Furthermore, microsomal dihydroxyacetone phosphate acyltransferase activity is inhibited at all acetaldehyde concentrations. The activation of membrane-bound DHAP acyltransferase by acetaldehyde appears to be specific for this enzyme in comparison to several other peroxisomal and microsomal enzymes. The specificity of activation and differential response of the peroxisomal enzyme to acetaldehyde indicates that the microenvironment of the peroxisomal membrane is important for normal enzymatic function of this enzyme.  相似文献   

13.
The activities, properties, and steady-state kinetics of the five enzymes catalyzing the synthesis of 1-acyl- and 1-alkyl-sn-glycerol 3-phosphate in the cultured skin fibroblasts from Zellweger syndrome patients and normal controls were studied in detail. Judging from their Km and Vmax values, glycerol phosphate acyltransferase (EC 2.3.1.15), acyl/alkyl dihydroxyacetone phosphate reductase (EC 1.1.1.101), and acyl coenzyme A reductase (long-chain alcohol forming), appear to be affected only slightly by the absence of peroxisomes characteristic of the Zellweger syndrome. Glycerophosphate acyltransferase also showed no differences in N-ethylmaleimide sensitivity nor in inhibition by dihydroxyacetone phosphate between these cell types. Dihydroxyacetone phosphate acyltransferase (EC 2.3.1.42) and alkyl dihydroxyacetone phosphate synthase (EC 2.5.1.26) have altered activity and kinetic constants in homogenates from Zellweger syndrome fibroblasts. Dihydroxyacetone phosphate acyltransferase has similar Km (DHAP) values in both control and Zellweger syndrome cells; however, the value for the Vmax in Zellweger syndrome cells is only 6% of that found in the controls. This is interpreted as indicating that this enzyme is not defective in this disease but is simply present at a depressed level. Also, this enzyme activity has a maximum rate at pH 7.0-7.5 in the mutant cells as opposed to pH 5.4 in the controls. Acylation of dihydroxyacetone phosphate by control cell homogenate was stimulated by N-ethylmaleimide at both pH 5.7 and 7.5 whereas this activity from Zellweger syndrome cells was slightly inhibited at pH 5.7 and strongly inhibited at pH 7.5. In the absence of detergent, dihydroxyacetone phosphate acyltransferase in the Zellweger syndrome cells was much more labile to trypsin than in the control cells. Alkyl dihydroxyacetone phosphate synthase had a slightly higher Km (33 vs 17 microM) for palmitoyl dihydroxyacetone phosphate and a lower Vmax (0.07 vs 0.24 mU/mg protein) in the Zellweger syndrome cells as compared to controls. Although this is a substantial decrease in activity, it probably contributes little to the decreased rate of ether lipid synthesis in these cells. The major problem in this respect is apparently the loss of dihydroxyacetone phosphate acyltransferase activity. All of these enzymes, in both control and Zellweger syndrome cell homogenates, are sedimentable by centrifugation at 100,000g. Also, with the exception of dihydroxyacetone phosphate acyltransferase they had similar patterns of inactivation by heat in both cell types.  相似文献   

14.
GLYCEROL KINASE AND DIHYDROXYACETONE KINASE IN RAT BRAIN   总被引:4,自引:0,他引:4  
—The enzymatic phosphorylation of glycerol and dihydroxyacetone by ATP to sn-glycerol-3-phosphate and dihydroxyacetone phosphate respectively in various subcellular fractions of rat brain was studied. A sensitive radiochemical assay was used where the labelled phosphorylated products were separated from the radioactive substrates by high voltage paper electrophoresis and the radioactivity in these compounds determined. Using this assay the glycerol kinase (EC 2.7.1.30) activity was found to be associated with the mitochondrial fraction of the brain. Under optimum conditions 2.45 nmol of glycerol was phosphorylated/min per mg of protein. The Km for glycerol was 70 μm at pH 7. This mitochondrial enzyme, like other glycerol kinases from different sources, also phosphorylated dihydroxyacetone. Under optimum conditions 1.7 nmol of dihydroxyacetone phosphate was formed/min per mg of mitochondrial protein. The Km for dihydroxyacetone was 0.6 mm . Glycerol kinase activity was also present in the cytoplasm of brain. However, the specific activity of this enzyme in cytosol is about 15% of the mitochondrial glycerol kinase. Compared to glycerol, dihydroxyacetone was phosphorylated by ATP in cytoplasm at a much higher rate. The pH optimum for this soluble dihydroxyacetone kinase was much lower (pH 6.5) than that of the soluble or mitochondrial glycerol kinase (pH 10.0). Using ammonium sulfate, brain cytoplasm was fractionated to yield a fraction in which the dihydroxyacetone kinase was enriched 2–3 fold with no glycerol kinase activity. Under optimum conditions 1.0 nmol of dihydroxyacetone was phosphorylated/min per mg protein. The Km for dihydroxyacetone was 60 μm . This cytosol fraction was also found to phosphorylate d -glyceraldehyde and l -glyceraldehyde at a rate of 30–40% to that of the dihydroxyacetone phosphorylation. The properties and the possible metabolic role of these enzymes in brain are discussed.  相似文献   

