首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MAP3: characterization of a novel microtubule-associated protein   总被引:12,自引:7,他引:5       下载免费PDF全文
Using monoclonal antibodies we have characterized a brain protein that copurifies with microtubules. We identify it as a microtubule-associated protein (MAP) by the following criteria: it copolymerizes with tubulin through repeated cycles of microtubule assembly in vitro; it is not associated with any brain subcellular fraction other than microtubules; in double-label immunofluorescence experiments antibodies against this protein stain the same fibrous elements in cultured cells as are stained by antitubulin; and this fibrous staining pattern is dispersed when cytoplasmic microtubules are disrupted by colchicine. Because it is distinct from previously described MAPs we designate this novel species MAP3. The MAP3 protein consists of a closely spaced pair of polypeptides on SDS gels, Mr 180,000, which are present in both glial (glioma C6) and neuronal (neuroblastoma B104) cell lines. In brain the MAP3 antigen is present in both neurons and glia. In nerve cells its distribution is strikingly restricted: anti-MAP3 staining is detectable only in neurofilament-rich axons. It is not, however, a component of isolated brain intermediate filaments.  相似文献   

2.
Five monoclonal antibodies against N-terminal domains of alpha- or beta-tubulin were tested for their ability to interfere with the in vitro formation of microtubules. Although all the antibodies exhibited similar association constants for immobilized tubulin, they differed in their inhibitory effect on microtubule assembly. For the most potent antibody, TU-13, the antibody/tubulin molar ratio of about 1:320 was sufficient for a 50% inhibition. The data indicate that the surface regions of N-terminal domains of tubulin are involved in the formation of microtubules.  相似文献   

3.
Summary Ciliates are highly differentiated cells which display extensive deployment of microtubular systems. Because genetic diversity of tubulin is extremely reduced in these cells, microtubule diversity is mostly generated at the post-translational level either through direct modification of tubulin or through the binding of associated proteins to microtubules. We have undertaken a systematic exploration of microtubule diversity in ciliates by way of production of monoclonal antibodies. Previously we reported the biochemical characterization of these antibodies. In addition to antibodies directed against primary sequences, we obtained antibodies directed against post-translational modifications. In this paper, we report a detailed analysis of the distribution of the various epitopes on the microtubular networks ofParamecium, both in interphase cells and during division morphogenesis. Each of these antibodies decorates a subset of microtubules. Acetylation, recognized by antibodies TEU 318 and TEU 348, is detected on stable microtubules early after microtubule assembly. Epitopes recognized by two other antibodies (TAP 952 and AXO 58) are found on a subset of stable microtubules; in addition, the TAP 952 antibody is also found on labile microtubules; both epitopes are detected as soon as microtubule assembly occurs. In contrast, the epitope of the antibody, AXO 49, is associated with only a restricted subset of stable microtubules in the interphase cell, and is detected a lag-time after microtubule assembly during division morphogenesis. These data show that microtubule diversity is generated through a time-dependent sequence and according to a definite spatial pattern.  相似文献   

4.
Resting bovine platelets contain a microtubule coil which reorganizes into linear arrays upon thrombin activation. Microtubule arrays in both resting and activated platelets are extensively cross-linked. In an effort to determine the proteins responsible for this cross-linking, we have developed a method to isolate taxol-stabilized microtubule coils directly from platelet-rich plasma. Negatively stained coils are still cross-linked, and fine filamentous projections are seen between adjacent microtubules. Critical-point-dried rotary shadowed replicas of these coils most clearly demonstrate the projections radiating from individual microtubules as well as along the microtubule coil. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of isolated coils shows many microtubule-associated proteins (MAPs) present in addition to tubulin. One of these proteins, a 280 kDa MAP, cross-reacts with an antibody to bovine brain MAP 2 by immunoblot analysis. Immunofluorescence localization of this protein with both monoclonal and polyclonal antibodies demonstrates that it is associated with the microtubule coil in resting platelets and with the linear microtubule array present after thrombin activation. Immunoelectron microscopic localization demonstrates that projections from individual microtubules are labeled by the antibodies. We suggest that this MAP, along with several other potential MAPs, is responsible for the cross-linking and stability of bovine platelet microtubules.  相似文献   

