首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although leptin is known to induce proliferative response in gastric cancer cells, the mechanism(s) underlying this action remains poorly understood. Here, we provide evidence that leptin-induced gastric cancer cell proliferation involves activation of STAT and ERK2 signaling pathways. Leptin-induced STAT3 phosphorylation is independent of ERK2 activation. Leptin increases SHP2 phosphorylation and enhances binding of Grb2 to SHP2. Inhibition of SHP2 expression with siRNA but not SHP2 phosphatase activity abolished leptin-induced ERK2 activation. While JAK inhibition with AG490 significantly reduced leptin-induced ERK2, STAT3 phosphorylation, and cell proliferation, SHP2 inhibition only partially reduced cancer cell proliferation. Immunostaining of gastric cancer tissues displayed local overexpression of leptin and its receptor indicating that leptin might be produced and act locally in a paracrine or autocrine manner. These findings indicate that leptin promotes cancer growth by activating multiple signaling pathways and therefore blocking its action at the receptor level could be a rational therapeutic strategy.  相似文献   

2.
Increasing evidence suggests that obesity and aberrant proliferation of nucleus pulposus (NP) cells are associated with intervertebral disc degeneration. Leptin, a hormone with increased circulating level in obesity, has been shown to stimulate cell proliferation in a tissue-dependent manner. Nevertheless, the effect of leptin on the proliferation of human NP cells has not yet been demonstrated. Here, we show that leptin induced the proliferation of primary cultured human NP cells, which expressed the leptin receptors OBRa and OBRb. Induction of NP cell proliferation was confirmed by CCK8 assay and immunocytochemistry and Real-time PCR for PCNA and Ki-67. Mechanistically, leptin induced the phosphorylation of STAT3, Akt and ERK1/2 accompanied by the upregulation of cyclin D1. Pharmacological inhibition of JAK/STAT3, PI3K/Akt or MEK/ERK signaling by AG490, Wortmannin or U0126, respectively, reduced leptin-induced cyclin D1 expression and NP cell proliferation. These experiments also revealed an intricate crosstalk among these signaling pathways in mediating the action of leptin. Taken together, we show that leptin induces human NP cell cyclin D1 expression and proliferation via activation of JAK/STAT3, PI3K/Akt or MEK/ERK signaling. Our findings may provide a novel molecular mechanism that explains the association between obesity and intervertebral disc degeneration.  相似文献   

3.
Perturbations in the adipocytokine profile, especially higher levels of leptin, are a major cause of breast tumor progression and metastasis; the underlying mechanisms, however, are not well understood. In particular, it remains elusive whether leptin is involved in epithelial-mesenchymal transition (EMT). Here, we provide molecular evidence that leptin induces breast cancer cells to undergo a transition from epithelial to spindle-like mesenchymal morphology. Investigating the downstream mediator(s) that may direct leptin-induced EMT, we found functional interactions between leptin, metastasis-associated protein 1 (MTA1), and Wnt1 signaling components. Leptin increases accumulation and nuclear translocation of β-catenin leading to increased promoter recruitment. Silencing of β-catenin or treatment with the small molecule inhibitor, ICG-001, inhibits leptin-induced EMT, invasion, and tumorsphere formation. Mechanistically, leptin stimulates phosphorylation of glycogen synthase kinase 3β (GSK3β) via Akt activation resulting in a substantial decrease in the formation of the GSK3β-LKB1-Axin complex that leads to increased accumulation of β-catenin. Leptin treatment also increases Wnt1 expression that contributes to GSK3β phosphorylation. Inhibition of Wnt1 abrogates leptin-stimulated GSK3β phosphorylation. We also discovered that leptin increases the expression of an important modifier of Wnt1 signaling, MTA1, which is integral to leptin-mediated regulation of the Wnt/β-catenin pathway as silencing of MTA1 inhibits leptin-induced Wnt1 expression, GSK3β phosphorylation, and β-catenin activation. Furthermore, analysis of leptin-treated breast tumors shows increased expression of Wnt1, pGSK3β, and vimentin along with higher nuclear accumulation of β-catenin and reduced E-cadherin expression providing in vivo evidence for a previously unrecognized cross-talk between leptin and MTA1/Wnt signaling in epithelial-mesenchymal transition of breast cancer cells.  相似文献   

