首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
动物通道是缓解高速公路对其周边野生动物生境隔离的有效措施,通道的位置是影响其使用效率的关键因素,然而现有研究对通道的选址却甚少涉及。以武深高速为例,推荐一种基于物种运动路径识别的通道选址方法,选取影响动物生境选择的环境因子构建评价体系,借助GIS手段对公路周边野生动物生境适宜性进行分析,在此基础上借鉴水文分析原理快速准确地刻画出物种在生境中的潜在活动路径,从而确定了5处高速公路上建设动物通道的理想位置。结果表明,该方法能定量地反映出生境的质量格局对于物种运动的影响,准确定位出物种运动受到阻碍的关键区域,在景观层次上,提出的通道位置能有效地缓解栖息地破碎化造成的生态压力;研究不但能弥补目前研究的不足,同时亦为道路网设计、城市生态规划等相关领域研究提供科学参考。  相似文献   

2.
The African elephant, Loxodonta africana, is under threat from habitat loss, poaching and human–elephant conflict. To mitigate for impact of habitat loss and reduce conflict, connectivity between elephant habitats can be improved through the protection of corridor areas. This study looks at elephant distribution and movement patterns within the Kasigau Wildlife Corridor (KWC) within the Tsavo Conservation Area in South‐east Kenya. Elephant presence data were obtained from observations by rangers during routine patrols across KWC, and were analysed in MaxEnt. The environmental factors predicting elephant distribution and density were tested, as well as the relationship between elephant maximum entropy and the presence and abundance of other wildlife. Seasonal variations in temperature and precipitation, plus presence of waterholes were found to play significant roles in elephant distribution across KWC. Higher elephant densities were not found to correlate with lower densities of other wildlife species; indeed, during the dry seasons, elephant presence was associated with greater wild herbivore densities. Besides illustrating the importance of the KWC for elephant conservation in the Tsavo ecosystem, both as a key corridor and habitat, this study also hopes to highlight the untapped utility of routine ranger patrol data, and encourage the use of such presence‐only data for deducing important knowledge for conservation of biodiversity.  相似文献   

3.
Wildlife populations in semi-arid regions are increasingly challenged by human activities and dependent on the connectivity of riparian corridors for access to surface water. The Madrean Archipelago is a biodiversity hotspot along the arid United States–Mexico borderlands that support both Neotropical and Nearctic wildlife. Infrastructure development (e.g., the border wall and the expansion of Mexican Federal Highway 2) in this region inhibits wildlife movement along the transnational mountain archipelago by disconnecting habitat. To explore the relationship between habitat variables and mammal use of riparian corridors in northern Sonora, Mexico, we collected data from 19 motion-sensitive cameras between October 2018 and April 2019 and used single-season occupancy models and Royle-Nichols abundance estimation models to analyze our data. We recorded 21 species of mammals, including the first sighting of jaguar (Panthera onca) in this region in 25 years. River characteristics (distance from river, riparian corridor width, water availability), remoteness (distance from highway, productivity, elevation), and topographic variety (vertical elevation difference) influenced patterns of occupancy probability and estimated abundance of mammals >1 kg, but the strength and direction of these relationships varied by species. Additionally, intermittently wet desert washes were comparable in species richness to the perennial system. These results highlight the importance of examining physical and biological aspects of habitat. This is especially true when identifying corridors where mitigation structures should be placed to improve wildlife connectivity in biodiversity hotspots like the Madrean Archipelago and semi-arid ecosystems worldwide.  相似文献   

4.
Dispersal away from the release site is among the main obstacles that reduce translocation success. Scientists should therefore test a variety of translocation methods to reduce dispersal when moving wildlife between sites. The objective of this research was to examine how translocation method (hard‐ vs. soft‐release) and habitat structure (continuous vs. patchy) affect movement of translocated turtles. A hard‐release consists of releasing individuals to their new environment without any prior acclimation, whereas a soft‐release forces animals to spend time at the release site prior to release. Our results suggest that the most effective translocation technique depends upon habitat structure. A soft‐release was effective in minimizing post‐release dispersal of translocated turtles in a continuous lotic habitat as there was no difference in the movement of soft‐released and resident turtles. However, hard‐released turtles undergo extensive movement when translocated to a continuous lotic habitat as hard‐released turtles had greater movement than resident turtles. When the release site consists of a patchy wetland complex, a hard‐release translocation may be effective as there was no difference in the movement between resident and hard‐released turtles. Our study suggests that both the habitat structure of the release site and translocation method play a role in the movement patterns of translocated wildlife. Semi‐aquatic turtles or species with poor vagility may make better candidates for hard‐release translocations in patchy habitats because these species may be less likely or unable to disperse long distances as result of their behavior, physiology, or the structure of the release site.  相似文献   

