首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P1 plasmid replication. Role of initiator titration in copy number control   总被引:24,自引:0,他引:24  
The copy number control locus incA of unit copy plasmid P1 maps in a region containing nine 19 base-pair repeats. Previous results from studies in vivo and in vitro indicated that incA interacts with the plasmid-encoded RepA protein, which is essential for replication. It has been proposed that the repeat sequences negatively control copy number by sequestering the RepA protein, which is rate-limiting for replication. Our results lend further support to this hypothesis. Here we show that the repeats can be deleted completely from P1 miniplasmids and the deletion results in an approximately eightfold increase in plasmid copy number. So, incA sequences are totally dispensable for replication and have only a regulatory role. The copy number of incA-deleted plasmids can be reduced if incA sequences are present in trans or are reincorporated at two different positions in the plasmid. This reduction in copy number is not due to lowered expression of the repA gene in the presence of incA. We show that one repeat sequence is sufficient to bind RepA and can reduce the copy number of incA-deleted plasmids. When part of the repeat was deleted, it lost its ability to bind as well as influence copy number. These results show a strong correlation between the capacity of incA repeats to bind RepA protein both in vivo and in vitro, and the function of incA in the control of copy number.  相似文献   

2.
3.
The unit-copy plasmid replicon mini-P1 consists of an origin, a gene for an initiator protein, RepA, and a control locus, incA. Both the origin and the incA locus contain repeat sequences that bind RepA. It has been proposed that the incA repeats control replication by sequestering the rate-limiting RepA initiator protein. Here we show that when the concentration of RepA was increased about fourfold beyond its normal physiological level from an inducible source in trans, the copy number of a plasmid carrying the P1 origin increased about eightfold. However, when the origin and a single copy of incA were present in the same plasmid, the copy number did not even double. The failure of an increased supply of RepA to overcome the inhibitory activity of incA is inconsistent with the hypothesis that incA inhibits replications solely by sequestering RepA. We propose that incA, in addition to sequestration, can also restrain replication by causing steric hindrance to the origin function. Our proposal is based on the observation that incA can bind to a RepA-origin complex in vitro.  相似文献   

4.
P1 plasmid replication: replicon structure   总被引:21,自引:0,他引:21  
Bacteriophage P1 lysogenizes Escherichia coli as a unit-copy plasmid. We have undertaken to define the plasmid-encoded elements implicated in P1 plasmid maintenance. We show that a 2081 base-pair fragment of the 90,000 base P1 plasmid confers the capacity for controlled plasmid replication. DNA sequence analysis reveals several open reading frames in this fragment. The largest is shown to encode a 32,000 Mr protein required for plasmid replication. The corresponding gene, repA, has been identified genetically. A set of five 19 base-pair repeats is located upstream from repA; a set of nine similar repeats is located immediately downstream from repA. Each set of repeats, when cloned into pBR322, exerts incompatibility towards a P1 replicon. The upstream set, designated incC, consists of direct repeats that are spaced about two turns of the DNA helix apart; the downstream set, designated incA, consists of nine repeats arranged three in one orientation and six in the other. Spacing between incA repeats were three or four turns of the helix apart. The organization of the plasmid maintenance regions of P1 and the unit-copy sex factor plasmid, F, is strikingly similar. Although the DNA sequences of this region in the two plasmids exhibit little homology, a 9 base-pair sequence that appears four times in the origin region of members of the Enterobacteriaceae also occurs twice as direct repeats in similar positions in P1 and F. This sequence, where it occurs in E. coli, has been postulated to be the binding site for the essential replication protein determined by dnaA. The dnaA protein appears not to be essential for the replication of either plasmid; therefore, the function of the sequence in P1 and F may be regulatory.  相似文献   

