首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Signaling lipids control many of the most important biological pathways, typically by recruiting cognate protein binding targets to cell surfaces, thereby regulating both their function and subcellular localization. A critical family of signaling lipids is that of the phosphatidylinositol polyphosphates (PIP(n)s), which is composed of seven isomers that vary based on phosphorylation pattern. A key protein that is activated upon PIP(n) binding is Akt, which then plays important roles in regulating the cell cycle, and is thus aberrant in disease. Characterization of protein-PIP(n) binding interactions is hindered by the complexity of the membrane environment and of the PIP(n) structures. Herein, we describe two rapid assays of use for characterizing protein-PIP(n) binding interactions. First, a microplate-based binding assay was devised to characterize the binding of effectors to immobilized synthetic PIP(n) headgroup-biotin conjugates corresponding to all seven isomers. The assay was implemented for simultaneous analysis of Akt-PH domain, indicating PI(3,4,5)P(3) and PI(3,4)P(2) as the primary ligands. In addition, density-dependant studies indicated that the amount of ligand immobilized on the surface affected the amplitude of protein binding, but not the affinity, for Akt-PH. Since the PIP(n) ligand motifs used in this analysis lack the membrane environment and glycerolipid backbone, yet still exhibit high-affinity protein binding, these results narrow down the structural requirements for Akt recognition. Additionally, binding detection was also achieved through microarray analysis via the robotic pin printing of ligands onto glass slides in a miniaturized format. Here, fluorescence-based detection provided sensitive detection of binding using minimal amounts of materials. Due to their high-throughput and versatile attributes, these assays provide invaluable tools for probing and perturbing protein-membrane binding interactions.  相似文献   

2.
Guanine phosphoribosyltransferase (GPRTase) from Giardia lamblia, an enzyme required for guanine salvage and necessary for the survival of this parasitic protozoan, has been kinetically characterized. Phosphoribosyltransfer proceeds through an ordered sequential mechanism common to many related purine phosphoribosyltransferases (PRTases) with alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) binding to the enzyme first and guanosine monophosphate (GMP) dissociating last. The enzyme is a highly unique purine PRTase, recognizing only guanine as its purine substrate (K(m) = 16.4 microM) but not hypoxanthine (K(m) > 200 microM) nor xanthine (no reaction). It also catalyzes both the forward (kcat = 76.7 s-1) and reverse (kcat = 5.8.s-1) reactions at significantly higher rates than all the other purine PRTases described to date. However, the relative catalytic efficiencies favor the forward reaction, which can be attributed to an unusually high K(m) for pyrophosphate (PPi) (323.9 microM) in the reverse reaction, comparable only with the high K(m) for PPi (165.5 microM) in Tritrichomonas foetus HGXPRTase-catalyzed reverse reaction. As the latter case was due to the substitution of threonine for a highly conserved lysine residue in the PPi-binding loop [Munagala et al. (1998) Biochemistry 37, 4045-4051], we identified a corresponding threonine residue in G. lamblia GPRTase at position 70 by sequence alignment, and then generated a T70K mutant of the enzyme. The mutant displays a 6.7-fold lower K(m) for PPi with a twofold increase in the K(m) for PRPP. Further attempts to improve PPi binding led to the construction of a T70K/A72G double mutant, which displays an even lower K(m) of 7.9 microM for PPi. However, mutations of the nearby Gly71 to Glu, Arg, or Ala completely inactivate the GPRTase, suggesting the requirement of flexibility in the putative PPi-binding loop for enzyme catalysis, which is apparently maintained by the glycine residue. We have thus tentatively identified the PPi-binding loop in G. lamblia GPRTase, and attributed the relatively higher catalytic efficiency in the forward reaction to the unusual loop structure for poor PPi binding in the reverse reaction.  相似文献   

3.
The c-Abl tyrosine (Tyr) kinase is activated after platelet-derived-growth factor receptor (PDGFR) stimulation in a manner that is partially dependent on Src kinase activity. However, the activity of Src kinases alone is not sufficient for activation of c-Abl by PDGFR. Here we show that functional phospholipase C-gamma1 (PLC-gamma1) is required for c-Abl activation by PDGFR. Decreasing cellular levels of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) by PLC-gamma1-mediated hydrolysis or dephosphorylation by an inositol polyphosphate 5-phosphatase (Inp54) results in increased Abl kinase activity. c-Abl functions downstream of PLC-gamma1, as expression of kinase-inactive c-Abl blocks PLC-gamma1-induced chemotaxis towards PDGF-BB. PLC-gamma1 and c-Abl form a complex in cells that is enhanced by PDGF stimulation. After activation, c-Abl phosphorylates PLC-gamma1 and negatively modulates its function in vivo. These findings uncover a newly discovered functional interdependence between non-receptor Tyr kinase and lipid signalling pathways.  相似文献   

