首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat damage to the chromosome of Escherichia coli K-12.   总被引:2,自引:2,他引:0       下载免费PDF全文
The folded chromosome or nucleoid of Escherichia coli was analyzed by low-speed sedimentation in neutral sucrose gradients after in vivo heat treatment. Heat treatment of cultures at 50 degree C for 15, 30, and 60 min resulted in in vivo association of the nucleoids with cellular protein. Structural changes, determined by the increase in speed dependence of the nucleoids from heated cells, also occurred. These changes were most likely due to the unfolding of the typical compact nucleoid structure. The nucleoids from heated cells also had notably higher sedimentation coefficients (3,000 to 4,500S) than nucleoids from control cells (1,800S). These nucleoids did not contain greater than normal amounts of membrane phospholipids or ribonucleic acid. We propose that the protein associated with the nucleoids from heated cells causes the observed sedimentation coefficient increases.  相似文献   

2.
Changes in the structure of the Escherichia coli nucleoid during heat damage and repair were followed by sedimentation analysis in neutral sucrose gradients. Heating at 50 degrees C results first in a decrease in the sedimentation coefficient of the isolated nucleoid. Increasing the heating time, a subsequent increase in sedimentation coefficient is observed. After a heat shock (i.e. 4 min at 50 degrees C), a short incubation at 25 degrees C (i.e. 5 min) allows the nucleoid to repair and return to the sedimentation coefficient of control unheated nucleoids. The nucleoids heated at 50 degrees C for longer periods and incubated afterwards at 25 degrees C demonstrate a different pattern of structural repair. They associate with protein in the first stage of the repair period.  相似文献   

3.
We report on the individual and combined effects of adriamycin (ADR) and hyperthermia (HYP) on the sedimentation behavior of L1210 mouse leukemia cell nucleoids in neutral sucrose gradients. Nucleoid sedimentation profiles obtained from cells incubated with ADR (1-10 microM; 30 min; 37 degrees C) exhibited an increased sedimentation rate associated with an increased protein content of these subnuclear units. Exposure of cells to HYP (1-3 h; 42 degrees C) produced similar results. Simultaneous exposure of L1210 cells to conditions of HYP and ADR which resulted in minimal changes in nucleoid sedimentation when used singly, produced an enhanced effect. A similar enhancement was observed with other intercalating antineoplastic agents believed to exert their effect, at least partially, via free radicals (daunorubicin, amsacrine, bisantrene, mitoxantrone). However, enhancement with HYP was not observed with (a) the classic intercalating agent, ethidium bromide; (b) non-intercalating DNA-breaking agents (bleomycin, lithocholic acid, etoposide); (c) inhibitors of poly (ADP-ribose) polymerase (m-methoxybenzamide, benzamide); or (d) non-intercalating antineoplastic agents capable of causing free radical formation (bleomycin). The results suggest that DNA intercalating agents capable of initiating free radical processes may show an enhanced toxicity with simultaneous HYP treatment, and that the nucleoid assay may be a means of screening agents with these biological properties for potential clinical usefulness in combination with HYP.  相似文献   

4.
The genomic DNA of Escherichia coli is contained in one or two compact bodies known as nucleoids. Isolation of typically shaped nucleoids requires control of DNA expansion, accomplished here by a modification of the polylysine-spermidine procedure. The ability to control expansion of in vitro nucleoids has application in nucleoid purification and in preparation of samples for high-resolution imaging, and may allow an increased resolution in gene localization studies. Polylysine of relatively low average molecular weight (approximately 3 kDa) is used to produce lysates containing nucleoids that are several-fold expanded relative to the sizes of in vivo nucleoids. These expanded forms can be converted to compact forms similar in dimensions to the cellular nucleoids by either a further addition of polylysine or by incubation of diluted lysates at 37 degrees C. The incubation at 37 degrees C is accompanied by autolytic degradation of most ribosomal RNA. Hyperchromism and circular dichroism spectra indicate that polylysine-DNA complexes are modified during the incubation. Compact forms of the nucleoid can be progressively reexpanded by exposure to salt solutions. Nucleoid compaction was similar in lysates made from rapidly or slowly growing cells or from cells that had been briefly treated with chloramphenicol to reduce linkages between DNA and cell envelope.  相似文献   