5.
Essential DNA sequence for the replication of Rts1.   总被引:11,自引:10,他引:1       下载免费PDF全文
Y Itoh  Y Kamio    Y Terawaki 《Journal of bacteriology》1987,169(3):1153-1160
The promoter sequence of the mini-Rts1 repA gene encoding the 33,000-dalton RepA protein that is essential for replication was defined by RNA polymerase protection experiments and by analyzing RepA protein synthesized in maxicells harboring mini-Rts1 derivatives deleted upstream of or within the presumptive promoter region. The -10 region of the promoter which shows homology to the incII repeat sequences overlaps two inverted repeats. One of the repeats forms a pair with a sequence in the -35 region, and the other forms a pair with the translation initiation region. The replication origin region, ori(Rts1), which was determined by supplying RepA protein in trans, was localized within 188 base pairs in a region containing three incII repeats and four GATC sequences. Dyad dnaA boxes that exist upstream from the GATC sequences appeared to be dispensable for the origin function, but deletion of both dnaA boxes from ori(Rts1) resulted in reduced replication frequency, suggesting that host-encoded DnaA protein is involved in the replication of Rts1 as a stimulatory element. Combination of the minimal repA and ori(Rts1) segments, even in the reverse orientation compared with the natural sequence, resulted in reconstitution of an autonomously replicating molecule.  相似文献   

6.
7.
Control of P1 plasmid replication by iterons   总被引:7,自引:2,他引:5  
The incA locus of plasmid P1 controls plasmid copy number by inhibiting the replication origin, oriR . Both loci contain repeat sequences (iterons) that bind the P1 RepA protein. Regulation appears to occur by contact of incA and oriR loci of daughter plasmids mediated by RepA-bound iterons. Synthetic incA iteron arrays were constructed with altered numbers, sequences or spacing of iterons. Using these in in vitro and in vivo assays, we examined two models: (i) that the origin and incA loci form a stable 1:1 complex in which multiple iterons of each locus are paired with those of the other, and (ii) that individual incA iterons act as freely diffusing nucleoprotein units that contact origin iterons in a random and dynamic fashion. The data presented here strongly favour the latter case. The origin, with its five iterons, acts as a target but not as an effector of regulation. We present a model for replication control based on random, dynamic contacts between incA iterons and the origin. This system would display randomness with respect to choice of templates and timing of initiation if multiple replicon copies were present, but would tend to act in a machine-like fashion in concert with the cell cycle if just two copies were present in a dividing cell.  相似文献   

8.
The origin of replication of plasmid pSC101 contains three directly repeated sequences RS1, RS2, and RS3 separated by 22 bp from two palindromic sequences, IR1 and IR2, which are partially homologous to the direct repeats. These inverted repeat (IR) sequences overlap the promoter of the repA gene which encodes a protein essential for plasmid replication. We have shown that RepA binds to the RS sites as a monomer and to the IR sites as a dimer. The influence of the IR1 site, and of the DNA segment that separates it from RS3, on plasmid copy number control has been studied in detail. We show that the integrity of IR1 is essential for efficient replication and plasmid stability, the critical site extending to the left of IR1 proper. We also show that the presence of IR1 modifies profoundly the binding properties of purified RepA protein to a segment of DNA containing the RS sequences. IR1 is separated from its homologous site on RS3 by approximately four turns of the DNA helix. Replication is abolished if this distance is increased by half a turn of the helix but it is restored if the distance is increased by a whole turn. These results suggest a DNA looping interaction, in the initiation of replication, between the RepA dimer that binds iR1 and the RepA monomers that bind the RS sequences.  相似文献   

9.
Trans- and cis-acting elements for the replication of P1 miniplasmids   总被引:11,自引:0,他引:11  
Replication-deficient mutants of the unit-copy miniplasmid lambda-P1:5R were isolated after hydroxylamine mutagenesis. Complementation tests showed that the majority of these mutants are defective in the production of the repA protein product. Two of these mutants have suppressible nonsense (amber) mutations. The DNA sequence of one of these, repA103, has been determined. The lesion lies within the repA open reading frame, showing that the repA product is essential for plasmid replication. Complementation of deletion mutants of lambda-P1:5R by repA protein showed that the origin of replication lies to the left of repA and that this 300-base-pair origin region is the only portion of the DNA essential for plasmid replication if repA protein is supplied in trans. Six of the 21 hydroxylamine-induced mutants were not complemented by repA. Replication of three of these could be restored by introduction into the plasmid of a wild-type origin region, suggesting that they were origin-defective. The DNA sequence of two mutants was determined. Mutant rep-11 has a 43-base-pair deletion within the incC sequence (incC is a series of five direct repeats of a 19-base-pair sequence known to be involved in the regulation of plasmid replication). The deletion appears to have been generated by homologous recombination between two repeats. Mutant rep-30 has a single base substitution in a region just to the left of incC that destroys one of five G-A-T-C (dam methylation) sites in this region. As lambda-P1:5R is unable to establish itself as a plasmid in a methylase-defective (dam-) strain, it seems probable that methylation of the G-A-T-C sequences is important for origin function. The incC region and the sequences to its left appear to constitute an essential part of the origin of replication.  相似文献   