5.
ABSTRACT We used 38,709 fixes collected from December 2003 through June 2006 from 44 elk (Cervus elaphus) fitted with Global Positioning System collars and hourly traffic data recorded along 27 km of highway in central Arizona, USA, to determine how traffic volume affected elk distribution and highway crossings. The probability of elk occurring near the highway decreased with increasing traffic volume, indicating that elk used habitat near the highway primarily when traffic volumes were low (<100 vehicles/hr). We used multiple logistic regression followed by model selection using Akaike's Information Criterion to identify factors influencing probability of elk crossings. We found that increasing traffic rates reduced the overall probability of highway crossing, but this effect depended on both season and the proximity of riparian meadow habitat. Elk crossed highways at higher traffic volumes when accessing high quality foraging areas. Our results indicate that 1) managers assessing habitat quality for elk in areas with high traffic-volume highways should consider that habitat near highways may be utilized at low traffic volumes, 2) in areas where highways potentially act as barriers to elk movement, increasing traffic volume decreases the probability of highway crossings, but the magnitude of this effect depends on both season and proximity of important resources, and 3) because some highway crossings still occurred at the high traffic volumes we recorded, increasing traffic alone will not prevent elk-vehicle collisions. Managers concerned with elk-vehicle collisions could increase the effectiveness of wildlife crossing structures by placing them near important resources, such as riparian meadow habitat.  相似文献   

6.
Predicted highly expressed (PHX) genes are compared for 16 gamma-proteobacteria and their similarities and differences are interpreted with respect to known or predicted physiological characteristics of the organisms. Predicted highly expressed genes often reflect the organism's predominant lifestyle, habitat, nutrition sources and metabolic propensities. This technique allows to predict principal metabolic activities of the microorganisms operating in their natural habitats. Among our findings is an unusually high number of PHX enzymes acting in cell wall biosynthesis, amino acid biosynthesis and replication in the ant endosymbiont Blochmannia floridanus. We ascribe the abundance of these PHX genes to specific aspects of the relationship between the bacterium and its host. Xanthomonas campestris is unique with a very high number of PHX genes acting in flagellum biosynthesis, which may play a special role during its pathogenicity. Shewanella oneidensis possesses three protein complexes which all can function as complex I in the respiratory chain but only the Na(+)-transporting NADH:ubiquinone oxidoreductase nqr-2 operon is PHX. The PHX genes of Vibrio parahaemolyticus are consistent with the microorganism's adaptation to extremely fast growth rates. Comparative analysis of PHX genes from complex environmental genomic sequences as well as from uncultured pathogenic microbes can provide a novel, useful tool to predict global flux of matter and key intermediates.  相似文献   

7.
Anthropogenic landscape modification such as urbanization can expose wildlife to toxicants, with profound behavioural and health effects. Toxicant exposure can alter the local transmission of wildlife diseases by reducing survival or altering immune defence. However, predicting the impacts of pathogens on wildlife across their ranges is complicated by heterogeneity in toxicant exposure across the landscape, especially if toxicants alter wildlife movement from toxicant-contaminated to uncontaminated habitats. We developed a mechanistic model to explore how toxicant effects on host health and movement propensity influence range-wide pathogen transmission, and zoonotic exposure risk, as an increasing fraction of the landscape is toxicant-contaminated. When toxicant-contaminated habitat is scarce on the landscape, costs to movement and survival from toxicant exposure can trap infected animals in contaminated habitat and reduce landscape-level transmission. Increasing the proportion of contaminated habitat causes host population declines from combined effects of toxicants and infection. The onset of host declines precedes an increase in the density of infected hosts in contaminated habitat and thus may serve as an early warning of increasing potential for zoonotic spillover in urbanizing landscapes. These results highlight how sublethal effects of toxicants can determine pathogen impacts on wildlife populations that may not manifest until landscape contamination is widespread.  相似文献   