5.
The physicochemical properties of size, shape and surface charge have been determined for the soluble fraction of cytoplasmic glucocorticoid receptors which are located in the HeLa S3 cell cytoplasm after incubation of whole cells with glucocorticoid at 37 degrees C. Under hypotonic buffer conditions approximately 80% of the total recovered [3H]triamcinolone acetonide receptor complexes sedimented through a 5-20% density gradients to the tube bottom, and approximately 90% eluted from a Sephacryl S-300 gel exclusion column in the void volume. Increasing the [KCl] of the buffer in the sucrose density gradients, and gel exclusion columns to 0.15 M caused a reduction in the percentage of this large aggregate to approximately 64% and approximately 75%, respectively. Further increases in the [KCl] during analysis to 0.4 M reduced the percentage of rapidly sedimenting receptors to approximately 62%, and shifted the sedimentation coefficient of the slower sedimenting receptors from approximately 5.2 S to 3.9 S. These conditions also decreased the fraction of receptor in the void volume of gel exclusion columns to 67%. Ion exchange analysis of receptor binding to DEAE cellulose, hydroxylapatite, phosphocellulose, and DNA cellulose revealed heterogenous populations of receptor species; comprising both "unactivated" and "activated" receptor forms. The ratios of unactivated/activated receptors was highly dependent on the matrix employed and differed substantially among those evaluated. For example, by the criteria of DEAE cellulose and phosphocellulose chromatography approximately 60% of the total 37 degrees C cytoplasmic receptors were in the "activated" state. A large fraction of these receptors, however, failed to bind to DNA cellulose. These results demonstrate that the glucocorticoid receptors which remain in the HeLa S3 cytoplasm at 37 degrees C do not bind to ion exchange materials, which are used as indexes of receptor "activation," in a uniform manner. We hypothesize that the diminished DNA binding capability of these receptors accounts for their cellular localization in the HeLa S3 cell cytoplasm at 37 degrees C.  相似文献   

6.
Conformational constraints in nuclear DNA.   总被引:21,自引:0,他引:21  
We have investigated DNA superstructure in a wide range of nuclei of higher cells by gently lysing cells to release structures that resemble nuclei but are depleted of nuclear proteins. The sedimentation properties of these structures, which we call nucleoids, have been examined in sucrose gradients containing the intercalating agent, ethidium. The sedimentation rate of nucleoids derived from the growing cells of mammals, birds, amphibians and insects varies in the manner characteristic of circular and superhelical molecules of DNA. These characteristic changes in sedimentation rate are abolished by irradiating the nucleoids with low doses of gamma-rays, a procedure known to introduce single-strand scissions into DNA. We have also investigated by similar means DNA superstructure in nucleoids derived from a variety of different chick cells. Nucleoids derived from adult hen erythrocytes differ from the other nucleoids studied in that their sedimentation rate does not vary in the manner characteristic of supercoiled DNA.  相似文献   

7.
Unstimulated human T lymphocytes are more readily killed by ultraviolet light (UV) than are B lymphocytes. The greater UV sensitivity of T cells can be explained by a less efficient process of excision repair; this was measured by following the restitution of DNA supercoiling in preparations of nucleoids obtained from purified and irradiated B and T lymphocytes after various periods of incubation. Differences in the sedimentation behaviour of irradiated B and T nucleoids in sucrose gradients are not attributable to differences in the degree of DNA supercoiling. The return to normal supercoiling for both B and T nucleoids is inhibited by hydroxyurea.  相似文献   

