首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In examinations between September 1966 and December 1968 of 741 specimens of rose species and cultivars, cleistocarps of Sphaerotheca pannosa were found on thirty-two cultivars, mostly ramblers and old shrub roses, and on nine of these they were found in two or three successive seasons. On stem pieces placed on soil in each of the winters 1966-7, 1967-8 and 1968-9 the number of cleistocarps with asci and ascospores decreased during November and December and rose slightly in January, but none showed dehiscence. Cleistocarps on rose bushes examined during the winters of 1967-8 and 1968-9 showed a progressive degeneration of ascospores, and by December none was found. Perennation of S. pannosa in buds was demonstrated by field observations, by inducing bursting of dormant buds on surface-sterilized shoots and by dissection of dormant apical buds. In field studies in 1968 of the development of mildew, infected buds were noted on 22 March but secondary infections did not appear until 17 April, though viable conidia and susceptible leaf tissue were present during this period. Low temperatures appeared to be partly responsible for this lag. On detached leaves in the laboratory the fungus developed from germination to sporulation in 4 days at 20°, 7 days at 15°, 11 days at 10° and 28 days at 3°. Keeping inoculated detached leaves at 0° for 10 days apparently did not affect the viability of the conidia. In both 1967 and 1968 there were two host growth periods, each culminating in flowering, between May and September; mildew did not develop on the shoots until the second growth phase, then the disease increased logarithmically on shoots and blooms during August and September. The disease on the shoots was effectively controlled in the field during 1968 by applications of ‘Benlate’ (benomyl) or dinocap, but not by methy-rimol; these fungicides were less effective in controlling mildew on pedicels. Laboratory tests showed that ‘Benlate’ inhibited sporulation of S. pannosa by deforming the conidiophores.  相似文献   

2.
The ability of Sphaerotheca mors-uvae to perennate as cleistocarps, and as mycelium in buds was examined during the winters of 1965-6, 1966-7 and 1967-8 in relation to its two principal hosts, gooseberry and black currant. Cleistocarps on black currant leaves were examined from August 1965 to April 1966 and from July 1966 to March 1967. In 1965 cleistocarps were first observed on the leaves on 5 August; in 1966 on 11 July. These continued to develop through August and September and by October approximately 70% contained well-defined ascospores. The ascospore content remained generally at this level until February 1966 and November 1966; then the numbers of cleistocarps with ascospores fell and by April 1966 and March 1967 few such cleistocarps remained. From 21 March 1966 and 15 February 1967, but not otherwise, discharge of ascospores from the overwintered cleistocarps was readily obtained in laboratory tests. The viability and infectivity of the ascospores was demonstrated by allowing them to discharge on to leaf discs of black currant in the laboratory and also on to leaf discs and plants in the field. Sporulating colonies of S. mors-uvae developed within 8 days. Cleistocarps from shoots of black currant were examined from 4 August 1966 to 9 March 1967, and from 27 July 1967 to 1 January 1968. They developed in a similar manner to those on black currant leaves and by September in both 1966 and 1967 over 60% contained ascospores. This level was not maintained; the number of cleistocarps with ascospores fell gradually and by 8 December 1966 and 1 January 1968 few remained. Only in one laboratory test (21 November 1967) were ascospores discharged from a sample of these cleistocarps. Cleistocarps from shoots of gooseberry were examined from July 1966 to March 1967, and from August 1967 to January 1968. The pattern of ascospore development and subsequent decline in number of cleistocarps with ascospores was similar to that observed for black currant shoots. No discharge of ascospores could be demonstrated in laboratory tests. Evidence that S. mors-uvae perennates in buds of gooseberry was obtained by dissecting buds and by inducing buds on surface-sterilized shoots to burst under conditions which precluded chance infection. Field observations also suggested that bud infection occurred on gooseberry. Similar experiments failed to demonstrate the fungus in buds of black currant, and there was no indication of bud infection of this host in the field.  相似文献   