15.
We surveyed the BALB/cHeA mouse, which lacks cytosolic glycerol phosphate dehydrogenase an enzyme that catalyzes a reaction in the glycerol phosphate shuttle. The other enzyme of this shuttle, mitochondrial glycerol phosphate dehydrogenase, is abundant in skeletal muscle and pancreatic islets suggesting that the shuttle's activity is high in these tissues. Levels of glycerol phosphate (low) and dihydroxyacetone phosphate (high) were very abnormal in nonislet tissue, especially in skeletal muscle. Intermediates situated before the triose phosphates in the glycolysis pathway were increased and those after the triose phosphates were generally low, depending on the tissue. The lactate/pyruvate ratio in muscle was low signifying a low cytosolic NAD/NADH ratio. This suggests that a nonfunctional glycerol phosphate shuttle caused a block in glycolysis at the step catalyzed by glyceraldehyde phosphate dehydrogenase. When exercised, mice were unable to maintain normal ATP levels in skeletal muscle. Blood glucose, serum insulin levels, and pancreatic islet mass were normal. In isolated pancreatic islets insulin release, glucose metabolism and ATP levels were normal, but lactate levels and lactate/pyruvate ratios with a glucose load were slightly abnormal. The BALB/cHeA mouse can maintain NAD/ NADH ratios sufficient to function normally under most conditions, but the redox state is not normal. Glycerol phosphate is apparently formed at a slow rate. Skeletal muscle is severely affected probably because it is dependent on the glycerol phosphate shuttle more than other tissues. It most likely utilizes glycerol phosphate rapidly and, due to the absence of glycerol kinase in muscle, is unable to rapidly form glycerol phosphate from glycerol. Glycerol kinase is also absent in the pancreatic insulin cell, but this cell's function is essentially normal probably because of redundancy of NAD(H) shuttles.  相似文献   

16.
Hepatocytes were isolated from female rats and incubated with [1,1,3,3-2H4]glycerol or [2-2H]glycerol. The deuterium excess in phosphatidylcholines, sn-glycerol 3-phosphate and other organic acids was determined by g.l.c./mass spectrometry. The unlabelled fraction of the major phosphatidylcholines decreased exponentially, and the turnover was not changed by the presence of ethanol. The relative contribution of the two deuterated glycerols was about the same in the major phosphatidylcholine as in sn-glycerol 3-phosphate, indicating that formation by acylation of dihydroxyacetone phosphate is insignificant. [1,1,3,3-2H4]Glycerol had lost deuterium to a larger extent when it was incorporated in the phosphatidylcholine than when it was incorporated in sn-glycerol-3-phosphate, indicating that the phosphatidylcholines are formed from a separate pool of sn-glycerol 3-phosphate. Deuterium at C-2 was transferred between sn-glycerol 3-phosphate molecules to about 25%. Ethanol decreased the extent of deuterium transfer, the extent of glycerol uptake and the loss of deuterium at C-1 and C-3 in sn-glycerol 3-phosphate. The results indicate that the oxidation to dihydroxyacetone phosphate was inhibited by the NADH formed during ethanol oxidation. [2-2H]Glycerol also labelled an alcohol dehydrogenase substrate, malate and lactate, indicating oxidation of sn-glycerol 3-phosphate in the cytosol. The two acids appeared to be formed in reductions with different pools of NADH.  相似文献   

17.
An NAD-dependent glycerol 3-phosphate dehydrogenase (sn-glycerol 3-phosphate: NAD oxidoreductase; EC 1.1.1.8) has been purified from spinach leaves by a three-step procedure involving ion-exchange, gel filtration, and affinity chromatography. The enzyme has been purified over 10,000-fold to a specific activity of 38. It has a molecular weight of approximately 63,500. The pH optimum for the reduction of dihydroxyacetone phosphate is 6.8 and for glycerol 3-phosphate oxidation it is 9.5. During dihydroxyacetone phosphate reduction hyperbolic kinetics were observed when either NADH or dihydroxyacetone phosphate was the variable substrate, but concentrations of NADH greater than 150 μm were inhibitory. Michaelis constants were 0.30–0.35 mm for dihydroxyacetone phosphate and 0.01 mm for NADH. Glycerol 3-phosphate oxidation obeyed Michaelis-Menten kinetics with a Km of 0.19 mm for NAD and 1.6 mm for glycerol 3-phosphate. The enzyme was specific for those substrates, and dihydroxyacetone, glyceraldehyde, glyceraldehyde 3-phosphate, NADPH, NADP, and glycerol were not utilized. The spinach leaf enzyme appears to be in the cytoplasm and probably functions for the production of glycerol 3-phosphate from dihydroxyacetone phosphate.  相似文献   