10.
T Brendler  A Abeles    S Austin 《Journal of bacteriology》1991,173(13):3935-3942
The core of the P1 plasmid replication origin consists of a series of 7-bp repeats and a G+C-rich stretch. Methylation of the GATC sequences in the repeats is essential. Forty different single-base mutations in the region were isolated and assayed for origin function. A single-base change within any 7-bp repeat could block the origin, irrespective of whether GATC bases were affected. The repeats themselves were critical, but the short intervals between them were not. Mutations in the G+C-rich region showed it to be a spacer whose exact length is important but whose sequence can vary considerably. It maintains a precise distance between the 7-bp repeats and binding sites for the P1 RepA initiator protein. It may also serve as a clamp to limit strand separation during initiation.  相似文献   

11.
Summary Comparative analyses were made between plasmid pSa17, a deletion derivative of pSa that is capable of replicating efficiently in Escherichia coli and plasmid pSa3, a derivative that is defective for replication. By comparing the restriction maps of these two derivatives, the regions essential for replication and for stable maintenance of the plasmid were determined. A 2.5 kb DNA segment bearing the origin of DNA replication of pSa17 was sequenced. A 36 kDa RepA protein was encoded in the region essential for replication. Downstream of the RepA coding region was a characteristic sequence including six 17 bp direct repeats, the possible binding sites of RepA protein, followed by AT-rich and GC-rich sequences. Furthermore, an 8 bp incomplete copy of the 17 bp repeat was found in the promoter region of the repA gene. Based on the hypothesis that RepA protein binds to this partial sequence as well as to intact 17 bp sequences, an autoregulatory system for the synthesis of RepA protein may be operative. Another open reading frame (ORF) was found in the region required for the stability of the plasmid. The putative protein encoded in this ORF showed significant homology to several site-specific recombination proteins. A possible role of this putative protein in stable maintenance of the plasmid is discussed.  相似文献   

12.
Bacillus subtilis DnaA protein was overproduced by a recombinant plasmid containing B. subtilis dnaA gene in a mutant Escherichia coli strain which is deficient in its own DnaA and RNaseH. The protein was purified to near homogeneity as judged by SDS-PAGE analysis. The purified protein binds preferentially to DNA fragments which are derived from flanking regions of the B. subtilis dnaA gene and contain various numbers of the repeat of 9 nucleotides, TTATCCACA, and closely related sequences. The purified protein binds ATP with high affinity (Kd = 0.02 microM) and ADP with less affinity, but does not bind cAMP. ATP stimulates the binding of the DnaA protein to the repeated sequences. DNaseI footprinting experiments demonstrated that the DnaA bound first to the consensus 9-mer and then to sequences differing by one base from the consensus. Sequences differing by two bases from the consensus were bound by the DnaA only when they were located contiguous to the strong DnaA-boxes. The three DnaA-box clusters, incA, incB, and incC, derived from the replication origin region of the B. subtilis chromosome showed different levels of growth inhibition when they were introduced into B. subtilis. We demonstrated by assaying competition for DnaA-binding among the DnaA-box clusters that there is a good correlation between the degree of growth inhibition by DnaA-box clusters in vivo and their strength of binding to the DNaA protein in vitro.  相似文献   