3.
Interactions of Puccinia hordei and Erysiphe graminis on seedling barley   总被引:1,自引:0,他引:1  
The development of Puccinia hordei on the first leaf of barley seedlings previously inoculated with Erysiphe graminis was compared with that on uninoculated leaves of comparable age. On cv. Zephyr, more rust pustules developed when leaves were inoculated with both fungi within 24 h but fewer pustules if the period between the two inoculations was longer than 2 days. The reduction in numbers of rust pustules was especially marked where leaves were previously inoculated with many conidia of E. graminis. The size of rust pustules was reduced whatever the period between the two inoculations. Arresting mildew development by applying ethirimol as a soil drench to pots of seedlings inoculated with E. graminis 6 days previously, or floating segments of leaves inoculated with both fungi on 2% sucrose, in part counteracted these effects on rust pustule size. Similar effects were observed with cv. Mazurka where inoculations with E. graminis produced only small necrotic flecks but did induce premature loss of chlorophyll. On this cultivar (in contrast to Zephyr) the inoculation of one leaf surface affected the development of P. hordei on the other. In comparable experiments using Zephyr, E. graminis produced smaller colonies with fewer conidiophores on leaves previously inoculated with P. hordei. These effects could be alleviated by arresting rust development with a spray containing benodanil or by floating segments of leaves inoculated with both fungi on 2% sucrose. Germination of the conidia of E. graminis, formation of appressoria and initiation of colonies were not affected by the presence of P. hordei.  相似文献   

4.
Ascospores of Pyrenopeziza brassicae were produced in apothecia (cup‐shaped ascomata) on oilseed rape debris. The conidia, which were morphologically identical to the ascospores, were produced in acervular conidiomata was greater than for lesions caused by ascospores. In June 2000, on the ground under a crop with light on the surface of living oilseed rape tissues. Ascospores were more infective than conidia on oilseed rape leaves. The proportion of lesions caused by conidia located on leaf veins leaf spot, numbers of petioles with apothecia decreased with increasing distance into the crop from the edge of pathways. Air‐borne ascospores of P. brassicae were first collected above debris of oilseed rape affected with light leaf spot on 5 October 1998 and 18 September 1999,12 or 23 days, respectively, after the debris had been exposed outdoors. P. brassicae conidia were first observed on leaves of winter oilseed rape on 6 January 1999 and 15 February 2000, respectively, after plots had been inoculated with debris in November 1998 and October 1999. In 1991/92, numbers of ascospores above a naturally infected crop were small from January to April and increased in June and July. P. brassicae conidia were first observed in February and the percentage plants with leaves, stems or pods with light leaf spot increased greatly in May and June. In 1992/93, in a crop inoculated with debris, numbers of airborne ascospores were small from October to January and increased from April to June. P. brassicae conidia were first observed on leaves in late November and light leaf spot was seen on stems and pods in March and June 1993, respectively.  相似文献   

5.
Drepanopeziza ribis causes the leaf spot disease of blackcurrant ( Ribes nigrum ) and may lead to severe premature leaf-fall. Artificial inoculation studies were carried out to investigate infection of leaves by D. ribis conidia in relation to environmental conditions and leaf position (age) on cvs. Baldwin and Ben Hope in April and July 2007. All leaves on a number of selected extension shoots on potted three-year old plants were inoculated with conidia and then incubated under different conditions: 10, 17.5 and 25°C each with five wet periods (4, 8, 12, 24 and 30 h). Number of infected leaves was determined. The two cultivars differed significantly in their susceptibility to conidial infection: cv. Baldwin was much more susceptible than cv. Ben Hope. Older leaves on extension shoots were more susceptible to conidial infection than younger leaves. Increasing length of wetness duration led to increasing incidence of leaves infected, particularly when inoculated in July. However, the effects of temperature were inconclusive and generally very small in comparison with other factors. Field epidemics were monitored over three years (2005–07). Field data confirmed the main findings from controlled inoculation studies: severe disease was associated with very wet conditions and older leaves. Furthermore, they also suggested that significant disease increase only occurred from late July onwards.  相似文献   