4.
TP53 mutations play a significant role in glioma tumorigenesis. When located in in the DNA binding domain, these mutations can perturb p53 protein conformation and its function, often culminating in altered downstream signaling. Here we describe prevalent pattern of TP53 point mutations in a cohort of 40 glioma patients and show their relevance to gliomagenesis. Point mutations in exon 5–9 of TP53 gene were detected by DNA sequencing. Possible influence of identified mutations at the function of p53 was studied computationally and correlated with the survival. Point mutations in TP53 were detected in 10 glioma samples (25%), out of which 70% were from high grade glioma. A total of 19 TP53 point mutations were identified, out of which 42% were found to be in the DNA binding region of p53. Computational analysis predicted 87.5% of these mutations to be “probably damaging”. In three patients with tumors possessing point mutations R273H, R248Q, Y163H and R175H and poor survival times, structural analysis revealed the nature of these mutations to be disruptive and associated with high risk for cancer progression. In high grade glioma, recurrent TP53 point mutations may be the key to tumor progression, thus, emphasizing their significance in gliomagenesis.  相似文献   

5.
Stolt PC  Vardar D  Blacklow SC 《Biochemistry》2004,43(34):10979-10987
While typical intracellular protein modules have only one ligand-binding site, there are rare examples of single modules that bind two different ligands at distinct binding sites. Here we present a detailed mutational and energetic analysis of one such domain, the phosphotyrosine binding (PTB) domain of Disabled-1 (Dab1), which binds to both peptide and phosphoinositide (PI) ligands simultaneously at structurally distinct binding sites. Through the techniques of isothermal titration calorimetry (ITC), analysis of Dab1 PTB domain mutants, and nuclear magnetic resonance (NMR), we have evaluated the characteristics of binding of the Dab1 PTB domain to various peptide and PI ligands. These studies reveal that the presence of saturating concentrations of one ligand has little effect on the binding constant for a second ligand at the other site. In addition, proteins with single-point mutations in the peptide-binding site retain native affinity for PI ligands, while proteins with mutations that prevent PI binding retain native affinity for peptide. NMR titrations show that the final structure of the ternary complex is the same independent of the order of addition of the two ligands. Together, these studies show that binding of peptide and PI ligands is energetically independent and noncooperative.  相似文献   

6.
Interleukin-1 (IL-1) is a monocyte-derived polypeptide hormone that interacts with a plasma membrane receptor. We have used oligonucleotide-directed mutagenesis to construct mutant human IL-1 proteins. Three different point mutants in a unique histidine residue (position 30) exhibited varying degrees of reduced IL-1 receptor binding affinity, whereas point mutants at five other residues behaved normally. Structural analysis of these mutant proteins by nuclear magnetic resonance spectroscopy detected no (or only minor) conformational changes relative to wild-type IL-1. These data suggest that the unique histidine residue influences the architecture of the receptor binding site on human IL-1.  相似文献   

7.
Structure of the binding site for inositol phosphates in a PH domain.   总被引:21,自引:5,他引:16       下载免费PDF全文
Phosphatidylinositol bisphosphate has been found to bind specifically to pleckstrin homology (PH) domains that are commonly present in signalling proteins but also found in cytoskeleton. We have studied the complexes of the beta-spectrin PH domain and soluble inositol phosphates using both circular dichroism and nuclear magnetic resonance spectroscopy, and X-ray crystallography. The specific binding site is located in the centre of a positively charged surface patch of the domain. The presence of 4,5-bisphosphate group on the inositol ring is critical for binding. In the crystal structure that has been determined at 2.0 A resolution, inositol-1,4,5-trisphosphate is bound with salt bridges and hydrogen bonds through these phosphate groups whereas the 1-phosphate group is mostly solvent-exposed and the inositol ring has virtually no interactions with the protein. We propose a model in which PH domains are involved in reversible anchoring of proteins to membranes via their specific binding to phosphoinositides. They could also participate in a response to a second messenger such as inositol trisphosphate, organizing cross-roads in cellular signalling.  相似文献   

8.
Yan J  Wen W  Xu W  Long JF  Adams ME  Froehner SC  Zhang M 《The EMBO journal》2005,24(23):3985-3995
Pleckstrin homology (PH) domains play diverse roles in cytoskeletal dynamics and signal transduction. Split PH domains represent a unique subclass of PH domains that have been implicated in interactions with complementary partial PH domains 'hidden' in many proteins. Whether partial PH domains exist as independent structural units alone and whether two halves of a split PH domain can fold together to form an intact PH domain are not known. Here, we solved the structure of the PH(N)-PDZ-PH(C) tandem of alpha-syntrophin. The split PH domain of alpha-syntrophin adopts a canonical PH domain fold. The isolated partial PH domains of alpha-syntrophin, although completely unfolded, remain soluble in solution. Mixing of the two isolated domains induces de novo folding and yields a stable PH domain. Our results demonstrate that two complementary partial PH domains are capable of binding to each other to form an intact PH domain. We further showed that the PH(N)-PDZ-PH(C) tandem forms a functionally distinct supramodule, in which the split PH domain and the PDZ domain function synergistically in binding to inositol phospholipids.  相似文献   