8.
Lysates containing folded chromosomes of competent Bacillus subtilis were prepared. The chromosomes were supercoiled, as indicated by the biphasic response of their sedimentation rates to increasing concentrations of ethidium bromide. Limited incubation of the lysates with increasing concentrations of ribonucleases resulted in a gradual decrease in the sedimentation velocity of the deoxyribonucleic acid (DNA) until finally a constant S value was reached. Incubation with sonicated, 4,5',8-trimethylpsoralen-monoadducted, denatured, homologous donor DNA molecules at 37 degrees C and concomitant irradiation with long-wave ultraviolet light of the nucleoid-containing lysates resulted in the formation of complexes of the donor DNA molecules and the recipient chromosomes. This complex formation was stimulated when nucleoids were previously (i) unfolded by ribonuclease incubation, (ii) (partially) relaxed by X irradiation, or (iii) subjected to both treatments. Monoadducts were not essential. On the other hand, the complex-forming capacity of recipient chromosomes previously cross-linked by 4,5',8-trimethylpsoralen diadducts was greatly reduced, suggesting that strand separation of the recipient molecule was involved in the formation of the complex. None of these effects has been observed when heterologous (Escherichia coli) donor DNA has been used. When the same kind of experiments were carried out at 70 degrees C, donor-recipient DNA complexes were also formed and required strand separation and homology similar to donor-recipient complex formation at 37 degrees C. However, in contrast to what was found at 37 degrees C, unfolding plus relaxation of the nucleoids, as well as the absence of monoadducts in the donor DNA fragments, resulted in a decrease in complex formation. On the basis of these results, we assume that superhelicity can promote the in vitro assimilation of single-stranded donor DNA fragments by nucleoids of competents B. subtilis cells at 70 degrees C, but that at 37 degrees C a different mechanism is involved.  相似文献   

9.
The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 degrees C and 45 degrees C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 degrees C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells (45 degrees C for 15 min) were incubated at 37 degrees C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 degrees C (step-down heating; SDH) a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks.  相似文献   

10.
The length of newly synthesized DNA strands from mouse P-815 cells was analyzed after denaturation both by electrophoresis and by sedimentation in alkaline sucrose gradients. [3-H]-Thymidine pulses of 2-8 min at 37 degrees C predominantly label molecules of 20-60 S. With 30-s pulses at 25 degrees C, all the [3-H]thymidine appears in short DNA strands of 50-200 nucleotides. Thus, DNA strand elongation occurs discontinuously via Okazaki fragments at both the 5' end and the 3' end. In dodecylsulfate lysates, only 10% of the Okazaki fragments are found as single-stranded molecules. About 90% are resistant to hydrolysis by the single-strand-specific nuclease S-1 and band in isopycnic gradients at the buoyant density of double-stranded DNA. No evidence for ribonucleotides at the 5' end of Okazaki fragments was obtained either in isopycnic CsCl or Cs2SO4 gradients or after incubation with polynucleotide kinase and [gamma-32P]ATP.  相似文献   

11.
The polyamine spermidine has recently been reported to be a substantial component of the RNA phage particle. Its effect on the isolated RNA-A protein complex of the phage MS2 is investigated here. This complex infects intact Escherichia coli cells via F-pili, as does the whole phage. It is shown that the infectivity of the complex on intact E. coli cells was enhanced by incubation with spermidine. Optimal stimulation (20-fold) of the complex infectivity was achieved by incubation with 3 x 10(-4) M spermidine for 20 to 30 min at 37 degrees C. This gave a more compact structure to the complex, as could be seen by its faster sedimentation in sucrose gradients. Although spermidine and Mg2+ are known to partially replace one another in several systems, no enhancement of the infectivity of the complex, but only its considerably faster sedimentation in sucrose gradients, occurred after incubation with 3 x 10(-4) M Mg2+. Only if the Mg2+ concentration was raised by more than one order of magnitude could increased infectivity of the complex be observed. At concentrations of spermidine and Mg2+ that maximally stimulated the infectivity of the complex on intact E. coli cells, no increase in infectivity of phenol-extracted RNA to E. coli spheroplasts was detected. From these in vitro results, the role of the polyamine spermidine in the RNA phage particle for the infecting, RNA-A protein complex molecules in phage infection is discussed.  相似文献   

