首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The effect of adenosine in insulin secretion and adenylate cyclase activity of rat islets of Langerhans was investigated. Adenosine inhibited insulin secretion stimulated by glucose, glucagon, prostaglandin E2, tolbutamine and theophylline. Adenosine decreased basal adenylate cyclase activity of the islets as well as that stimulated by glucagon prostaglandin E2 and GTP, although fluoride-stimulated activity was not affected. Neither insulin secretion nor adenylate cyclase activity of the islets was affected by adenine, AMP or ADP. The inhibitory effect of adenosine on adenylate cyclase activity was not altered by either phenoxybenzamine (alpha-adrenergic blocker) or propranolol (beta-adrenergic blocker), suggesting that the effect is not mediated through the adrenergic receptors of the islet cells. These results suggest that the intracellular concentration of adenosine in the beta-cell may play a role in regulating insulin secretion and that this effect may be mediated via alterations in the activity of adenylate cyclase in the beta-cell.  相似文献   

2.
Some effects of salts on the adenylate cyclase of partially purified plasma membranes from rat liver have been studied. Under conditions where cyclic adenosine 3':5'-monophosphate formation was linear with respect to time and protein concentration, the enzyme was stimulated 3- to 6-fold by 10 mM NaF, 10- to 30-fold by 1 muM glucagon, 4- to 5-fold by 0.1 mM 5'-guanylylimidodiphosphate, and in the presence of 3 muM GTP, 2-fold by 10 mug/ml of prostaglandin E1. Various salts were found to stimulate basal activity slightly, but enhanced the response to NaF 3- to 4-fold, to glucagon 1.5- to 2-fold, to 5'-guanylylimidodiphosphate 2- to 3-fold, and to prostaglandin E1 1.5-fold. This enhancement was observed at maximally effective concentrations of each of the respective activators. Of the salts tested, NaN3 and the Na- or K-halides were most effective. Their action appeared to be due to the respective anions. Stimulation was detectable with 1.5 mM NaN3 or 3 mM NaCl and was maximal with 30 mM NaN3 or 60 mM NaCl. The stimulatory effect of NaN3 was not due to ATP-sparing, nor to an altered cyclic adenosine 3':5'-monophosphate recovery. It was independent of the chromatography and assay methods used, and was therefore not due to procedural artifact. Fluoride-stimulated cyclase activity was enhanced by salts to a greater degree than were 5'-guanylylimidodiphosphate-, glucagon-, or (prostaglandin E1 + GTP)-stimulated activities. The effects of NaN3 were not the result of significant changes in the enzyme's responses to GTP, which increased basal and glucagon-stimulated activities but inhibited F--stimulated activity. The effects of NaN3 were greater when cyclase was assayed with Mn2+ than with Mg2+. The facilitatory effect of NaN3 or NaCl on fluoride-stimulated adenylate cyclase activity was partially reversible as was the stimulatory effect of fluoride in the presence of NaN3. Enhancement of hormonal stimulation by NaN3 was also demonstrable with cardiac and adipose tissue adenylate cyclase. However, NaN3 did not stimulate detergent-dispersed adenylate cyclases from either liver plasma membranes or brain. The data suggest that stimulation of adenylate cyclase by salts may require the added presence of other stimulatory agents and an intact membrane structure.  相似文献   

3.
Adenylate cyclase in rat adipocyte membranes was inactivated as a result of treatment with sulfhydryl oxidants or with p-chloromercuribenzoate as well as by S-alkylating agents. The inhibition of the basal and isoproterenol- or glucagon-stimulated enzyme activity by the oxidants or the mercurial could be reversed by adding thiols to the isolated membranes. The activity of the enzyme paralleled the cellular glutathione (GSH) content. Lowering of intracellular glutathione by incubating the cells with specific reactants resulted in the inhibition of both basal and hormone-stimulated adenylate cyclase activity in the isolated membranes. Activity could be partly restored by supplying glucose to the incubation medium of intact cells. The fluoride-stimulated adenylate cyclase was also inhibited by the oxidants or the sulfhydryl inhibitors. The results suggest that adenylate cyclase may be partly regulated by oxidation-reduction. Thus, a direct relationship between both basal and hormone-stimulated adenylate cyclase activity and the cellular redox potential, determined by the cellular level of reduced glutathione, may be ascribed to the protection of the catalytic -SH groups of the enzyme from oxidative or peroxidative reactions and maintenance of the redox optimum for the reaction.  相似文献   