8.
Transport infrastructure elements are widespread and increasing in size and length in many countries, with the subsequent alteration of landscapes and wildlife communities. Nonetheless, their effects on habitat selection by raptors are still poorly understood. In this paper, we analyzed raptors’ foraging habitat selection in response to conventional roads and high capacity motorways at the landscape scale, and compared their effects with those of other variables, such as habitat structure, food availability, and presence of potential interspecific competitors. We also analyzed whether the raptors’ response towards infrastructure depends on the spatial scale of observation, comparing the attraction or avoidance behavior of the species at the landscape scale with the response of individuals observed in the proximity of the infrastructure. Based on ecological hypotheses for foraging habitat selection, we built generalized linear mixed models, selected the best models according to Akaike Information Criterion and assessed variable importance by Akaike weights. At the community level, the traffic volume was the most relevant variable in the landscape for foraging habitat selection. Abundance, richness, and diversity values reached their maximum at medium traffic volumes and decreased at highest traffic volumes. Individual species showed different degrees of tolerance toward traffic, from higher abundance in areas with high traffic values to avoidance of it. Medium-sized opportunistic raptors increased their abundance near the traffic infrastructures, large scavenger raptors avoided areas with higher traffic values, and other species showed no direct response to traffic but to the presence of prey. Finally, our cross-scale analysis revealed that the effect of transport infrastructures on the behavior of some species might be detectable only at a broad scale. Also, food availability may attract raptor species to risky areas such as motorways.  相似文献   

9.
I examined the effect of riparian forest restoration on plant abundance and diversity, including weed species, on agricultural lands along the Sacramento River in California (United States). Riparian forest restoration on the Sacramento River is occurring on a large‐scale, with a goal of restoring approximately 80,000 ha over 160 km of the river. In multiuse habitats, such as the Sacramento River, effects of adjoining habitat types and movement of species across these habitats can have important management implications in terms of landscape‐scale patterns of species distributions. Increased numbers of pest animals and weeds on agricultural lands associated with restored habitats could have negative economic impacts, and in turn affect support for restoration of natural areas. In order to determine the distribution and abundance of weeds associated with large‐scale restoration, I collected seed bank soil samples on orchards between 0 and 5.6 km from adjacent restored riparian, remnant riparian, and agricultural habitats. I determined the abundance, species richness, and dispersal mode of plant species in the seed bank and analyzed these variables in terms of adjacent habitat type and age of restored habitat. I found that agricultural weed species had higher densities at the edge of restored riparian habitat and that native plants had higher densities adjacent to remnant riparian habitat. Weed seed abundance increased significantly on walnut farms adjacent to restored habitat with time since restored. I supply strong empirical evidence that large areas of natural and restored habitats do not lead to a greater penetration of weed species into agricultural areas, but rather that weed penetration is both temporally and spatially limited.  相似文献   

10.
Promoting recreation and preserving wildlife are often dual missions for land managers, yet recreation may impact wildlife. Because individual disturbances are seemingly inconsequential, it is difficult to convince the public that there is a conservation value to restricting recreation to reduce disturbance. We studied threatened western snowy plovers (Charadrius alexandrinus nivosus) at a public beach (Sands Beach, Coal Oil Point Reserve) in Santa Barbara, California (USA) before and during a period when a barrier directed foot traffic away from a section of upper beach where snowy plovers roost. The barrier reduced disturbance rates by more than half. Snowy plovers increased in abundance (throughout the season) and their distribution contracted to within the protected area. Snowy plovers that were outside the protected area in the morning moved inside as people began using the beach. Experiments with quail eggs indicated an 8% daily risk of nest trampling outside the protected area. Before protection, plovers did not breed at Coal Oil Point. During protection, snowy plovers bred in increasing numbers each year and had high success at fledging young. These results demonstrate how recreational disturbance can degrade habitat for shorebirds and that protecting quality habitat may have large benefits for wildlife and small impacts to recreation.  相似文献   