12.
The sedimentation of DNA-nuclear protein complexes in 1.9 M salt-neutral sucrose gradients (nucleoid sedimentation) was used to examine the effects of the DNA intercalator 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) on mouse leukemia cell DNA. Mild detergent cell lysis and neutral pH make nucleoid sedimentation an extremely gentle, but sensitive, method to detect DNA scission. DNA breaks reduce the compaction of nucleoids and slow their sedimentation. Nucleoids from m-AMSA-treated cells sedimented as did those from untreated cells, indicating no detectable m-AMSA-dependent alterations in compaction despite an apparent underlying DNA break frequency of approximately 3 per 10(6) nucleotides, as measured by alkaline elution with proteinase. Mild proteinase digestion of cell lysates prior to nucleoid sedimentation unmasked some, but not all, of the underlying breaks. The frequency of DNA-protein cross-links in nucleoids from cells treated with m-AMSA was comparable to the single-strand break frequency produced by m-AMSA in whole cells. These results indicate that m-AMSA-induced DNA-protein cross-links conceal DNA breaks so as to prevent swiveling around the breaks within the nucleoids. This unique sort of DNA scission is consistent with the involvement of topoisomerases in the DNA breaks elicited by intercalators in mammalian cells.  相似文献   

13.
We describe an in vitro system in which post-Golgi vesicles containing metabolically labeled, sialylated, vesicular stomatitis virus (VSV) G protein molecules (VSV-G) are produced from the trans-Golgi network (TGN) of an isolated Golgi membrane fraction. This fraction is prepared from VSV-infected Madin-Darby canine kidney (MDCK) cells in which the (35)S-labeled viral envelope glycoprotein was allowed to accumulate in the trans-Golgi network during a prolonged incubation at 20 degrees C. The vesicles produced in this system are separated from the remnant Golgi membranes by differential centrifugation or by velocity sedimentation in a sucrose gradient. Vesicle production, quantified as the percentage of labeled VSV-G released from the Golgi membranes, is optimal at 37 degrees C and does not occur below 20 degrees C. It requires GTP and the small GTP-binding protein Arf (ADP-ribosylation factor), as well as coat protein type I (COPI) coat components (coatomer) and vesicle scission factors-one of which corresponds to the phosphatidylinositol transfer protein (PITP). Formation of the vesicles does not require GTP hydrolysis which, however, is necessary for their uncoating. Thus, vesicles generated in the presence of the nonhydrolyzable GTP analogs, GTPgammaS or GMP-PNP, retain a coatomer coat visible in the electron microscope, sediment more rapidly in sucrose density gradients than those generated with ATP or GTP, and can be captured with anticoatomerantibodies. The process of coatomer-coated vesicle formation from the TGN can be dissected into two distinct sequential phases, corresponding to coat assembly/bud formation and vesicle scission. The first phase is completed when Golgi fractions are incubated with cytosolic proteins and nonhydrolyzable GTP analogs at 20 degrees C. The scission phase, which leads to vesicle release, takes place when coated Golgi membranes, recovered after phase I, are incubated at higher temperatures in the presence of cytosolic proteins. The scission phase does not take place if protein kinase C inhibitors are added during the first phase, even though these inhibitors do not prevent membrane coating and bud formation. The phosphorylating activity of a protein kinase C, however, plays no role in vesicle formation, since this process does not require ATP.  相似文献   