4.
In hamster adipocyte ghosts, ACTH and β-adrenergic agonists stimulate adenylate cyclase by a GTP-dependent process; in contrast, inhibition of the enzyme by hormonal factors requires both GTP and sodium ions. The interaction of various monovalent cations and guanine nucleotides was studied on basal, stimulated and inhibited adenylate cyclase activities. In the presence of GTP (0.03–10 μM), which reduced basal activity by up to 90%, monovalent cations (10–500 mM, added as chloride salts) increased the enzyme activity by up to about 8-fold. The potency order obtained was Na+>Li+>K+>choline. The stable GTP analogue, guanylyl-5′-imidodiphosphate, which like GTP was capable of decreasing basal activity, diminished the cation-induced activation. The stimulatory effects of ACTH and isoproterenol on adipocyte adenylate cyclase activity were impaired by the cations in the potency order, Na+>Li+>K+>choline. Additionally, NaCl shifted the concentration-response for ACTH to the right and caused an increase in the maximal activation by the hormone. Similar to basal activity, fluoride-stimulated activity was increased by NaCl, when GTP was present. The inhibitory effect of prostaglandin E1 on basal adipocyte adenylate cyclase activity was revealed by the cations in the above mentioned potency order by an apparent reversal of the cation-induced activation. In the presence of NaCl, the ACTH- or fluoride-stimulated activities were also reduced by prostaglandin E1, but the inhibitory hormonal factor did not reverse the NaCl-induced shift in the concentration-response curve for ACTH. Guanylyl-5′-imidodiphosphate completely prevented hormonal inhibition. The data suggest that monovalent cations interact with the guanine nucleotide-binding regulatory component of the adipocyte adenylate cylase system and that this interaction somehow changes the properties of this component, now revealing hormone-induced inhibition partially impairing hormone-induced stimulation.  相似文献   

5.
Protease inhibitors are known to suppress basal, fluoride-, and hormone-stimulated adenylate cyclase activities. The thrombin inhibitor, dansyl-arginyl-(4'-ethyl)piperidine amide (DAPA), also specifically inhibits the binding of gonadotropins to their receptors. Our studies were undertaken to find a concentration of DAPA that would specifically inhibit gonadotropin-stimulated adenylate cyclase without significantly altering basal, fluoride-, isoproterenol-, or prostaglandin E1-stimulated cyclase. Basal adenylate cyclase activity was not inhibited by DAPA in either human chorionic gonadotropin (hCG)- or follicle-stimulating hormone (FSH)-responsive rat ovarian plasma membranes. Human chorionic gonadotropin-stimulated cyclase was completely inhibited by DAPA at a concentration of 2.96 mM; the ID50 was 1.32 mM. Follicle-stimulating hormone-stimulated cyclase was completely inhibited by a DAPA concentration of 4.44 mM, and the ID50 was 1.75 mM. Dansyl-arginyl-(4'-ethyl)piperidine amide (2.96 mM) inhibited isoproterenol-, prostaglandin E1-, and fluoride-stimulated cyclase in hCG-responsive membranes by 11%, 28%, and 35%, respectively. Dansyl-arginyl-(4'-ethyl)piperidine amide (4.44 mM) inhibited fluoride- and prostaglandin-stimulated cyclase in FSH-responsive membranes by 10% and 11%, respectively. The data show that appropriate concentrations of DAPA can antagonize gonadotropin-stimulated adenylate cyclase while only minimally affecting fluoride- and other receptor-activated cyclase activities.  相似文献   

