首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Clinical studies previously demonstrated that live influenza A virus vaccines derived by genetic reassortment from the mating of influenza A/Ann Arbor/6/60 (H2N2) cold-adapted (ca) donor virus with epidemic wild-type influenza A viruses are reproducibly safe, infectious, immunogenic, and efficacious in the prevention of illness caused by challenge with virulent wild-type virus. These influenza A reassortant virus vaccines also express the ca and temperature sensitivity (ts) phenotypes in vitro, but the genes of the ca virus parent which specify the ca, ts, and attenuation (att) phenotypes have not adequately been defined. To identify the genes associated with each of these phenotypes, we isolated six single-gene substitution reassortant viruses, each of which inherited only one RNA segment from the ca parent virus and the remaining seven RNA segments from the A/Korea/1/82 (H3N2) wild-type virus parent. These were evaluated in vitro for their ca and ts phenotypes and in ferrets, hamsters, and seronegative adult volunteers for the att phenotype. We found that the polymerase PA gene of the ca parent specifies the ca phenotype and that the PB2 and PB1 genes independently specify the ts phenotype. The PA, M, PB2, and PB1 genes of the ca donor virus each contribute to the att phenotype. The finding that four genes of the ca donor virus contribute to the att phenotype provides a partial explanation for the observed phenotypic stability of ca reassortant viruses following replication in humans.  相似文献   

2.
A single-gene reassortant bearing the PB2 gene of the A/Ann Arbor/6/60 cold-adapted virus in the background of the A/Korea/82 (H3N2) wild-type virus is a temperature-sensitive (ts) virus with an in vitro shutoff temperature of 38 degrees C. A single mutation at amino acid (aa) at 265 (Asp-Ser) of the PB2 protein is responsible for the ts phenotype. This ts single-gene PB2 reassortant virus was serially passaged at elevated temperatures in Madin-Darby canine kidney cells to generate ts+ phenotypic revertant viruses. Four ts+ phenotypically revertant viruses were derived independently, and each possessed a shutoff temperature for replication in vitro of > 40 degrees C. Each of the four phenotypically revertant viruses replicated efficiently in the upper and lower respiratory tracts of mice and hamsters, unlike the PB2 single-gene reassortant virus, confirming that the ts phenotype was responsible for the attenuation of this virus in rodents. Mating the ts+ revertants with wild-type virus yielded ts progeny in high frequency, indicating that the loss of ts phenotype was due to a suppressor mutation which was mapped to the PA gene in each of the four independently derived ts phenotypic revertants. Nucleotide sequence analysis confirmed the absence of new mutations on the PB2 gene and the presence of predicted amino acid changes in the PA proteins of the revertant viruses. These studies suggest that single amino acid changes at aa 245 (Glu-Lys) or 347 (Asp-Asn) of the PA protein can completely suppress the ts and attenuation phenotypes specified by the Asp-Ser mutation at aa 265 of the PB2 protein of the A/Ann Arbor/6/60 cold-adapted virus.  相似文献   

3.
4.

Background

Rotavirus NSP4 localizes to multiple intracellular sites and is multifunctional, contributing to RV morphogenesis, replication and pathogenesis. One function of NSP4 is the induction of early secretory diarrhea by binding surface receptors to initiate signaling events. The aims of this study were to determine the transport kinetics of NSP4 to the exofacial plasma membrane (PM), the subsequent release from intact infected cells, and rebinding to naïve and/or neighboring cells in two cell types.

Methods

Transport kinetics was evaluated using surface-specific biotinylation/streptavidin pull-downs and exofacial exposure of NSP4 was confirmed by antibody binding to intact cells, and fluorescent resonant energy transfer. Transfected cells similarly were monitored to discern NSP4 movement in the absence of infection or other viral proteins. Endoglycosidase H digestions, preparation of CY3- or CY5- labeled F(ab)2 fragments, confocal imaging, and determination of preferential polarized transport employed standard laboratory techniques. Mock-infected, mock-biotinylated and non-specific antibodies served as controls.

Results

Only full-length (FL), endoglycosidase-sensitive NSP4 was detected on the exofacial surface of two cell types, whereas the corresponding cell lysates showed multiple glycosylated forms. The C-terminus of FL NSP4 was detected on exofacial-membrane surfaces at different times in different cell types prior to its release into culture media. Transport to the PM was rapid and distinct yet FL NSP4 was secreted from both cell types at a time similar to the release of virus. NSP4-containing, clarified media from both cells bound surface molecules of naïve cells, and imaging showed secreted NSP4 from one or more infected cells bound neighboring cell membranes in culture. Preferential sorting to apical or basolateral membranes also was distinct in different polarized cells.

Conclusions

The intracellular transport of NSP4 to the PM, translocation across the PM, exposure of the C-terminus on the cell surface and subsequent secretion occurs via an unusual, complex and likely cell-dependent process. The exofacial exposure of the C-terminus poses several questions and suggests an atypical mechanism by which NSP4 traverses the PM and interacts with membrane lipids. Mechanistic details of the unconventional trafficking of NSP4, interactions with host-cell specific molecules and subsequent release require additional study.  相似文献   

5.
A panel of monoclonal antibodies specific for a corresponding panel of sequentially selected variants of influenza A/PR/8/34 virus has been established. Although the monoclonal antibodies are paratypically distinct, idiotypic relatedness has been observed. Two cross-reactive idiotypes have been defined that are associated with the 7183 and S107 VH gene families, respectively. Three of the four monoclonal antibodies utilize the VK21 group of light chains, and three VH genes belong to the VH7183 family and one to the VH S107 family. Antibodies encoded by genes deriving from the VH7183 family share a cross-reactive idiotype, a marker of the VH region as well as distinct individual idiotopes. These antibodies are produced by different clones using related VH and VK genes.  相似文献   