11.
The logistic model is a fundamental population model often used as the basis for analyzing wildlife population dynamics. In the classic logistic model, however, population dynamics may be difficult to characterize if habitat size is temporally variable because population density can vary at a constant abundance, which results in variable strength of density‐dependent feedback for a given population size. To incorporate habitat size variability, we developed a general population model in which changes in population abundance, density, and habitat size are taken into account. From this model, we deduced several predictions for patterns and processes of population dynamics: 1) patterns of fluctuation in population abundance and density can diverge, with respect of their correlation and relative variability; and 2) along with density dependence, habitat size fluctuation can affect population growth with a time lag because changes in habitat size result in changes in population density. In order to test these predictions, we applied our model to population dynamics data of 36 populations of Tigriopus japonicus, a marine copepod inhabiting tide pools of variable sizes caused by weather processes. As expected, we found a significant difference in the fluctuation patterns of population abundance and density of T. japonicus populations with respect to the correlation between abundance and density and their relative variability, which correlates positively with the variability of habitat size. In addition, we found direct and lagged‐indirect effects of weather processes on population growth, which were associated with density dependence and impose regulatory forces on local and regional population dynamics. These results illustrate how changes in habitat size can have an impact on patterns and processes of wildlife population dynamics. We suggest that without knowledge of habitat size fluctuation, measures of population size and its variability as well as inferences about the processes of population dynamics may be misleading.  相似文献   

12.
Fragmentation of wildlife habitat by road development is a major threat to biodiversity. Hence, conservation and enhancement of habitat connectivity in roaded landscapes are crucial for effectively maintaining long-term persistence of ecological processes, such as gene flow and migration. Using multivariate statistical techniques combined with graph theoretical methods, we investigated the influence of road-crossing habitat connectivity and road-related features on roadkill abundance of forest mammals in protected areas of South Korea. Because species have different dispersal abilities and thus connectivity would differ between them, we explored three different groups of road-killed mammals, categorized as small, intermediate, and large ones. We found that in all three mammal groups, roadkills are increased on roads that intersect high-connectivity routes. Furthermore, the effect of habitat connectivity on roadkill abundance was scale-dependent. The roadkill abundances of small, intermediate, and large mammals were related with connectivity measured at scales ranging between 100 and 300 m, between 5 and 7 km, and between 10 and 25 km, respectively. Our finding with regard to scale-dependency highlights the importance of maintaining movement and connectivity across roads at multiple scales based on the dispersal potential of different species when planning conservation strategies for forest mammalian roadkill mitigation.  相似文献   

13.
The growing wildland-urban interface is a frontier of human-wildlife conflict worldwide. Where natural and developed areas meet, there is potential for negative interactions between humans and wild animals, including wildlife-vehicle collisions. Understanding the environmental and anthropogenic factors leading to these collisions can inform transportation and habitat planning, with an objective of reducing animal mortality and human costs. We investigated spatial, temporal, and species-specific patterns of roadkill on Interstate-280 (I-280) in California, USA, and examined the effects of land cover, fencing, lighting, and traffic. The highway is situated just south of San Francisco, dividing a large wildlife refuge to the west from dense residential areas to the east, and therefore presents a major barrier to wildlife movement. Areas with a higher percentage of developed land east of I-280 and areas with more open space on the west side of I-280 were associated with an increase in overall roadkill, suggesting that hard boundaries at the wildland-urban interface may be zones of high risk for dispersing animals. This pattern was especially strong for raccoons (Procyon lotor) and black-tailed deer (Odocoileus hemionus). The presence of lighting correlated with increased roadkill with the exception of coyote (Canis latrans). Contrary to our expectations, we found weak evidence that fencing increases roadkill, perhaps because animals become trapped on roadways or because fencing is not sufficient to block access to the road by wildlife. Finally, we found strong evidence for roadkill seasonality, correlated with differences in movement and dispersal across life-history stages. We highlight the value of citizen-science datasets for monitoring human-wildlife conflict and suggest potential mitigation measures to reduce the negative effects of wildlife-vehicle collisions for people and wildlife. © 2019 The Wildlife Society.  相似文献   