6.
1. The addition of 50 000g cytosol preparations of isolated human platelets, cultured rat osteogenic sarcoma or cultured bone cells to particulate preparations of adenylate cyclase, from the same or unrelated tissues, caused marked enhancement of the hormone-stimulated enzyme activities. 2. The degree of enhancement obtained by addition of the cytosol preparations was similar to that observed on addition of GTP. 3. The enhancing activity of the three cytosol types was found to be sensitive to digestion by trypsin and alkaline phosphatase, partially heat-labile and partially inactivated by exposure to charcoal. 4. Gel filtration studies indicated an apparent molecular weight of 20 000--30 000. Further, the 20000-30000-mol.wt. fractions obtained by gel filtration could enhance the adenylate cyclase activity of particulate preparations derived from unrelated cell types. 5. The results suggest a common or similar adenylate-cyclase-enhancing factor or factors, protein in nature, present in the three cytosol types.  相似文献   

7.
We report that the adenylate cyclase system in human platelets is subject to multiple regulation by guanine nucleotides. Previously it has been reported that GTP is either required for or has little effect on the response of the enzyme to prostaglandin E1. We have found that when platelet lysates were prepared in the presence of 5 mM EDTA, GTP lowered the basal and prostaglandin E1-stimulated adenylate cyclase activity, but at a higher concentration of Mn2+, it caused an increase in enzyme activity exceeding that occurring in the presence of prostaglandin E1. In the presence of Mn2+, dGTP mimics the effect of GTP and is 50% as effective as GTP. Our data suggest that the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is mainly due to its direct effect on the enzyme itself, whereas the stimulatory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is due to enhancement of the coupling between the prostaglandin E1 receptor and adenylate cyclase. These studies also indicate that the method of preparation of platelet lysates can profoundly alter the nature of guanine nucleotide regulation of adenylate cyclase.  相似文献   

8.
The effect of molybdate on adenylate cyclase (EC 4.6.1.1) in rat liver plasma membranes has been examined. The apparent K alpha for molybdate activation of the enzyme is 4.5 mM, and maximal, 7-fold stimulation is achieved at 50 mM. The observed increase in cAMP formation in the adenylate cyclase assay is not due to: (a) an inhibition of ATP hydrolysis; (b) a molybdate-catalyzed conversion of ATP to cAMP; (c) an inhibition of cAMP hydrolysis; or (d) an artifact in the isolation of cAMP formed in the reaction. Molybdate activation of adenylate cyclase is a general phenomenon exhibited by the enzyme in brain, cardiac, and renal tissue homogenates and in erythrocyte ghosts. However, like fluoride and guanyl-5'-yl imidodiphosphate (Gpp(NH)p), molybdate does not activate the soluble rat testicular adenylate cyclase. Molybdate is a reversible activator of adenylate cyclase. Activation is not due to an increase in ionic strength and is independent of the salt used to introduce molybdate. Molybdate does not activate adenylate cyclase previously stimulated with Gpp(NH)p or fluoride. At concentration greater than 20 mM, molybdate inhibits fluoride-stimulated adenylate cyclase, and at concentrations greater than 100 mM, molybdate stimulation of basal adenylate cyclase activity is diminished.  相似文献   

9.
Heparin was found to be the most potent inhibitor of rat ovarian luteinizing hormone-sensitive adenylate cyclase (I50 = 2 microgram/ml) when compared to other naturally occurring glycosamin oglycans. This inhibition was also apparent when this enzyme was stimulated by follicle-stimulating hormone or prostaglandin E2. Heparin was also found to inhibit glucagon-sensitive rat hepatic adenylate cyclase, and the prostaglandin E1-sensitive enzyme from rat ileum and human platelets. In contrast, heparin stimulated the dopamine sensitive adenylate cyclase from rat caudate nucleus. The sulfated polysugar dextran sulfate exerts similar effects on adenylate cyclase activity of the rat ovary and was shown to inhibit hormone binding to rat ovarian plasma membrane in a manner similar to that exerted by heparin. In contrast to heparin, dextran sulfate inhibited dopamine-sensitive adenylate cyclase from rat caudate nucleus.  相似文献   