18.
In the yeast Saccharomyces cerevisiae, the two most important systems for conveying excess cytosolic NADH to the mitochondrial respiratory chain are external NADH dehydrogenase (Nde1p/Nde2p) and the glycerol-3-phosphate dehydrogenase shuttle. In the latter system, NADH is oxidized to NAD+ and dihydroxyacetone phosphate is reduced to glycerol 3-phosphate by the cytosolic Gpd1p; glycerol 3-phosphate gives two electrons to the respiratory chain via mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p)-regenerating dihydroxyacetone phosphate. Both Nde1p/Nde2p and Gut2p are located in the inner mitochondrial membrane with catalytic sites facing the intermembranal space. In this study, we showed kinetic interactions between these two enzymes. First, deletion of either one of the external dehydrogenases caused an increase in the efficiency of the remaining enzyme. Second, the activation of NADH dehydrogenase inhibited the Gut2p in such a manner that, at a saturating concentration of NADH, glycerol 3-phosphate is not used as respiratory substrate. This effect was not a consequence of a direct action of NADH on Gut2p activity because both NADH dehydrogenase and its substrate were needed for Gut2p inhibition. This kinetic regulation of the activity of an enzyme as a function of the rate of another having a similar physiological function may be allowed by their association into the same supramolecular complex in the inner membrane. The physiological consequences of this regulation are discussed.  相似文献   

19.
Recently we reported the phosphoenolpyruvate (PEP)-dependent phosphorylation of a 55-kilodalton protein of Streptococcus faecalis catalyzed by enzyme I and histidine-containing protein (HPr) of the phosphotransferase system (J. Deutscher, FEMS Microbiol. Lett. 29:237-243, 1985). The purified 55-kilodalton protein was found to exhibit dihydroxyacetone kinase activity. Glycerol was six times more slowly phosphorylated than dihydroxyacetone. The Kms were found to be 0.7 mM for ATP, 0.45 mM for dihydroxyacetone, and 0.9 mM for glycerol. PEP-dependent phosphorylation of dihydroxyacetone kinase stimulated phosphorylation of both substrates about 10-fold. Fructose 1,6-diphosphate at concentrations higher than 2 mM inhibited the activity of phosphorylated and unphosphorylated dihydroxyacetone kinase in a noncompetitive manner. The rate of PEP-dependent phosphorylation of dihydroxyacetone kinase was about 200-fold slower than the phosphorylation rate of III proteins (also called enzyme III or factor III), which so far have been considered the only phosphoryl acceptors of histidyl-phosphorylated HPr. P-Dihydroxyacetone kinase was found to be able to transfer its phosphoryl group in a backward reaction to HPr. Following [32P]PEP-dependent phosphorylation and tryptic digestion of dihydroxyacetone kinase, we isolated a labeled peptide composed of 37 amino acids, as determined by amino acid analysis. The single histidyl residue of this peptide most likely carries the phosphoryl group in phosphorylated dihydroxyacetone kinase.  相似文献   

20.
Untransformed BHK-21-c13 fibroblasts as well as 4 polyoma-transformed strains were incubated with D-[U-14C,3-3H]glucose. This substrate generates intracellular labeled glycerol, and also [4-3H]NADPH via the phosphogluconate oxidative pathway. The latter selectively transfers hydrogen to C-2 of glycerol in glycerolipid via the acyl dihydroxyacetone phosphate pathway. After incubation, the distribution of radioactivity and the ratios of 3H/14C at the three positions of recovered glycerol were determined in sn-glycerol 3-phosphate, saponifiable glycerolipids, alkyl ether glycerolipids, and plasmalogens. In each of the cell types examined, 3H in the sn-1 position of glycerol in the recovered ether-containing glycerolipids was negligible, yet this position contained most of the recovered 3H in sn-glycerol 3-phosphate and saponifiable glycerolipids. The 3H/14C ratio in position 2 of glycerol, measured at various incubation times, was from 5- to 200-fold greater in the saponifiable glycerolipids than in free sn-glycerol 3-phosphate. The ratio in position 2 of ether-containing glycerolipids was the same or greater than that in the saponifiable glycerolipids in all of the cell types employed. A similar pattern in the 3H/14C ratio was observed when BHK-21-c13 cells were incubated with D-[U-14C,1-3H]glucose. These observations demonstrate significant participation of the acyl dihydroxyacetone phosphate pathway in glycerolipid synthesis in BHK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号