5.
Microtubule-associated protein 2 (MAP2) derivatized with iodoacetamidotetramethylrhodamine or with iodoacetamidofluorescein binds to microtubules after injection into living interphase cells [Scherson et al, 1984]. The binding of derivatized MAP2 stabilized microtubules in vitro; it was therefore important to check if the binding of MAP2 in vivo perturbed the dynamics and organization of the microtubule network. We have addressed these questions by studying the effect of the injection of derivatized MAP2 on mitosis in PtK 1 cells and on the recovery of the microtubule network from low temperature incubation in interphase cells. We found that the presence of derivatized MAP2 did not change the duration of any mitotic stage and that the injected cell normally completed mitosis. We subsequently showed that the injected MAP2 bound to the microtubules within 5 minutes after injection and remained bound throughout the course of mitosis. The reorganization of the microtubule network upon cooling and rewarming was studied in the cytoplasm of human foreskin fibroblasts (356 cells). During the recovery, the distribution of the fluorescent MAP2 in living cells was identical with the microtubule pattern visualized by immunofluorescence in lysed and fixed cells. In these experiments, the fluorescent MAP2 bound to microtubules can be considered as a nonperturbing reporter of the microtubule network. This result is discussed in terms of the role of MAPs in the dynamics and organization of microtubules in living cells.  相似文献   

6.
Microtubule-associated protein 2c (MAP2c) is one of a set of embryonic MAP forms that are expressed during neuronal differentiation in the developing nervous system. We have investigated its mode of action by expressing recombinant protein in non-neuronal cell lines using cell cDNA transfection techniques. At every level of expression, all the MAP2c was bound to cellular microtubules. At low MAP2c levels, the microtubules retained their normal arrangement, radiating from the centrosomal microtubule-organising centre (MTOC) but at higher levels an increasing proportion of microtubules occurred independently of the MTOC. In most cells, radially oriented microtubules still attached to the MTOC co-existed with detached microtubules, suggesting that the primary effect of MAP2 is to increase the probability that tubulin polymerisation will occur independently of the MTOC. The MTOC-independent microtubules formed bundles whose distribution depended on their length in relation to the diameter of the transfected cell. Short bundles were attached to the cell cortex at one end and followed a straight course through the cytoplasm, whereas longer bundles followed a curved path around the periphery of the cell. By comparing these patterns to those produced by two chemical agents that stabilise microtubules, taxol and dimethyl sulphoxide, we conclude that effects of MAP2c arise from two sources. It stabilises microtubules without providing assembly initiation sites and as a result produces relatively few, long microtubule bundles. These bend only when they encounter the restraining influence of the cortical cytoskeleton of the cell, indicating that MAP2c also imparts stiffness to them. By conferring these properties of stability and stiffness to neuronal microtubules MAP2c contributes to supporting the structure of developing neurites.  相似文献   

7.
MAP2C is a microtubule-associated protein abundant in immature nerve cells. We isolated a cDNA clone encoding whole mouse MAP2C of 467 amino acid residues. In fibroblasts transiently transfected with cDNA of MAP2C, interphase microtubule networks were reorganized into microtubule bundles. To reveal the dynamic properties of microtubule bundles, we analyzed the incorporation sites of exogenously introduced tubulin by microinjection of biotin-labeled tubulin and the turnover rate of microtubule bundles by photoactivation of caged fluorescein- labeled tubulin. The injected biotin-labeled tubulin was rapidly incorporated into distal ends of preexisting microtubule bundles, suggesting a concentration of the available ends of microtubules at this region. Although homogenous staining of microtubule bundles with antibiotin antibody was observed 2 h after injection, the photoactivation study indicated that turnover of microtubule bundles was extremely suppressed and < 10% of tubulin molecules would be exchanged within 1 h. Multiple photoactivation experiments provided evidence that neither catastrophic disassembly at the distal ends of bundles nor concerted disassembly due to treadmilling at the proximal ends could explain the observed rapid incorporation of exogenously introduced tubulin molecules. We conclude that microtubules bundled by MAP2C molecules are very stable while the abrupt increase of free tubulin molecules by microinjection results in rapid assembly from the distal ends within the bundles as well as free nucleation of small microtubules which are progressively associated laterally with preexisting microtubule bundles. This is the first detailed study of the function of MAPs on the dynamics of microtubules in vivo.  相似文献   