14.
1. Spatial patterns in channel morphology and substratum composition at small (1–10 metres) and large scales (1–10 kilometres) were analysed to determine the influence of habitat heterogeneity on the distribution and abundance of larval lamprey. 2. We used a nested sampling design and multiple logistic regression to evaluate spatial heterogeneity in the abundance of larval Pacific lamprey, Lampetra tridentata, and habitat in 30 sites (each composed of twelve 1‐m2 quadrat samples) distributed throughout a 55‐km section of the Middle Fork John Day River, OR, U.SA. Statistical models predicting the relative abundance of larvae both among sites (large scale) and among samples (small scale) were ranked using Akaike's Information Criterion (AIC) to identify the ‘best approximating’ models from a set of a priori candidate models determined from the literature on larval lamprey habitat associations. 3. Stream habitat variables predicted patterns in larval abundance but played different roles at different spatial scales. The abundance of larvae at large scales was positively associated with water depth and open riparian canopy, whereas patchiness in larval occurrence at small scales was associated with low water velocity, channel‐unit morphology (pool habitats), and the availability of habitat suitable for burrowing. 4. Habitat variables explained variation in larval abundance at large and small scales, but locational factors, such as longitudinal position (river km) and sample location within the channel unit, explained additional variation in the logistic regression model. The results emphasise the need for spatially explicit analysis, both in examining fish habitat relationships and in developing conservation plans for declining fish populations.  相似文献   

15.
Tree cavities provide important habitat for wildlife. Effective landscape‐scale management of cavity‐dependent wildlife requires an understanding of where cavities occur, but tree cavities can be cryptic and difficult to survey. We assessed whether a landscape‐scale map of mature forest habitat availability, derived from aerial photographs, reflected the relative availability of mature trees and tree cavities. We assessed cavities for their suitability for use by wildlife, and whether the map reflected the availability of such cavities. There were significant differences between map categories in several characteristics of mature trees that can be used to predict cavity abundance (i.e. tree form and diameter at breast height). There were significant differences between map categories in the number of potential cavity bearing trees and potential cavities per tree. However, the index of cavity abundance based on observations made from the ground provided an overestimate of true cavity availability. By climbing a sample of mature trees we showed that only 5.1% of potential tree cavities detected from the ground were suitable for wildlife, and these were found in only 12.5% of the trees sampled. We conclude that management tools developed from remotely sensed data can be useful to guide decision‐making in the conservation management of tree cavities but stress that the errors inherent in these data limit the scale at which such tools can be applied. The rarity of tree cavities suitable for wildlife in our study highlights the need to conserve the tree cavity resource across the landscape, but also the importance of increasing the accuracy of management tools for decision‐making at different scales. Mapping mature forest habitat availability at the landscape scale is a useful first step in managing habitat for cavity‐dependent wildlife, but the potential for overestimating actual cavity abundance in a particular area highlights the need for complementary on‐ground surveys.  相似文献   

16.
This study sought to identify critical areas for puma (Puma concolor) movement across the state of Arizona in the American Southwest and to identify those most likely to be impacted by current and future human land uses, particularly expanding urban development and associated increases in traffic volume. Human populations in this region are expanding rapidly, with the potential for urban centers and busy roads to increasingly act as barriers to demographic and genetic connectivity of large‐bodied, wide‐ranging carnivores such as pumas, whose long‐distance movements are likely to bring them into contact with human land uses and whose low tolerance both for and from humans may put them at risk unless opportunities for safe passage through or around human‐modified landscapes are present. Brownian bridge movement models based on global positioning system collar data collected during bouts of active movement and linear mixed models were used to model habitat quality for puma movement; then, a wall‐to‐wall application of circuit theory models was used to produce a continuous statewide estimate of connectivity for puma movement and to identify pinch points, or bottlenecks, that may be most at risk of impacts from current and future traffic volume and expanding development. Rugged, shrub‐ and scrub‐dominated regions were highlighted as those offering high quality movement habitat for pumas, and pinch points with the greatest potential impacts from expanding development and traffic, although widely distributed, were particularly prominent to the north and east of the city of Phoenix and along interstate highways in the western portion of the state. These pinch points likely constitute important conservation opportunities, where barriers to movement may cause disproportionate loss of connectivity, but also where actions such as placement of wildlife crossing structures or conservation easements could enhance connectivity and prevent detrimental impacts before they occur.  相似文献   