6.
Equine influenza virus is a major respiratory pathogen in horses, and outbreaks of disease often lead to substantial disruption to and economic losses for equestrian industries. The hemagglutinin (HA) protein is of key importance in the control of equine influenza because HA is the primary target of the protective immune response and the main component of currently licensed influenza vaccines. However, the influenza virus HA protein changes over time, a process called antigenic drift, and vaccine strains must be updated to remain effective. Antigenic drift is assessed primarily by the hemagglutination inhibition (HI) assay. We have generated HI assay data for equine influenza A (H3N8) viruses isolated between 1968 and 2007 and have used antigenic cartography to quantify antigenic differences among the isolates. The antigenic evolution of equine influenza viruses during this period was clustered: from 1968 to 1988, all isolates formed a single antigenic cluster, which then split into two cocirculating clusters in 1989, and then a third cocirculating cluster appeared in 2003. Viruses from all three clusters were isolated in 2007. In one of the three clusters, we show evidence of antigenic drift away from the vaccine strain over time. We determined that a single amino acid substitution was likely responsible for the antigenic differences among clusters.  相似文献   

7.
We have examined how many different H chain variable (VH) and kappa-chain variable (Vk) germ-line genes are used in the antibody response to the influenza virus A/PR/8/34 hemagglutinin (PR8 HA), and have assessed how the expression of individual VH and/or Vk genes contributes to the generation of specificity for the HA. A panel of 51 hybridoma antibodies that recognize two antigenic regions on the HA were compared for the sequence of their Ig H and L chain V regions. The hybridomas were obtained from 28 individual BALB/c mice that had been immunized with PR8 under a variety of primary and secondary response immunization protocols. The degree and pattern of sequence similarity suggests that 29 different VH genes drawn from seven different VH gene families, and 25 different Vk genes drawn from 12 different Vk gene families were used in this panel. Based on current estimates of the total numbers of VH and Vk genes in the mouse, this suggests that between 2.5 and 10% of the entire VH and Vk germ-line repertoires were used by these hybridomas. Despite this extensive diversity, some V genes were repetitively identified among these hybridomas, and were most often expressed in the context of specific VH/Vk combinations. Because antibodies that used identical VH/Vk combinations also usually displayed similar reactivity patterns with a panel of mutant viruses, this indicates that VH/Vk pairing can be important in establishing the specificity of antibodies for the HA.  相似文献   

8.
The complete nucleotide sequence of RNA segment 1 of influenza virus A/NT/60/68, corresponding to the PB2 protein, has been determined. It is 2341 nucleotides long, encoding a predicted product of 759 amino acids with a net charge of +27 1/2 at neutral pH. The predicted amino acid sequence has been compared to the equivalent sequences in influenza viruses A/PR/8/34 and A/WSN/33. Evolutionary divergence, assuming a direct lineage from A/PR/8/34 and allowing for "laboratory drift", is 0.08% per year. The alignment of RNA segment 10 of A/NT/60/68 with segments 1 and 3 is completed, confirming that it is a mosaic of regions from these two segments.  相似文献   

9.
Approximately 50% of the primary antibody response of BALB/c mice to the A/PR/8/34 influenza virus hemagglutinin is directed to the Cb site, one of the four major antigenic regions of the molecule. To determine the structural basis of the anti-Cb site response, we have examined the paratypic and genetic diversity exhibited by a panel of 24 primary and 4 secondary response mAb specific for this antigenic region. Reactivity pattern analysis demonstrated 20 distinct fine specificities among these antibodies, and V region gene sequence analysis showed that they are encoded by 17 different VH gene segments from 6 VH gene families and 14 different VK gene segments from 6 VK gene groups. Despite this overall diversity, many of the antibodies can be placed in a limited number of sets based on the shared expression of VH and/or VK genes. One set contains antibodies encoded by a single gene of the VK4/5 group in combination with one of two closely related genes from the J558 VH family. This set accounts for half of the Cb site-specific primary response hybridomas, indicating that the representation of the various anti-Cb site B cell specificities during the primary response to A/PR/8/34 influenza virus is not uniform. The preferential participation of B cells expressing this VH/VK combination is largely responsible for the dominance of anti-Cb site antibodies in the primary anti-hemagglutinin response.  相似文献   

10.
11.
Eight nonoverlapping regions of the hemagglutinin (HA) molecule of influenza virus A/PR/8/34 (PR8), which serve as recognition sites for class II-restricted T cells (TH) from BALB/c mice, have been identified in the form of 10- to 15-amino-acid-long synthetic peptides. These TH determinants are located between residues 110 to 313 of the HA1 polypeptide. From a total of 36 HA-specific TH clones and limiting-dilution cultures of independent clonal origins, 33 (90%) responded to stimulation with one of these peptides. The residual three TH clones appeared to recognize a single additional determinant on the HA1 polypeptide which could not be isolated, however, in the form of a stimulatory peptide. None of the motifs that have been proposed to typify TH determinants were displayed by more than half of these recognition sites. Most unexpected was the finding that none of the TH determinants was located in the ectodomain of the HA2 polypeptide that makes up roughly one-third of the HA molecule. Possible reasons for the preferential recognition of HA1 as opposed to HA2 by TH are discussed.  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号