4.
Leptin has been implicated in tumorigenesis and tumor progression, particularly in obese patients. As a multifunctional adaptor protein, APPL1 (containing pleckstrin homology domain, phosphotyrosine binding domain, and a leucine zipper motif 1) plays a critical role in regulating adiponectin and insulin signaling pathways. Currently, high APPL1 level has been suggested to be related to metastases and progression of some types of cancer. However, the intercourse between leptin signaling pathway and APPL1 remains poorly understood. Here, we show that the protein levels and phosphorylation statues of APPL1were highly expressed in tissues from human hepatocellular carcinoma and triple-positive breast cancer. Leptin stimulated APPL1 phosphorylation in a time-dependent manner in both human hepatocellular carcinoma HepG2 cell and breast cancer MCF-7 cell. Overexpression or suppression of APPL1 promoted or attenuated, respectively, leptin-induced phosphorylation of STAT3, ERK1/2, and Akt in the cancer cells, accompanied with enhanced or mitigated cell proliferation and migration. In addition, we identified that APPL1 directly bound to both leptin receptor and STAT3. This interaction was significantly enhanced by leptin stimulation. Our results suggested that APPL1 positively mediated leptin signaling and promoted leptin-induced proliferation and migration of cancer cells. This finding reveals a novel mechanism by which leptin promotes the motility and growth of cancer cells.  相似文献   

5.
6.
7.
8.
Leptin is recognized as a profibrogenic hormone in the liver, but the mechanisms involved have not been clarified. The tissue inhibitor of metalloproteinase (TIMP)-1, which acts through inhibition of collagen degradation, is synthesized by activated hepatic stellate cells (HSC) in response to fibrogenic substances. The capacity of leptin to induce TIMP-1 and its signaling molecules were investigated in a human HSC cell line, LX-2. Leptin stimulated TIMP-1 protein, mRNA, and promoter activity. JAK1 and -2, as well as STAT3 and -5, were activated. After leptin, there was increased expression of tyrosine 1141-phosphorylated leptin receptor, which may contribute to STAT3 activation. AG 490, a JAK inhibitor, blocked JAK phosphorylation with concomitant inhibition of STAT activation, TIMP-1 mRNA expression, and promoter activity. Leptin also induced an oxidative stress, which was inhibited by AG 490, indicating a JAK mediation process. ERK1/2 MAPK and p38 were activated, which was prevented by catalase, indicating an H2O2-dependent mechanism. Catalase treatment resulted in total suppression of TIMP-1 mRNA expression and promoter activity. SB203580, a p38 inhibitor, prevented p38 activation and reduced TIMP-1 message half-life with down-regulation of TIMP-1 mRNA. These changes were reproduced by overexpression of the dominant negative p38alpha and p38beta mutants. PD098059, an ERK1/2 inhibitor, opposed ERK1/2 activation and TIMP-1 promoter activity, leading to TIMP-1 mRNA down-regulation. Thus, leptin has a direct action on liver fibrogenesis by stimulating TIMP-1 production in activated HSC. This process appears to be mediated by the JAK/STAT pathway via the leptin receptor long form and the H2O2-dependent p38 and ERK1/2 pathways via activated JAK.  相似文献   

9.
Previously, we showed that Janus kinase 2 (JAK2) is important in advanced glycation end-product (AGE)-induced effects in renal interstitial (NRK-49F) fibroblasts. Leptin is a JAK2-activating cytokine via the long form leptin receptor (Ob-Rb). Leptin and connective tissue growth factor (CTGF) may be involved in renal fibrosis. However, the relationship between leptin and CTGF in terms of AGE-induced effects remains unknown. Thus, the effects of AGE (150 microg/ml) and leptin on mitogenesis, CTGF and collagen expression in NRK-49F cells were determined. We found that leptin and AGE increased mitogenesis and type I collagen protein expression at 3 and 7 days, respectively. AGE increased leptin mRNA and protein expression at 2-3 days. AGE increased CTGF mRNA and protein expression at 3-5 days. AG-490 (JAK2 inhibitor) abrogated AGE-induced leptin mRNA and protein expression at 2-3 days. AG-490 and Ob-Rb anti-sense oligodeoxynucleotides (ODN) abrogated AGE-induced CTGF mRNA and protein expression at 3-5 days. AG-490 and CTGF anti-sense ODN abrogated AGE-induced mitogenesis and collagen protein expression at 7 days. Additionally, leptin dose (0.2-1 microg/ml) and time (1-2 days)-dependently increased CTGF protein expression. AG-490 abrogated leptin (1 microg/ml)-induced CTGF protein expression at 2 days. AG-490 and CTGF anti-sense ODN abrogated leptin-induced mitogenesis and collagen protein expression at 3 days. We concluded that AGE induced JAK2 to increase leptin while leptin induced JAK2 to increase CTGF-induced mitogenesis and type I collagen protein expression in NRK-49F cells. Additionally, AGE-induced mitogenesis and type I collagen protein expression were dependent on leptin-induced CTGF.  相似文献   