6.
We investigated plant-mediated effects of the stem gall wasp, Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae), on other herbivores on the chestnut tree Castanea crenata. In the early season, leaves emerged earlier and in greater numbers on galled shoots than on ungalled shoots. On galled shoots the leaf to shoot biomass ratio was lower and the leaves were physically different. In May and June the concentration of nitrogen in leaves was higher on galled shoots than on ungalled shoots. In July, the water content of leaves was lower on galled shoots. In May and June, the number of aphids, Myzocallis kuricola Matsumura (Homoptera: Aphidoidea), on leaves was higher on galled shoots than on ungalled shoots, but the opposite was true at the end of July. Laboratory experiments showed that aphid fecundity and body weight decrease were higher in May and June when aphids fed on leaves on a galled shoot than when they fed on those on ungalled shoots. In contrast, aphid performance in July was greater on ungalled leaves than on galled leaves. Our findings suggest that gall initiation in a chestnut tree affected aphid performance by affecting host plant quality.  相似文献   

7.
We examined the influence of solar ultraviolet‐B radiation (UV‐B; 280–315 nm) on the growth of Colobanthus quitensis plants by placing them under contrasting UV‐B filters at Palmer Station, along the Antarctic Peninsula. The filters reduced diurnal biologically effective UV‐B (UV‐BBE) either by 83% (‘reduced UV‐B’) or by 12% (‘near‐ambient UV‐B’) over the 63 day experiment (7 November 1998–8 January 1999). Ozone column depletion averaged 17% during the experiment. Relative growth and net assimilation rates of plants exposed to near‐ambient UV‐B were 30 and 20% lower, respectively, than those of plants exposed to reduced UV‐B. The former plants produced 29% less total biomass, as a result of containing 54% less aboveground biomass. These reductions in aboveground biomass were mainly the result of a 45% reduction in shoot biomass, and a 31% reduction in reproductive biomass. Reductions in shoot biomass were owing to an 18% reduction in branch production by main shoots, while reductions in reproductive biomass were the result of a 19% reduction in individual capsule mass. Total plant leaf area was reduced by 19% under near‐ambient UV‐B, although total leaf biomass was unaffected because leaves had a greater specific leaf mass. The reduction in plant leaf area under near‐ambient UV‐B was attributable to: (1) production of 11% fewer leaves per main shoot system and plant, which resulted from an 18% reduction in branch production by main shoots. Leaf production per individual main shoot or branch was not affected; (2) shorter leaf longevity—main shoots contained 14% fewer green leaves at a given time; and (3) smaller individual leaves—leaf elongation rates were 14% slower and mature leaves were 13% shorter.  相似文献   

8.
In the period from late spring to leaf-fall (May-November) Gloeosporium album Osterw. was regularly isolated from leaves of the apple variety Cox's Orange Pippin affected by the disorder called ‘Cox-spot’. The fungus grew epiphytically on healthy apple leaves, producing a network of mycelium which developed sporulating pustules when in contact with damaged or moribund tissues. Both the imperfect and perfect stages of the fungus were found on overwintered leaves; isolates from ascospores and conidia proved pathogenic on wood and fruit.  相似文献   

9.
Eight apple genotypes, including cultivars and breeding selections resistant and susceptible to Venturia inaequalis on foliage, were screened for shoot infection and the development of wood pustules following inoculation of shoot tips of 1–year maiden trees in the greenhouse. Where genotypes were highly resistant in terms of foliar symptoms (cvs Prima and Gavin), no shoot infection was observed. Where genotypes were highly susceptible in terms of foliar symptoms, then shoot tissue was either resistant (cv. Shinko) or susceptible (cv. Starking). In one experiment, shoot tips were inoculated sequentially as shoots extended. No pustules developed where inoculations were made later than May. In a further experiment, two leaf internode positions were inoculated on one occasion. Pustules were only observed where inoculations were made above the youngest unrolled leaf. The results suggested that shoot tips were more susceptible during early extension growth of the shoot. Pustules were noted in abundance on petioles of susceptible cultivars, and these probably contributed to early leaf abscission.  相似文献   

10.
Damage done by Botrytis tulipae developed in a variety of ways after planting naturally and artificially inoculated bulbs, the fungus sometimes rapidly invading developing shoots, preventing their emergence. In other instances (a) leaves emerged above ground, but not before being severely infected (the traditional ‘primaries’), (b) leaves emerged uninfected but the flower stalks were attacked at a later stage causing mechanical weakness (and hence frequent snapping), or (c) leaves and flower stalks remained uninfected, with the development of B. tulipae being restricted to its spread from mother to daughter bulbs, which also occurred in (a) and (b). More emerging shoots were infected when inoculated bulbs were grown at 10° and 15.5° than at 4 °C—an effect suggesting that greater numbers of foliar primaries would develop in mild winters. The underground transmission of B. tulipae indicates the need for eradicating infections in the bulb, the primary sources of this pathogen.  相似文献   