8.
In neurons, the regulation of microtubules plays an important role for neurite outgrowth, axonal elongation, and growth cone steering. SCG10 family proteins are the only known neuronal proteins that have a strong destabilizing effect, are highly enriched in growth cones and are thought to play an important role during axonal elongation. MAP1B, a microtubule-stabilizing protein, is found in growth cones as well, therefore it was important to test their effect on microtubules in the presence of both proteins. We used recombinant proteins in microtubule assembly assays and in transfected COS-7 cells to analyze their combined effects in vitro and in living cells, respectively. Individually, both proteins showed their expected activities in microtubule stabilization and destruction respectively. In MAP1B/SCG10 double-transfected cells, MAP1B could not protect microtubules from SCG10-induced disassembly in most cells, in particular not in cells that contained high levels of SCG10. This suggests that SCG10 is more potent to destabilize microtubules than MAP1B to rescue them. In microtubule assembly assays, MAP1B promoted microtubule formation at a ratio of 1 MAP1B per 70 tubulin dimers while a ratio of 1 SCG10 per two tubulin dimers was needed to destroy microtubules. In addition to its known binding to tubulin dimers, SCG10 binds also to purified microtubules in growth cones of dorsal root ganglion neurons in culture. In conclusion, neuronal microtubules are regulated by antagonistic effects of MAP1B and SCG10 and a fine tuning of the balance of these proteins may be critical for the regulation of microtubule dynamics in growth cones.  相似文献   

9.
R L Margolis  C T Rauch  F Pirollet    D Job 《The EMBO journal》1990,9(12):4095-4102
STOP (Stable Tubule Only Polypeptide) is a neuronal microtubule associated protein of 145 kd that stabilizes microtubules indefinitely to in vitro disassembly induced by cold temperature, millimolar calcium or by drugs. We have produced monoclonal antibodies against STOP. Using an antibody affinity column, we have produced a homogeneously pure 145 kd protein which has STOP activity as defined by its ability to induce cold stability and resistance to dilution induced disassembly in microtubules in vitro. Western blot analysis, using a specific monoclonal antibody, demonstrates that STOP recycles quantitatively with microtubules through three assembly cycles in vitro. Immunofluorescence analysis demonstrates that STOP is specifically associated with microtubules of mitotic spindles in neuronal cells. Further, and most interestingly, STOP at physiological temperature appears to be preferentially distributed on the distinct microtubule subpopulations that display cold stability; kinetochore-to-pole microtubules and telophase midbody microtubules. The observed distribution suggests that STOP induces the observed cold stability of these microtubule subpopulations in vivo.  相似文献   

10.
Cells were microinjected with four mouse monoclonal antibodies that were directed against either alpha- or beta-tubulin subunits, one monoclonal with activity against both subunits, and a guinea pig polyclonal antibody with activity directed against both subunits, to determine the effects on the distribution of cytoplasmic microtubules and 10-nm filaments. The specificities of the antibodies were confirmed by Western blots, solid phase radioimmunoassay, and Western blot analysis of alpha- and beta-tubulin peptide maps. Two monoclonals DM1A and DM3B3, an anti-alpha- and anti-beta-tubulin respectively, and the guinea pig polyclonal anti-alpha/beta-tubulin antibody (GP1T4) caused the 10-nm filaments to collapse into large lateral aggregates collecting in the cell periphery or tight juxtanuclear caps; the other monoclonal antibodies had no effect when microinjected into cells. The filament collapsing was observed to be complete at 1.5-2 h after injection. During the first 30 min after injection a few cytoplasmic microtubules near the cell periphery could be observed by fluorescence microscopy. This observation was confirmed by electron microscopy, which also demonstrated assembled microtubules in the juxtanuclear region. By 1.5 h, when most of the 10-nm filaments were collapsed, the complete cytoplasmic array of microtubules was observed. Cells injected in prophase were able to assemble a mitotic spindle, suggesting that the antibody did not block microtubule assembly. Metabolic labeling with [35S]methionine of microinjected cells revealed that total protein synthesis was the same as that observed in uninjected cells. This indicated that the microinjected antibody apparently did not produce deleterious effects on cellular metabolism. These results suggest that through a direct interaction of antibodies with either alpha- or beta- tubulin subunits, 10-nm filaments were dissociated from their normal distribution. It is possible that the antibodies disrupted postulated 10-nm filament-microtubule interactions.  相似文献   