10.
Prostaglandin E1 stimulation of human platelet adenylate cyclase, in purified plasma membranes, occurs without the addition of exogenous GTP. Possible contamination of the adenylate cyclase assay mixture by GTP either from nonspecifically bound nucleotide in the plasma membrane or from the substrate ATP was ruled out as follows: (a) variation of the membrane concentration, repeated washing, inclusion of EDTA, GDP beta S, or GMP in the wash step, or UDP in the assay, are all without effect, and (b) analysis of the substrate by high-performance liquid chromatography revealed no contaminating GTP. Other prostaglandins (I2, E2, D2) also activate cyclase without the addition of GTP. In sharp contrast, stimulation of adenylate cyclase in the human neutrophil plasma membrane by prostaglandin E1 shows an obligatory requirement for GTP, under identical assay conditions. GDP beta S pretreatment amplifies the fold cyclase stimulation by GTP in the presence and absence of prostaglandin E1, by lowering the basal activity. This alteration occurs without lowering the GTP-independent prostaglandin E1 activation, and is specific for inhibitory guanine nucleotides (GDP beta S, GMP, GDP) in the pretreatment. Extensive washing with buffer or incubation with other nucleotides, epinephrine, or prostaglandin E1 prior to the assay, is without effect. GTP gamma S treatment of the membrane induces a high-activity state and abolishes the GDP beta S effect on basal activity as well as prostaglandin E1 activation of cyclase. The results suggest distinct patterns of prostaglandin stimulation in platelet and neutrophil cyclase systems, and further imply that guanine nucleotide, prebound to specific sites within the GTP-regulatory proteins, may modify the kinetic characteristics of platelet adenylate cyclase.  相似文献   

11.
7-oxa-13-prostynoic acid (OPA) and polyphloretin phosphate (PPP) are believed to act as specific antagonists of prostaglandin action. In order to estimate their specificity, the inhibitory effects of these drugs were tested on the activity of adenylate cyclase from several tissues which were stimulated by prostaglandins and several other compounds. In adenylate cyclase preparation from L-fibroblasts both OPA (0.15-1.5 MM) and PPP (0.01-1.0 MG/ML) antagonized not only the stimulatory effects of PGE but also the stimulatory effects of sodium fluoride and increased enzyme activity due to the previous treatment of cell cultures by cholera toxin. Both OPA and PPP produced a dose dependent depression of adenylate cyclase activity to zero values both under basal conditions and after stimulation by sodium fluoride and various hormones in all preparations studied, including rat liver, heart, brain, epididymal adipose tissue, small intestine, renal cortex and renal medulla. The present results indicate that both prostaglandin antagonists may, in higher concentrations, act as nonspecific inhibitors of the catalytic unit of adenylate cyclase rather than specific antagonists of the prostaglandin effects on adenylate cyclase.  相似文献   

12.
To investigate the mechanism of serine protease stimulation of rat ovarian adenylate cyclase, a variety of synthetic protease inhibitors were used. These inhibitors blocked trypsin, chymotrypsin and hCG stimulation of adenylate cyclase in nearly the same manner. The inhibition of hormone stimulated adnylate cyclase could not be explained by a loss of [125I]hCG binding. Cholera toxin and epinephrine stimulation of adenylate cyclase were similarly inhibited, whereas basal and fluoride-stimulated activities were only affected by higher doses of the inhibitors. The results suggest that adenylate cyclase in the ovary may be regulated by membrane protease activity.  相似文献   

13.
Soluble factors obtained from human, rat and rabbit erythroid cell lysates are capable to stimulate basal and hormone activated adenylate cyclase of erythroid cell membranes from homologous sources. Extensive dialysis and removal of hemoglobin from the soluble factors do not modify their activity. Human erythrocyte soluble factors stimulate the human reticulocyte enzyme. Nevertheless human erythrocyte adenylate cyclase is not stimulated by either of the soluble factors. The presence of active soluble factors in human erythrocytes where the adenylate cyclase is no longer sensitive to these factors, as well as to guanylnucleotides or protaglandins, indicates that the enzyme has been altered during the maturation processes.  相似文献   