14.
DNA damage and repair provoked by ethidium azide (EA) photoaffinity labeling in mouse leukemia cells was studied by measuring sedimentation properties of nucleoids in neutral sucrose gradients, and it was found that the strand opening step was faster than that which followed damage of cells by ultraviolet (UV) light. The two insults were compared at levels of damage which gave the same overall rates of repair synthesis in intact cells and which required the same length of time to complete repair, as judged by the restoration of supercoiling of the isolated nucleoids. In the case of UV, single-strand breaks in DNA were detectable at 30 min, maximum at 2 h, and the superhelical properties restored at 21 h. With photoaffinity labeling, single-strand breaks were prominent immediately, even when photolabeling of cells was done on ice, but restoration of DNA supercoiling still required 21 h. Photolabeling of isolated nucleoids or isolated viral DNA with EA failed to introduce DNA strand breaks. However, it was discovered that photoaffinity labeling of DNA with EA resulted in alkali labile sites shown by single strand breaks produced on alkaline sucrose sedimentation or by alkali exposure followed by sedimentation on neutral formamide gradients. These results suggest that the drug attachment sites should be identifiable by the location of such single strand breaks.  相似文献   

15.
[14C]Sucrose, introduced into the cytosol of isolated rat hepatocytes by means of electropermeabilization, was sequestered by sedimentable subcellular particles during incubation of the cells at 37 degrees C. The sedimentation characteristics of particle-associated [14C]sucrose were different from the lysosomal marker enzyme acid phosphatase, suggesting an involvement of organelles of greater size than the average lysosome. Isopycnic banding in isotonic metrizamide/sucrose density gradients resolved two major peaks of radioactivity: a light peak (1.08-1.10 g/ml) coinciding with lysosomal marker enzymes, and a dense peak (1.15 g/ml), coinciding with a mitochondrial marker enzyme. The dense peak was preferentially associated with large-size particles having the sedimentation properties of mitochondria, and it was resistant to the detergent digitonin at a concentration which extracted all of the radioactivity in the light peak. Similarly the autophagy inhibitor 3-methyladenine prevented accumulation of [14C]sucrose in the light peak, while the radioactivity in the dense peak was unaffected. We therefore tentatively conclude that the light peak represents autophagic sequestration of [14C]sucrose into lysosomes (and probably autophagosomes) while the dense peak represents a mitochondrial uptake unrelated to autophagy.  相似文献   

16.
The antitumor agent cis-platinum(II)diamminodichloride (PDD) caused wild-type and recA+ deoxyribonucleic acid (DNA) repair-deficient mutant cells of Escherichia coli K-12 to grow as long, multinucleated filaments. At 5 micrograms/ml, the times required for reduction of viability to 37% for wild-type, polA, recB,C, uvrA, and recA organisms were > 200, 200, 120, 25, and 5 min, respectively. Only recA cells exhibited @reckless" degradation of DNA at this concentration of PDD. As shown by sedimentation in alkaline sucrose gradients, generation of single-strand breaks in DNA of the remaining organisms was a major consequence of growth in PDD. Upon incubation in fresh medium after removal of the compound and storage for 4 h at 4 degrees C, a respective lag of 3, 4, 6, and 9 h occurred before filaments of wild-type, polA, recB,C, and uvrA cells commenced cell division. Maintenance at 4 degrees C, which evidently delayed postshift initiation of chromosome replication, was only essential for fragmentation of uvrA filaments. In all cases, these periods of division delay corresponded to those required for restoration of normal chromosomal molecular weight as determined in alkaline sucrose gradients.  相似文献   

17.
The radiation-sensitive mutant M10 of mouse lymphoma L5178Y cells was examined for its ability to rejoin DNA single-strand breaks induced by gamma-rays. The alkaline sucrose gradient sedimentation analysis revealed that M10 cells repaired single-strand breaks but simultaneously produced increasing amounts of small DNA fragments with time of postirradiation incubation, something which was not observed in L5178Y cells. Since small fragments did not appear in M10 cells irradiated at room temperature, DNA fragmentation may result from cold treatment during irradiation followed by incubation at 37 degrees C. This indicates that the cold susceptibility is characteristic of M10 cells and is not related to radiation sensitivity of this mutant. This conclusion is supported by the finding that no DNA degradation takes place after cold treatment with a subsequent incubation in the other radiosensitive mutant LX830 that belongs to the same complementation group as M10.  相似文献   