13.
14.
15.
Increased intracellular concentrations of the initiator protein Rep (or RepA) interfere with pSC101 DNA replication, and mutated Rep proteins that result in an increase in plasmid copy numbers do not inhibit the replication. A rep mutant (rep(inh)) defective in the inhibitory activity was isolated and found to be a new high copy number mutant. The inhibitory function of Rep was enhanced by the coexistence of directly repeated sequences (DR; iterons) in the replication origin region (ori), but not by the inverted repeat sequences (IR) in ori and the rep promoter. This synergistic effect of Rep and DR sequences for the replication inhibition was dependent on their intracellular concentrations. Considering that DR sequences are the specific binding sites of the Rep monomer form, the Rep monomer-DR complex might be responsible for the inhibition of the plasmid replication. Furthermore, the Rep monomer in the crude cell extracts facilitated dimerization of DR DNA fragments by DNA ligase. Neither synergistic inhibitory function with DR nor Rep mediated dimerization of DR DNA was observed in high copy number mutant Rep proteins. The role of the Rep-iteron complex in the copy number control of pSC101 is discussed.  相似文献   

16.
The origin of replication of the IncL/M plasmid pMU604 was analyzed to identify sequences important for binding of initiator proteins and origin activity. A thrice repeated sequence motif 5'-NANCYGCAA-3' was identified as the binding site (RepA box) of the initiator protein, RepA. All three copies of the RepA box were required for in vivo activity and binding of RepA to these boxes appeared to be cooperative. A DnaA R box (box 1), located immediately upstream of the RepA boxes, was not required for recruitment of DnaA during initiation of replication by RepA of pMU604 unless a DnaA R box located at the distal end of the origin (box 3) had been inactivated. However, DnaA R box 1 was important for recruitment of DnaA to the origin of replication of pMU604 when the initiator RepA was that from a distantly related plasmid, pMU720. A mutation which scrambled DnaA R boxes 1 and 3 and one which scrambled DnaA R boxes 1, 3 and 4 had much more deleterious effects on initiation by RepA of pMU720 than on initiation by RepA of pMU604. Neither Rep protein could initiate replication from the origin of pMU604 in the absence of DnaA, suggesting that the difference between them might lie in the mechanism of recruitment of DnaA to this origin. DnaA protein enhanced the binding and origin unwinding activities of RepA of pMU604, but appeared unable to bind to a linear DNA fragment bearing the origin of replication of pMU604 in the absence of other proteins.  相似文献   

17.
Binding of the P1-encoded protein RepA to the origin of P1 plasmid replication is essential for initiation of DNA replication and for autoregulatory repression of the repA promoter. Previous studies have shown defects in both initiation and repression in hosts lacking heat shock proteins DnaJ, DnaK, and GrpE and have suggested that these proteins play a role in the RepA-DNA binding required for initiation and repression. In this study, using in vivo dimethyl sulfate footprinting, we have confirmed the roles of the three heat shock proteins in promoting RepA binding to the origin. The defects in both activities could be suppressed by increasing the concentration of wild-type RepA over the physiological level. We also isolated RepA mutants that were effective initiators and repressors without requiring the heat shock proteins. These data suggest that the heat shock proteins facilitate both repression and initiation by promoting only the DNA-binding activity of RepA. In a similar plasmid, F, initiator mutants that confer heat shock protein independence for replication were also found, but they were defective for repression. We propose that the initiator binding involved in repression and the initiator binding involved in initiation are similar in P1 but different in F.  相似文献   

18.
The replication initiator protein RepA of the IncB plasmid pMU720 was shown to induce localized unwinding of its cognate origin of replication in vitro. DnaA, the initiator protein of Escherichia coli, was unable to induce localized unwinding of this origin of replication on its own but enhanced the opening generated by RepA. The opened region lies immediately downstream of the last of the three binding sites for RepA (RepA boxes) and covers one turn of DNA helix. A 6-mer sequence, 5'-TCTTAA-3', which lies within the opened region, was essential for the localized unwinding of the origin in vitro and origin activity in vivo. In addition, efficient unwinding of the origin of replication of pMU720 in vitro required the native positioning of the binding sites for the initiator proteins. Interestingly, binding of RepA to RepA box 1, which is essential for origin activity, was not required for the localized opening of the origin in vitro.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号