14.
Adenylate cyclase activity of a rat embryo fibroblast cell line (F111) is markedly increased by brief treatment with 1:300 trypsin. The degree of stimulation depends upon the length of time the cells are treated and the concentration of trypsin. Crystalline trypsin produced a stimulation similar to that obtained with 1:300 trypsin. Further, the addition of soybean trypsin inhibitor blocked the stimulation of adenylate cyclase by 1:300 trypsin. Trypsin-treated adenylate cyclase responds to PGE1, but there is no increase over that of untreated enzyme. This result and the increase in fluoride-stimulated levels of activity suggest that the trypsin is acting upon the catalytic unit of the enzyme.  相似文献   

15.
The effect of certain lipids on adenylate cyclase activity [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] from fibroblasts in culture has been investigated. The unsaturated fatty acids, as well as lysolecithin, were found to act as potent inhibitors of fibroblast adenylate cyclase activity. Increasing the degree of unsaturation increases the extent of inhibition noted at a given fatty acid concentration. The inhibitory effect of the unsaturated fatty acids or lysolecithin is not selective for a specific function of the adenylate cyclase system since basal, and hormone- or fluoride-stimulated cyclase activities are inhibited to the same extent. The fatty acid-inactivated state of fibroblast adenylate cyclase is not readily reversed for enzyme activity is not restored when arachidonate-treated membranes are washed with Tris buffer containing 10 mm EDTA, 0.15 mm albumin, or 0.15 m KCl. Previous studies have shown that the adenylate cyclase system from Moloney sarcoma virus-transformed NRK (MNRK) cells is not stimulated by the addition of GTP or hormones. Of interest is the present finding that the addition of unsaturated fatty acids, or lysolecithin, over a narrow concentration range (0.1 – 0.2 mm) leads to partial restoration of GTP activation of MNRK cyclase activity. Hormonal responsiveness to l-epinephrine or prostaglandin E1 is not restored to the MNRK enzyme with fatty acid or lysolecithin treatment.  相似文献   

16.
Incubation of rat liver plasma membranes with liposomes of dioleoyl phosphatidic acid (dioleoyl-PA) led to an inhibition of adenylate cyclase activity which was more pronounced when fluoride-stimulated activity was followed than when glucagon-stimulated activity was followed. If Mn2+ (5 mM) replaced low (5 mM) [Mg2+] in adenylate cyclase assays, or if high (20 mM) [Mg2+] were employed, then the perceived inhibitory effect of phosphatidic acid was markedly reduced when the fluoride-stimulated activity was followed but was enhanced for the glucagon-stimulated activity. The inhibition of adenylate cyclase activity observed correlated with the association of dioleoyl-PA with the plasma membranes. Adenylate cyclase activity in dioleoyl-PA-treated membranes, however, responded differently to changes in [Mg2+] than did the enzyme in native liver plasma membranes. Benzyl alcohol, which increases membrane fluidity, had similar stimulatory effects on the fluoride- and glucagon-stimulated adenylate cyclase activities in both native and dioleoyl-PA-treated membranes. Incubation of the plasma membranes with phosphatidylserine also led to similar inhibitory effects on adenylate cyclase and responses to Mg2+. Arrhenius plots of both glucagon- and fluoride-stimulated adenylate cyclase activity were different in dioleoyl-PA-treated plasma membranes, compared with native membranes, with a new 'break' occurring at around 16 degrees C, indicating that dioleoyl-PA had become incorporated into the bilayer. E.s.r. analysis of dioleoyl-PA-treated plasma membranes with a nitroxide-labelled fatty acid spin probe identified a new lipid phase separation occurring at around 16 degrees C with also a lipid phase separation occurring at around 28 degrees C as in native liver plasma membranes. It is suggested that acidic phospholipids inhibit adenylate cyclase by virtue of a direct headgroup specific interaction and that this perturbation may be centred at the level of regulation of this enzyme by the stimulatory guanine nucleotide regulatory protein NS.  相似文献   

17.
7-Oxa-13-prostynoic acid (OPA) and polyphloretin phosphate (PPP) are believed to act as specific antagonists of prostaglandin action. In order to estimate their specificity, the inhibitory effects of these drugs were tested on the activity of adenylate cyclase from several tissues which were stimulated by prostaglandins and several other compounds.