11.
Leaves from field bean plants grown out of doors were inoculated with conidia of B. fabae immediately after detaching from stems. The oldest leaves developed more lesions than youngest ones, although they were not chlorotic. On intact plants at high humidities, established lesions on young leaves increased in size at only half the rate of those on old. but still green leaves. Seven days after inoculation a higher proportion of lesions on old leaves bore conidia than those on young leaves, but leaf age had no significant effect on numbers of conidia per mm2 of lesion area. Young leaflets from bean plants grown in a controlled environment or in the field challenged with β. cinerea accumulated more phytoalexins than did old ones.  相似文献   

12.
The gall wasp Callirhytis cornigera (Osten Sacken) is a cynipid with alternating generations that produce large, woody stem galls and tiny blister-like leaf galls on pin oak, Quercus palustris Muenchhausen, in the United States. We tested 3 approaches to control the leaf-galling generation, and determined their impact on associated parasitoids and effectiveness in reducing numbers of new stem galls. First, trees were sprayed with bifenthrin or chlorpyrifos in late March to kill females emerging from stem galls before they oviposited into buds. Second, concentrated solutions of abamectin, imidacloprid, or bidrin were injected from pressurized containers into tree sapwood to control larvae developing in young leaf galls. Finally, systemic insecticides (acephate, abamectin, dimethoate, or imidacloprid) were sprayed at early leaf expansion (2 May) or to young, expanded leaves (17 May) to target larvae in leaf galls. Parasitoids, mostly eulophids, accounted for approximately 70% mortality of leaf-galling C. cornigera larvae on untreated trees. Whole-canopy sprays during C. cornigera emergence from stem galls reduced overall numbers of galled leaves and leaf galls. Trunk injections of bidrin or abamectin resulted in significant mortality of gall inhabitants, including parasitoids. However, neither of the aforementioned approaches significantly reduced numbers of new stem galls. Sprays of abamectin, dimethoate, or imidacloprid applied on 2 May caused high mortality of all gall inhabitants. There was no net benefit, however, because parasitism caused a similar reduction in C. cornigera survival on unsprayed shoots. Sprays applied later in leaf expansion had little impact on gall inhabitants. Of the treatments tested, bifenthrin sprays at bud break provided the greatest reduction in new leaf galls, whereas bidrin injections provided the greatest reduction in gall wasps emerging from galled leaves. This study suggests that gall wasp outbreaks are unlikely to be controlled by a single treatment, regardless of application method.  相似文献   

13.
Sugar beet leaves covered by sexual (cleistothecia) and asexual forms (mycelia and conidia) of Erysiphe betae were gathered at harvest time and maintained under natural outdoor conditions. In order to determine the function of cleistothecia and also conidia in the overwintering of E. betae some experiments were performed. The results showed that ascospores were unable to be released in petri dishes but their release under natural conditions occurred after 4 months. Under In vitro conditions ascospores did not germinate but on the leaves germination was rarely possible, however these ascospores were degraded after 7 days and didn't have pathogenicity. Conidia could induce pathogenicity after 3 but not 4 months. The period after inoculation until appearance of disease symptoms increased with aging of conidia. The results for conidial germination showed that fresh conidia had 80 percent germination on glass slides but it decreased sharply after 2 weeks and reached to 0 percent after 4 weeks. Although their germination on the leaves was not more than 46 percent of fresh conidia but they had good germination after 2 and 4 weeks. The results for the experiment to observe the first appearance of the disease in the field suggested that the first conidia were trapped by spore-trap in early June and the first symptoms appeared 20 days later. The conclusive results showed that ascospores had no function in the survival of the fungus and air-borne conidia are the main source of primary infections.  相似文献   