18.
1. The effects of sucrose and KCl on the loss of latency of lysosomal enzymes caused by incubation at 37 degrees C, pH 7.4, were examined by using Triton-filled lysosomes from rat liver and two fractions from livers of rats not injected with Triton. 2. After incubation, the percentage free activity of lysosomal enzymes was measured before and after cooling to 0 degrees C in order to determine the amount of latency lost at 37 degrees C without cooling and the additional amount lost on cooling the incubated lysosomes to 0 degrees C. 3. The latency that is lost without cooling is first decreased and then increased by increasing the osmotic strength of the incubation medium with KCl, or with sucrose in the presence of KCl. However, if the osmotic strength is increased with sucrose alone, loss of latency is decreased up to 0.25M-sucrose, but is increased only slightly at higher sucrose concentrations. Apparently the lysosome is permeated by hyperosmolar KCl but not by sucrose during incubation. 4. If the osmotic strength of the assay medium is increased with KCl, the loss of latency caused by incubation for 60 min in hyperosmolar KCl is repressed. Thus it appears that a KCl-permeated lysosome can be obtained which is relatively stable until exposure to lower osmolarities. 5. The loss of latency caused by cooling incubated lysosomes to 0 degrees C is largely eliminated if the osmotic strength of the medium in which the lysosomes are cooled is raised sufficiently with either sucrose or KCl. 6. Osmotic-fragility curves were obtained after incubation for 1 and 60 min at iso-osmoticity (0.2M-KCl or 0.25 M-sucrose). Although little loss of latency occurs at iso-osmoticity, lysosomes incubated for 60 min display greatly increased fragility on exposure to hypo-osmolar KCl, hypo-osmolar sucrose or hyperosmolar KCl. 7. It is suggested that permeability to KCl at 37 degrees C and the increase in fragility on exposure to hypo-osmolar conditions are both consequences of injury, probably from enzymic action, sustained by the lysosomal membrane during incubation at 37 degrees C.  相似文献   

19.
Exposure of DNA isolated from irradiated cells of Escherichia coli to a pH of 9.6 caused a marked increase in the yield of double-strand breaks (dsb). The dsb were measured by sedimentation analysis of E. coli chromosomal DNA using neutral sucrose gradients. After incubation for 4 hr at 37 degrees C and pH 9.6 the dsb yields were 95% and 71% higher than when incubation was at pH 7.0 for irradiation under oxic and anoxic conditions, respectively. This effect was not apparent when dsb were induced enzymatically and it was linearly related to radiation dose. After oxic irradiation, the increase in dsb at pH 9.6 was consistent with first-order kinetics over greater than 2 half-lives (t1/2 = 1.6 hr at 37 degrees C). The effect of elevated pH was largely additive to a previously reported increase in dsb yield caused by ethanol. It is proposed that the effects of elevated pH and of ethanol revealed the presence in intracellularly irradiated DNA of previously unidentified sites where both strands of the DNA were damaged as a result of single radiation events. The possible nature of the proposed sites and the relevance of these findings to the "neutral" elution technique are discussed.  相似文献   

20.
Isolated rat hepatocytes were found to become permeable to [14C]sucrose at 0 degree C under three different conditions: Immediately following their liberation from the collagenase-perfused liver. Following a short incubation under hypoxic conditions. After electropermeabilisation. All three conditions were characterised by the formation of small protuberances (blebs) indicative of localised cell surface damage, and it is possible that the stretched plasma membrane of such blebs acted as a high-permeability region. Disappearance of blebs and restoration of normal plasma membrane impermeability could be achieved by a short (15 min) incubation at 37 degrees C. It could be shown that [14C]sucrose introduced into rat hepatocytes by non-electrical means was autophagically sequestered at the same rate as [14C]sucrose introduced electrically. In both cases the sequestration was inhibited by the specific autophagy inhibitor 3-methyladenine to a similar extent. The subcellular distribution of sequestered isotope in metrizamide/sucrose density gradients was found to be independent of the conditions of its introduction into cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号