In adenylate cyclaae preparation from L-fibroblasts both OPA (0.15–1.5 mM) and PPP (0.01–1.0 mg/ml) antagonized not only the stimulatory effects of PGE1 but also the stimulatory effects of sodium fluoride and increased enzyme activity due to the previous treatment of cell cultures by cholera toxin. Both OPA and PPP produced a dose dependent depression of adenylate cyclase activity to zero values both under basal conditions and after stimulation by sodium fluoride and various hormones in all preparations studied, including rat liver, heart, brain, epididymal adipose tissue, small intestine, renal cortex and renal medulla.

The present results indicate that both prostaglandin antagonists may, in higher concentrations, act as nonspecific inhibitors of the catalytic unit of adenylate cyclase rather than specific antagonists of the prostaglandin effects on adenylate cyclase.  相似文献   


18.
Heparin was found to be the most potent inhibitor of rat ovarian luteinizing hormone-sensitive adenylate cyclase (I50 = 2 μg/ml) when compared to other naturally occurring glycosaminoglycans. This inhinibition was also appparent when this enzyme was stimulated by follicle-stimulating hormone or prostaglandin E 2. Heparin was also found to inhibit glucagon-sensitive rat hepatice adenylate cyclase, and the prostaglandin E1-sensitive enzyme from rat ileum and human platelets. In contrast, heparin stimulated the dopamine sensitive adenylate cyclase from rat caudate nucleus. The sulfade polysugar dextran sulfate exerts similar effects on adenylate cyclase activity of the rat ovary was shown to inhibit hormone binding to rat ovarian plasma membrane in a manner similar to that exerted by heparin. In contrast to heparin, dextran sulfate inhibited dopamine-sensitive adenylate cyclase from rat caudate nucleus.  相似文献   

19.
Adenylate cyclase [ATP pyrophosphate lyase (cyclizing), EC 4.6.1.1] was shown to be present in cultured human articular chondrocytes. Optimal conditions of incubation time, protein and substrate concentrations and pH were determined in whole cell lysates. Maximal activity occurred at pH 8.5 with no decrease in activity up to pH 10.0. Adenylate cyclase activity of particulate membrane preparations was enhanced by the addition of crude cytosol preparations. The prostaglandins E1, E2, F1 alpha, F2 alpha, D2, B1, B2, A1 and A2, as well as adrenaline and isoprenaline, stimulated adenylate cyclase derived from either adult or foetal chondrocytes. No significant stimulation was observed in the presence of human calcitonin or glucagon. Bovine parathyroid hormone always significantly stimulated the adenylate cyclase derived from foetal chondrocytes, but not from adult chondrocytes. Preincubation of the chondrocytes in culture with indomethacin and with or without supernatant medium from cultured mononuclear cells increased the responsiveness of the adenylate cyclase to prostaglandin E1.  相似文献   

20.
Basal adenylate cyclase activity in rat lung homogenate was low prenatally but increased several-fold after birth and remained elevated to maturity. The results also demostrate the appearance of some factors(s) in the lung cytoplasm at a certain age which markedly activated adenylate cyclase. During late gestation and early neonatal life, when the cytoplasmic factor(s) was low or absent, basal adenylate cyclase activity was low and norepinephrine and NaF produced maximum activation of the enzyme. However, when the cytoplasmic factor(s) appeared in the adult lungs, basal adenylate cyclase activity was elevated and both norepinephrine and NaF produced little or no activation of the enzyme. These data suggest a role for the cytoplasmic factor(s) in regulating rat lung adenylate cyclase.The cytoplasmic factor(s) appeared to be a protein since it was inactivated by trypsin digestion and by heating to 75°C. Activation of adenylate cyclase was not due to small ions or other low molecular weight components of the cytoplasm as dialysis of the supernatant did not alter its activation of adenylate cyclase. The cytoplasmic factor(s) did not appear to be either GTP or calcium-dependent regulator of cyclic AMP phosphodiesterase as these did not activate the rat lung adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号