17.
While the negative impacts of road infrastructure on faunal diversity and abundance have been extensively studied, many traffic noise studies have been conducted in the presence of confounding factors. Therefore, the extent to which traffic noise alone is responsible for impacts is not well known and a better understanding is required to inform urban planning and management decisions. We examined the impact of traffic noise on soundscape patterns at road edges in urban forests. Acoustic sensors were deployed at road and powerline edges, as well as within interior habitat, at three sites in south‐east Queensland, Australia. Powerline edges were included to separate edge effects from traffic noise impacts. We used soundscape power (normalized watts per kHz) of technophony (traffic noise in the 1–2 kHz range) and biophony (animal sounds in the 3–11 kHz range) to investigate soundscape patterns. The results showed that biophony was consistently lower at road edges and was negatively correlated with traffic noise and positively correlated with distance to road edge. Technophony was higher at road edges and was found to correlate negatively with distance to road edge and positively with traffic noise. Technophony and biophony at powerline edges generally exhibited values comparable to interior habitat. These results indicate that traffic noise affects urban forest soundscape patterns at road edges in south‐eastern Australia.  相似文献   

18.
Increased industrial activities on the Peace and Athabasca River systems have raised concerns about cumulative impacts on fish and water resources downstream, in the Slave River of Alberta and the Northwest Territories, Canada. Because very little information was available on the fish communities in this system, we examined spatial and temporal patterns of diet for nine species (four piscivores and five invertebrate feeders) from three different types of habitat along the lower Slave River system and assessed trophic relationships within the communities. All actively feeding species exhibited seasonal variations in diet within and among the study areas. Dietary overlap was generally low throughout all seasons and locations. In the lower Slave River and its major tributary, the Salt River, substantial dietary overlap between piscivores (particularly walleye, Stizostedion vitreum), and invertebrate feeders occurred in the spring. In the summer no overlap occurred as walleye shifted to a more piscivorous diet, attaining a moderate degree of overlap with northern pike, Esox lucius. Compared with the Slave River, which is a large but homogeneous system upstream of its delta at Great Slave Lake, there was a greater diversity of actively feeding invertebrate feeders in the Salt River. Three of the latter were benthic feeders exhibiting moderate degrees of diet overlap during spring and summer. During the fall, few fish were feeding. Most fishes in the lower Slave River system are generalist, opportunistic feeders, consuming a number of different prey, the importance of which varies spatially and seasonally, as the abundance of these prey varies in the environment.  相似文献   

19.
ABSTRACT Population-level responses of amphibians to forest management regimes are partly dictated by individual behavioral responses to habitat alteration. We examined the short-term (i.e., 24-hr) habitat choices and movement patterns of 3 amphibian species—southern leopard frogs (Rana sphenocephala), marbled salamanders (Ambystoma opacum), and southern toads (Bufo terrestris)—released on edges between forest habitats and recent clear-cuts in the Upper Coastal Plain of South Carolina, USA. We predicted that adult frogs and salamanders would preferentially select forest using environmental cues as indicators of habitat suitability. We also predicted that movement patterns would differ in clear-cuts relative to forests, resulting in lower habitat permeability of clear-cuts for some or all of the species. Using fluorescent powder tracking, we determined that marbled salamanders selected habitat at random, southern toads preferred clear-cuts, and southern leopard frogs initially selected clear-cuts but ultimately preferred forests. Frogs exhibited long-distance, directional movement with few turns. In contrast, toads exhibited wandering behavior and salamanders moved relatively short distances before locating cover. Southern toads and southern leopard frogs moved farther in forests, and all 3 species made more turns in clear-cuts than in forests. Habitat selection by southern toads did not vary according to body size, sex, or the environmental cues we measured. However, marbled salamanders were more likely to enter clear-cuts when soil moisture was high, and southern leopard frogs were more likely to enter clear-cuts when relative humidity and air temperature were higher in the clear-cut than in adjacent forest. Although we found evidence of reduced habitat permeability of clear-cuts for southern leopard frogs and southern toads, none of the species exhibited strong behavioral avoidance of the small (4-ha) clear-cuts in our study. Further studies of long-term habitat use and the potential physiological and other costs to individuals in altered forests are needed to understand the effects of forest management on population persistence. To reduce potentially detrimental effects of clear-cutting on amphibians in the Southeast, wildlife managers should consider the vagility and behavior of species of concern, especially in relation to the size of planned harvests adjacent to breeding sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号