14.
The period of infection by Pseudocercosporella herpotrichoides was investigated by transplanting winter wheat from uninfested to infested sites at Cambridge. Maximum infection was found on plants moved between November and March; most conidia were trapped during winter but infection was not closely related to the numbers of conidia. Plants exposed at intervals on infested land and incubated in a standard environment became infected throughout the period from October to July; infection was not closely related to the numbers of conidia trapped or plant age, but was positively correlated with the number of wet days/wk. Thus, while enough P. herpotrichoides conidia were dispersed throughout the life of winter wheat crops to cause substantial infection, environmental factors limited the development of new infections from April onwards. Practical implications of these results for the choice of sowing date, the development of resistant varieties, and fungicide use, are discussed.  相似文献   

15.
Eight Hevea species have been shown to be cyanogenic. They all liberated HCN following mechanical tissue injury. Infection of Hevea leaves with conidia of the plant pathogen Microcyclus ulei leads to a large reduction of hydrocyanic acid potential, while only small amounts of HCN are set free from the leaves into the atmosphere. HCN production by infected leaves follows a reproducible pattern with a maximum between 40 and 60 hours after infection. During the entire time of infection free HCN can be detected in the leaves. From leaves of susceptible clones high amounts of HCN are liberated whereas from resistant clones only very little HCN is released. In Hevea infections with M. ulei, cyanogenesis does not lead to defense of the fungal pathogen but impairment of the resistance reaction.  相似文献   

16.
A dynamic model of regrowth in Typha angustifolia after cutting shoots above the water surface was formulated by characterizing the phenology and mobilization of resources from below-ground to above-ground organs after the cutting. The model parameters were determined by two cutting experiments to investigate the different strategies with flowering and non-flowering shoots after cutting in 2001 and by four cutting experiments to elucidate the regrowth characteristics after cutting on different days from June to September in 2002. A difference was evident both for flowering and non-flowering shoots and for each cutting day. From June to August, non-flowering shoots regrew immediately after cutting, but flowering shoots did not. The shoot regrowth height, number of leaves and shoot biomass were higher with the earlier cutting. The model was validated using the below-ground biomass observed in December 2002 and below-ground dynamics observed in 2003. In the low-flowering shoot zone of the stands, in which the percentage of flowering shoots was small (around 10%), the decrease in below-ground biomass became larger from June (20%) to August (60%). Cutting the high-flowering shoot zone (flowering shoots: 78%) in July 2001, just 1 week after peduncle formation, decreased the below-ground biomass by about 50%. In the low-flowering shoot zone, cutting just before senescence is better for decreasing below-ground biomass with a smaller rate of flowering shoots. The difference of below-ground biomass reduction in non-flowering shoots is mainly due to the decrease in downward translocation (DWT) of above-ground material to below-ground organs during senescence, because of the decrease in regrowth biomass. As for flowering shoots, the decrease in the photosynthate transportation from above-ground to below-ground organs and that of DWT are closely related because they cannot grow again within the season.  相似文献   