11.
We previously demonstrated (Ookata et al., 1992, 1993) that the p34cdc2/cyclin B complex associates with microtubules in the mitotic spindle and premeiotic aster in starfish oocytes, and that microtubule- associated proteins (MAPs) might be responsible for this interaction. In this study, we have investigated the mechanism by which p34cdc2 kinase associates with the microtubule cytoskeleton in primate tissue culture cells whose major MAP is known to be MAP4. Double staining of primate cells with anti-cyclin B and anti-MAP4 antibodies demonstrated these two antigens were colocalized on microtubules and copartitioned following two treatments that altered MAP4 distribution. Detergent extraction before fixation removed cyclin B as well as MAP4 from the microtubules. Depolymerization of some of the cellular microtubules with nocodazole preferentially retained the microtubule localization of both cyclin B and MAP4. The association of p34cdc2/cyclin B kinase with microtubules was also shown biochemically to be mediated by MAP4. Cosedimentation of purified p34cdc2/cyclin B with purified microtubule proteins containing MAP4, but not with MAP-free microtubules, as well as binding of MAP4 to GST-cyclin B fusion proteins, demonstrated an interaction between cyclin B and MAP4. Using recombinant MAP4 fragments, we demonstrated that the Pro-rich C-terminal region of MAP4 is sufficient to mediate the cyclin B-MAP4 interaction. Since p34cdc2/cyclin B physically associated with MAP4, we examined the ability of the kinase complex to phosphorylate MAP4. Incubation of a ternary complex of p34cdc2, cyclin B, and the COOH-terminal domain of MAP4, PA4, with ATP resulted in intracomplex phosphorylation of PA4. Finally, we tested the effects of MAP4 phosphorylation on microtubule dynamics. Phosphorylation of MAP4 by p34cdc2 kinase did not prevent its binding to microtubules, but abolished its microtubule stabilizing activity. Thus, the cyclin B/MAP4 interaction we have described may be important in targeting the mitotic kinase to appropriate cytoskeletal substrates, for the regulation of spindle assembly and dynamics.  相似文献   

12.
Pre-phosphorylation of the microtubule-associated protein MAP2 with the co-purifying cAMP-independent protein kinase (a) decrease the affinity of MAP2 for taxol-stabilised microtubules, (b) increases the dissociation rate constant for microtubule polymerisation, each of which is dependent upon the level of phosphorylation, but (c) has no effect on the association rate constant. Microtubule assembly has no effect on the kinetics of phosphorylation, whereas phosphorylation of pre-assembled microtubules causes their immediate depolymerisation at a rate which is proportional to the initial rate of phosphorylation. The results suggest that the modulated phosphorylation of MAP2 may regulate microtubule length in vivo.  相似文献   

13.
The macromolecular accessibility of the paclitaxel binding site in microtubules has been investigated using a fluorescent taxoid and antibodies against fluorescein, which cannot diffuse into the microtubule lumen. The formation of a specific ternary complex of microtubules, Hexaflutax (7-O-{N-[6-(fluorescein-4'-carboxamido)-n-hexanoyl]-l-alanyl}paclitaxel) and 4-4-20 IgG (a monoclonal antibody against fluorescein) has been observed by means of sedimentation and electron microscopy methods. The kinetics of binding of the antibody to microtubule-bound Hexaflutax has been measured. The quenching of the observed fluorescence is fast (k+ 2.26 +/- 0.25 x 10(6) m(-1) s(-1) at 37 degrees C), indicating that the fluorescein groups of Hexaflutax are exposed to the outer solvent. The velocity of the reaction is linearly dependent on the antibody concentration, indicating that a bimolecular reaction is being observed. Another fluorescent taxoid (Flutax-2) bound to microtubules has also been shown to be rapidly accessible to polyclonal antibodies directed against fluorescein. A reduced rate of Hexaflutax quenching by the antibody is observed in microtubule-associated proteins containing microtubules or in native cellular cytoskeletons. It can be concluded that the fluorescent taxoids bind to an outer site on the microtubules that is shared with paclitaxel. Paclitaxel would be internalized in a further step of binding to reach the known luminal site, this step being blocked in the case of the fluorescent taxoids. Because the fluorescent ligands are able to induce microtubule assembly, binding to the outer site should be enough to induce assembly by a preferential binding mechanism.  相似文献   