10.
High levels of pro-angiogenic factors, leptin, IL-1, Notch and VEGF (ligands and receptors), are found in breast cancer, which is commonly correlated with metastasis and lower survival of patients. We have previously reported that leptin induces the growth of breast cancer and the expression of VEGF/VEGFR-2 and IL-1 system. We hypothesized that Notch, IL-1 and leptin crosstalk outcome (NILCO) plays an essential role in the regulation of leptin-mediated induction of proliferation/migration and expression of pro-angiogenic molecules in breast cancer. To test this hypothesis, leptin's effects on the expression and activation of Notch signaling pathway and VEGF/VEGFR-2/IL-1 were determined in mouse (4T1, EMT6 and MMT) breast cancer cells. Remarkably, leptin up-regulated Notch1-4/JAG1/Dll-4, Notch target genes: Hey2 and survivin, together with IL-1 and VEGF/VEGFR-2. RNA knockdown and pharmacological inhibitors of leptin signaling significantly abrogated activity of reporter gene-luciferase CSL (RBP-Jk) promoter, showing that it was linked to leptin-activated JAK2/STAT3, MAPK, PI-3K/mTOR, p38 and JNK signaling pathways. Interestingly, leptin upregulatory effects on cell proliferation/migration and pro-angiogenic factors Notch, IL-1 and VEGF/VEGFR-2 were abrogated by a γ-secretase inhibitor, DAPT, as well as siRNA against CSL. In addition, blockade of IL-1R tI inhibited leptin-induced Notch, Hey2 and survivin as well as VEGF/VEGFR-2 expression. These data suggest leptin is an inducer of Notch (expression/activation) and IL-1 signaling modulates leptin effects on Notch and VEGF/VEGFR-2. We show for the first time that a novel unveiled crosstalk between Notch, IL-1 and leptin (NILCO) occurs in breast cancer. Leptin induction of proliferation/migration and upregulation of VEGF/VEGFR-2 in breast cancer cells were related to an intact Notch signaling axis. NILCO could represent the integration of developmental, pro-inflammatory and pro-angiogenic signals critical for leptin-induced cell proliferation/migration and regulation of VEGF/VEGFR-2 in breast cancer. Targeting NILCO might help to design new pharmacological strategies aimed at controlling breast cancer growth and angiogenesis.  相似文献   

11.
12.
目的:探讨瘦素对人卵巢癌SKOV3细胞增殖及凋亡的影响及其作用机制。方法:用不同浓度的瘦素(0、50、100、200 ng/m L)处理人卵巢癌SKOV3细胞48 h后,采用MTT法检细胞的生长;以血清饥饿诱导细胞凋亡,同时给予瘦素刺激,Annexin V/PI双染法检测细胞凋亡的变化;western blotting分析p21、cyclin D1、Bcl-2、Bax蛋白的表达水平和ERK1/2通路的活化情况。结果:瘦素以剂量依赖性的方式促进人卵巢癌SKOV3细胞的增殖,同时抑制血清饥饿诱导的细胞凋亡。瘦素处理可下调p21和上调cyclin D1的表达,抑制促凋亡分子Bax的表达和上调抗凋亡分子Bcl-2的表达。瘦素可诱导细胞中ERK1/2通路的活化,其抑制剂PD98059可明显抑制瘦素诱导的促细胞增殖和抗凋亡作用,同时伴随有cyclin D1、Bcl-2蛋白表达的下调和Bax的上调。结论:瘦素可能通过活化ERK1/2通路调节细胞有丝分裂进程,进而促进卵巢癌细胞的增殖;同时通过调节凋亡相关蛋白Bcl-2和Bax的表达抑制卵巢癌细胞的凋亡。  相似文献   