17.
Grewal  Harsharn Singh  Williams  Rex 《Plant and Soil》1999,214(1-2):39-48
Response of 13 alfalfa (Medicago sativa L.) genotypes to varied Zn supply (+Zn: 2 mg kg−1 soil, −Zn: no added Zn) was studied in a pot experiment under controlled environmental conditions. Plants were grown for four weeks in a Zn-deficient siliceous sandy soil. Plants grown at no added Zn showed typical Zn deficiency symptoms i.e. interveinal chlorosis of leaves, yellowish-white necrotic lesions on leaf blades, necrosis of leaf margins, smaller leaves and a marked reduction in growth. There was solute leakage from the leaves of Zn-deficient plants, while no solute leakage from Zn-sufficient plants. The ratios of P:Zn, Fe:Zn, Cu:Zn and Mn:Zn in Zn-deficient plants were extremely high compared with Zn-sufficient plants indicating disturbance of P:Zn, Fe:Zn, Cu:Zn and Mn:Zn balance within plant system by Zn deficiency. Genotypes differed markedly in Zn efficiency based on shoot dry matter production. Alfalfa genotypes also differed markedly in P:Zn ratio, Cu:Zn ratio and Fe:Zn ratio under —Zn treatment. The shoot dry weight, shoot:root ratio, chlorophyll content of fresh leaf tissue, solute leakage from the leaves, Zn uptake and distribution of Zn in shoots and roots were the most sensitive parameters of Zn efficiency. Zn-efficient genotypes had less solute leakage but higher shoot:root ratio and higher Zn uptake compared with Zn-inefficient genotypes. Under —Zn treatment, Zn-inefficient genotypes had less Zn partitioning to shoots (33–37%) and more Zn retained in roots (63–67%), while Zn-efficient genotypes had about equal proportions of Zn in roots (50%) and shoots (50%). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The soybean ubiquitous urease (encoded by GmEu4) is responsible for recycling metabolically derived urea. Additional biological roles have been demonstrated for plant ureases, notably in toxicity to other organisms. However, urease enzymatic activity is not related to its toxicity. The role of GmEu4 in soybean susceptibility to fungi was investigated in this study. A differential expression pattern of GmEu4 was observed in susceptible and resistant genotypes of soybeans over the course of a Phakopsora pachyrhizi infection, especially 24 h after infection. Twenty-nine adult, transgenic soybean plants, representing six independently transformed lines, were obtained. Although the initial aim of this study was to overexpress GmEu4, the transgenic plants exhibited GmEu4 co-suppression and decreased ureolytic activity. The growth of Rhizoctonia solani, Phomopsis sp., and Penicillium herguei in media containing a crude protein extract from either transgenic or non-transgenic leaves was evaluated. The fungal growth was higher in the protein extracts from transgenic urease-deprived plants than in extracts from non-transgenic controls. When infected by P. pachyrhizi uredospores, detached leaves of urease-deprived plants developed a significantly higher number of lesions, pustules and erupted pustules than leaves of non-transgenic plants containing normal levels of the enzyme. The results of the present work show that the soybean plants were more susceptible to fungi in the absence of urease. It was not possible to overexpress active GmEu4. For future work, overexpression of urease fungitoxic peptides could be attempted as an alternative approach.  相似文献   

19.
Adult house flies (Musca domestica) were susceptible (94-100% mortality) to Beauveria bassiana when conidia of the Hf88 isolate were applied to plywood boards at 107 conidia/cm2; a starch dust formulation was more effective than a liquid suspension. Adult flies were also susceptible (90-99% mortality) to this isolate when they were con fined with treated water (108 conidia/ml) or food (108 conidia/100 mg). House fly larvae were not affected by treatments with up to 108 conidia/cm3 of rearing medium. A 2-year survey of house flies cm from New York dairies indicated that most natural infections of house flies occurred in September and October, although prevalence rates never exceeded 1%. Thirteen single-fly isolates obtained during this survey were compared with the Hf88 isolate for virulence against flies; the 2 most virulent isolates were slightly more virulent for flies than for the fly parasitoid Muscidifurax raptor. Incorporation of conidia into a sucrose bait (108 conidia/100 mg) in cages gave high levels of house fly control (78-100% mortality) 5 days after exposure.  相似文献   

20.
‘Freckle’ (‘black-spot’ disease) of bananas is common on leaves and fruit of Dwarf Cavendish and other varieties in Hawaii, especially after rainy periods. On fruit, symptoms may appear 2–4 weeks after the bunch has opened, and become more severe as maturity is approached. The disease is usually confined to older leaves on affected plants. Freckled tissue contains numerous pycnidia of Phyllostictina musarum and disease was experimentally induced by inoculating leaves and fruit with conidia of this fungus. This appears to be the first record of successful inoculation with P. musarum. Conidia of P. musarum germinate after 3–6 h in a film of water on banana peel, appressoria being formed after 18–30 h. Penetration of the epidermis occurs 24–96 h after inoculation, and is brought about by an infection hypha which grows from the appressorium. The progressive increase in severity of freckle as fruit matures is due to repeated infection by further conidia of P. musarum, rather than to enlargement of original infections. Some banana clones, including Gros Michel, appear to be resistant to the fungus Dispersal of P. musarum conidia immediately after discharge from the pycnidium is chiefly by rainwater and dew. Secondary infections contribute greatly to the total number of infections. Conidium dispersal by water often results in the development of characteristic patterns of spotting, chiefly in the form of streaks or circular areas, coinciding with the directions of movement of rainwater and dew. Large numbers of conidia of P. musarum are washed on to fruit in rainwater and dew running from diseased, overhead leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号