14.
The localization of tau proteins on the microtubule surface   总被引:1,自引:0,他引:1  
The localization of porcine brain tau factor on in vitro assembled microtubules has been carried out by immunoelectron microscopy, using affinity-purified antibodies and protein A-gold particles. A parallel experiment was done using antibody against microtubule associated protein 2 (MAP2) and also a double labelling experiment using both antibodies with different sized gold particles. Our results indicate that, within the limits of resolution imposed by immunolabelling, the distribution patterns of tau factor and MAP2 on the microtubule are indistinguishable.  相似文献   

15.
《The Journal of cell biology》1994,127(5):1407-1418
Neurite formation by dissociated chick sympathetic neurons in vitro begins when one of the many filopodia that emanate from the cell body of a neuron is invaded by cytoplasm containing microtubules and other components of axoplasm (Smith, 1994). This study was undertaken to determine whether this process depends on assembly of microtubules. To inhibit microtubule assembly, neurons were grown in medium containing nocodazole or colchicine. In one series of experiments, neurons first were exposed to the microtubule-stabilizing drug, taxol, so that existing microtubules would remain intact while assembly of new microtubules was inhibited. The ability of neurons to form neurites was assessed by time-lapse video microscopy. Neurons subsequently were stained with antibodies against the tyrosinated and acetylated forms of alpha-tubulin and examined by laser confocal microscopy to visualize microtubules. Neurons were able to form short processes despite inhibition of microtubule assembly and they did so in a way that closely resembled process formation in control medium. Processes formed by neurons that had not been pretreated with taxol were devoid of microtubules. However, microtubules were present in processes of taxol- pretreated neurons. These microtubules contained acetylated alpha- tubulin, as is typical of stable microtubules, but not tyrosinated alpha-tubulin, the form present in recently assembled microtubules. These findings show that the initial steps in neurite formation do not depend on microtubule assembly and suggest that microtubules assembled in the cell body can be translocated into developing neurites as they emerge. The results are compatible with models of neurite formation which postulate that cytoplasm from the cell body is transported into filopodia by actomyosin-based motility mechanisms.  相似文献   

16.
The influence of phosphorylation on the binding of microtubule-associated protein 2 (MAP2) to cellular microtubules was studied by microinjecting MAP2 in various phosphorylation states into rat-1 fibroblasts, which lack endogenous MAP2. Conventionally prepared brain MAP2, containing 10 mol of endogenous phosphate per mol (MAP2-P10), was completely bound to cellular microtubules within 2-3 min after injection. MAP2 prepared in the presence of phosphatase inhibitors, containing 25 mol/mol of phosphate (MAP2-P25), also bound completely. However, MAP2 whose phosphate content had been reduced to 2 mol phosphate per mol by treatment with alkaline phosphatase in vitro (MAP2-P2) did not initially bind to microtubules, suggesting that phosphorylation of certain sites in MAP2 is essential for binding to microtubules. MAP2-P10 was further phosphorylated in vitro via an endogenously bound protein kinase activity, adding 12 more phosphates, giving a total of 22 mol/mol. This preparation (MAP2-P10+12) also did not bind to microtubules. Assay of the binding of these preparations to taxol-stabilized tubulin polymers in vitro confirmed that their binding to tubulin depended on the state of phosphorylation, but the results obtained in microinjection experiments differed in some cases from in vitro binding. The results suggest that the site of phosphate incorporation rather than the amount is the critical factor in determining microtubule binding activity of MAP2. Furthermore, the interaction of MAP2 with cellular microtubules may be influenced by additional factors that are not evident in vitro.  相似文献   

17.
We have examined the distribution of acetylated alpha-tubulin using immunofluorescence microscopy in fibroblastic cells of rat brain meninges. Meningeal fibroblasts showed heterogeneous staining patterns with a monoclonal antibody against acetylated alpha-tubulin ranging from staining of primary cilia or microtubule-organising centers (MTOCs) alone to extensive microtubule networks. Staining with a broad spectrum anti-alpha-tubulin monoclonal indicated that all cells possessed cytoplasmic microtubule networks. From double-labeling experiments using an antibody against acetylated alpha-tubulin (6-11B-1) and antibodies against either tyrosinated or detyrosinated alpha-tubulin, it was found that acetylated alpha-tubulin and tyrosinated alpha-tubulin were often segregated to different microtubules. The microtubules containing acetylated but not tyrosinated alpha-tubulin were cold stable. Therefore, it appeared that in general meningeal cells possessed two subset of microtubules: One subset contained detyrosinated and acetylated alpha-tubulin and was cold stable, and the other contained tyrosinated alpha-tubulin and was cold labile. These results are consistent with the idea that acetylation and detyrosination of alpha-tubulin are involved in the specification of stable microtubules.  相似文献   