13.
Leptin, a liver profibrogenic cytokine, induces oxidative stress in hepatic stellate cells (HSCs), with increased formation of the oxidant H2O2, which signals through p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, stimulating tissue inhibitor of metalloproteinase-1 production. Since oxidative stress is a pathogenic mechanism of liver fibrosis and activation of collagen gene is a marker of fibrogenesis, we evaluated the effects of leptin on collagen I expression. We report here that, in LX-2 human HSCs, leptin enhances the levels of alpha1(I) collagen mRNA, promoter activity and protein. Janus kinase (JAK)1 and JAK2 were activated. H2O2 formation was increased; this was prevented by the JAK inhibitor AG490, suggesting a JAK-mediated process. ERK1/2 and p38 were activated, and the activation was blocked by catalase, consistent with an H2O2-dependent mechanism. AG490 and catalase also prevented leptin-stimulated alpha1(I) collagen mRNA expression. PD098059, an ERK1/2 inhibitor, abrogated ERK1/2 activation and suppressed alpha1(I) collagen promoter activity, resulting in mRNA down-regulation. The p38 inhibitor SB203580 and overexpression of dominant negative p38 mutants abrogated p38 activation and down-regulated the mRNA. While SB203580 had no effect on the promoter activity, it reduced the mRNA half-life from 24 to 4 h, contributing to the decreased mRNA level. We conclude that leptin stimulates collagen production through the H2O2-dependent and ERK1/2 and p38 pathways via activated JAK1 and JAK2. ERK1/2 stimulates alpha1(I) collagen promoter activity, whereas p38 stabilizes its mRNA. Accordingly, interference with leptin-induced oxidative stress by antioxidants provides an opportunity for the prevention of liver fibrosis.  相似文献   

14.
Presence of leptin in breast cell lines and breast tumors.   总被引:12,自引:0,他引:12  
Leptin is the product of the ob gene, reported to be secreted exclusively from adipocytes and thought to control satiety by providing information to the central nervous system. However, the function of leptin appears to be more complex because multiple studies demonstrate its role in hematopoiesis, reproduction, and immunity. In addition, several nonadipose sources of leptin have been reported. The purpose of this study was to examine several breast cancer cell lines and ductal carcinomas of the breast for expression of leptin messenger RNA (mRNA) and protein. For tumor studies, specimens were preassayed for contaminating adipose tissue. Northern blot analyses demonstrated leptin mRNA in several breast cancer cell lines (MCF-7, T47D, and MDA-MB-231), a normal breast epithelial cell line (MCF10A), and four breast tumors. Leptin protein was identified in T47D breast cancer cells by indirect immunofluorescent staining and in samples of the same breast tumors used for Northern studies by enzyme-linked immunosorbent assays (ELISA). This preliminary study suggests that leptin is expressed in malignant epithelial cells of the breast. Further investigation is needed to determine whether this protein plays a role in breast carcinogenesis.  相似文献   

15.
16.
17.
18.
19.
20.
The obesity-related 16 kDa peptide leptin is synthesized primarily in white adipocytes although its production has been reported in other tissues including the heart. There is emerging evidence that leptin may contribute to cardiac pathology especially that related to myocardial remodelling and heart failure. In view of the importance of mitochondria to these processes, the goal of the present study is to determine the effect of leptin on mitochondria permeability transition pore opening and the potential consequence in terms of development of apoptosis. Experiments were performed using neonatal rat ventricular myocytes exposed to 3.1 nM (50 ng/ml) leptin for 24 hours. Mitochondrial transition pore opening was analyzed as the capacity of mitochondria to retain the dye calcein-AM in presence of 200 μM CaCl2. Leptin significantly increased pore opening although the effect was markedly more pronounced in digitonin-permeabilized myocytes in the presence of calcium with both effects prevented by the transition pore inhibitor sanglifehrin A. These effects were associated with increased apoptosis as evidenced by increased TUNEL staining and caspase 3 activity, both of which were prevented by the transition pore inhibitor sanglifehrin A. Leptin enhanced Stat3 activation whereas a Stat 3 inhibitor peptide prevented leptin-induced mitochondrial transition pore opening as well as the hypertrophic and pro-apoptotic effects of the peptide. Inhibition of the RhoA/ROCK pathway prevented the hypertrophic response to leptin but had no effect on increased pore opening following leptin administration. We conclude that leptin can enhance calcium-mediated, Stat3-dependent pro-apoptotic effects as a result of increased mitochondrial transition pore opening and independently of its hypertrophic actions. Leptin may therefore contribute to mitochondrial dysfunction and the development of apoptosis in the diseased myocardium particularly under conditions of excessive intracellular calcium accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号