18.
The subcellular localization of microtubule proteins in the neurons of squid (Doryteuthis bleekeri) was immunologically studied using monoclonal antibodies against the microtubule proteins. We found that (1) the squid neurons contained three kinds of high-molecular-weight microtubule-associated proteins [MAP A of approximately 300 kilodaltons (kD), MAP B of 260 kD, and axolinin of 260 kD] and two kinds of beta-tubulin isotypes (beta 1 and beta 2); (2) the cell body of the squid giant neuron contained MAP A, MAP B, and the two beta-tubulin isotypes (beta 1 and beta 2); (3) axolinin and the beta 1 isotype were present exclusively in the peripheral axoplasm of the giant axon; and (4) a small amount of axolinin, MAP A, and the beta 1 isotype was found in the insoluble aspect of the central axoplasm, whereas the soluble aspect of the central axoplasm contained an abundant amount of MAP A along with the modified form of the beta 1 isotype. The regional difference of the distribution of the microtubule protein components may explain the differences in stability among axonal microtubules. Microtubules in the soluble aspect of the central axoplasm are sensitive to any treatment with colchicine, cold temperature, and high ionic strength but those both in the insoluble aspect of the central axoplasm and in the peripheral axoplasm are highly insensitive to the treatment.  相似文献   

19.
The microtubule assembly process has been extensively studied, but the underlying molecular mechanism remains poorly understood. The structure of an artificially generated sheet polymer that alternates two types of lateral contacts and that directly converts into microtubules, has been proposed to correspond to the intermediate sheet structure observed during microtubule assembly. We have studied the self-assembly process of GMPCPP tubulins into sheet and microtubule structures using thermodynamic analysis and stochastic simulations. With the novel assumptions that tubulins can laterally interact in two different forms, and allosterically affect neighboring lateral interactions, we can explain existing experimental observations. At low temperature, the allosteric effect results in the observed sheet structure with alternating lateral interactions as the thermodynamically most stable form. At normal microtubule assembly temperature, our work indicates that a class of sheet structures resembling those observed at low temperature is transiently trapped as an intermediate during the assembly process. This work may shed light on the tubulin molecular interactions, and the role of sheet formation during microtubule assembly.  相似文献   

20.
Microtubule-associated proteins (MAPs) that copurify with tubulin through multiple cycles of in vitro assembly have been implicated as regulatory factors and effectors in the in vivo activity of microtubules. As an approach to the analysis of the functions of these molecules, a collection of lymphocyte hybridoma monoclonal antibodies has been generated using MAPs from HeLa cell microtubule protein as antigen. Two of the hybridoma clones secrete IgGs that bind to distinct sites on what appears to be a 200,000-dalton polypeptide. Both immunoglobulin preparations stain interphase and mitotic apparatus microtubules in cultured human cells. One of the clones (N-3B4.3.10) secretes antibody that reacts only with cells of human origin, while antibody from the other hybridoma (N-2B5.11.2) cross-reacts with BSC and PtK1 cells, but not with 3T3 cells. In PtK1 cells the N-2B5 antigen is associated with the microtubules of the mitotic apparatus, but there is no staining of the interphase microtubule array; rather, the antibody stains an ill-defined juxtanuclear structure. Further, neither antibody stains vinblastine crystals in either human or marsupial cells at any stage of the cell cycle. N-2B5 antibody microinjected into living PtK1 cells binds to the mitotic spindle, but does not cause a rapid dissolution of either mitotic or interphase microtubule structures. When injected before the onset of anaphase, however, the N-2B5 antibody inhibits proper chromosome partition in mitotic PtK1 cells. N-2B5 antibody injected into interphase cells causes a redistribution of MAP antigen onto the microtubule network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号