9.
OCRL, whose mutations are responsible for Lowe syndrome and Dent disease, and INPP5B are two similar proteins comprising a central inositol 5‐phosphatase domain followed by an ASH and a RhoGAP‐like domain. Their divergent NH2‐terminal portions remain uncharacterized. We show that the NH2‐terminal region of OCRL, but not of INPP5B, binds clathrin heavy chain. OCRL, which in contrast to INPP5B visits late stage endocytic clathrin‐coated pits, was earlier shown to contain another binding site for clathrin in its COOH‐terminal region. NMR structure determination further reveals that despite their primary sequence dissimilarity, the NH2‐terminal portions of both OCRL and INPP5B contain a PH domain. The novel clathrin‐binding site in OCRL maps to an unusual clathrin‐box motif located in a loop of the PH domain, whose mutations reduce recruitment efficiency of OCRL to coated pits. These findings suggest an evolutionary pressure for a specialized function of OCRL in bridging phosphoinositide metabolism to clathrin‐dependent membrane trafficking.  相似文献   

10.
Signaling through Disabled 1 requires phosphoinositide binding   总被引:4,自引:0,他引:4  
The Reelin signaling pathway plays a critical role in the correct positioning of neurons within the developing brain. Within this pathway, Disabled 1 (Dab1) serves as an intracellular adaptor that is tyrosine phosphorylated when Reelin, a secreted glycoprotein, binds to the lipoprotein receptors VLDLR and ApoER2 on the surface of neurons. The phosphotyrosine-binding (PTB) domain within its amino terminus enables Dab1 to recognize and bind to a conserved sequence motif within the cytoplasmic tails of the receptors. In addition, the PTB contains a Pleckstrin Homology-like subdomain that binds to phosphoinositides. Here, we show that the phosphoinositide-binding region within Dab1 PTB domain is required for membrane localization and basal tyrosine phosphorylation of Dab1 independently of VLDLR and ApoER2. Furthermore, receptor-independent membrane targeting of Dab1 is required for its interaction with Src and Crk, and disruption of phosphoinositide binding also blocks subsequent Reelin-induced tyrosine phosphorylation of Dab1.  相似文献   

11.
We have constructed a series of point mutations in the highly conserved FLVRES motif of the src homology 2 (SH2) domain of the abl tyrosine kinase. Mutant SH2 domains were expressed in bacteria, and their ability to bind to tyrosine-phosphorylated proteins was examined in vitro. Three mutants were greatly reduced in their ability to bind both phosphotyrosine itself and tyrosine-phosphorylated cellular proteins. All of the mutants that retained activity bound to the same set of tyrosine-phosphorylated proteins as did the wild type, suggesting that binding specificity was unaffected. These results implicate the FLVRES motif in direct binding to phosphotyrosine. When the mutant SH2 domains were inserted into an activated abl kinase and expressed in murine fibroblasts, decreased in vitro phosphotyrosine binding correlated with decreased transforming ability. This finding implies that SH2-phosphotyrosine interactions are involved in transmission of positive growth signals by the nonreceptor tyrosine kinases, most likely via the assembly of multiprotein complexes with other tyrosine-phosphorylated proteins.  相似文献   

12.
Formation of the mammalian six-layered neocortex depends on a signaling pathway that involves Reelin, the very low-density lipoprotein receptor, the apolipoprotein E receptor-2 (ApoER2), and the adaptor protein Disabled-1 (Dab1). The 1.5 A crystal structure of a complex between the Dab1 phosphotyrosine binding (PTB) domain and a 14-residue peptide from the ApoER2 tail explains the unusual preference of Dab1 for unphosphorylated tyrosine within the NPxY motif of the peptide. Crystals of the complex soaked with the phosphoinositide PI-4,5P(2) (PI) show that PI binds to conserved basic residues on the PTB domain opposite the peptide binding groove. This finding explains how the Dab1 PTB domain can simultaneously bind PI and the ApoER2 tail. Recruitment of the Dab1 PTB domain to PI-rich regions of the plasma membrane may facilitate association with the Reelin receptor cytoplasmic tails to transduce a critical positional cue to migrating neurons.  相似文献   

13.
The large GTPase dynamin has an important membrane scission function in receptor‐mediated endocytosis and other cellular processes. Self‐assembly on phosphoinositide‐containing membranes stimulates dynamin GTPase activity, which is crucial for its function. Although the pleckstrin‐homology (PH) domain is known to mediate phosphoinositide binding by dynamin, it remains unclear how this promotes activation. Here, we describe studies of dynamin PH domain mutations found in centronuclear myopathy (CNM) that increase dynamin's GTPase activity without altering phosphoinositide binding. CNM mutations in the PH domain C‐terminal α‐helix appear to cause conformational changes in dynamin that alter control of the GTP hydrolysis cycle. These mutations either ‘sensitize’ dynamin to lipid stimulation or elevate basal GTPase rates by promoting self‐assembly and thus rendering dynamin no longer lipid responsive. We also describe a low‐resolution structure of dimeric dynamin from small‐angle X‐ray scattering that reveals conformational changes induced by CNM mutations, and defines requirements for domain rearrangement upon dynamin self‐assembly at membrane surfaces. Our data suggest that changes in the PH domain may couple lipid binding to dynamin GTPase activation at sites of vesicle invagination.  相似文献   

14.
We have previously demonstrated that PM-Scl-75, a component of the human exosome complex involved in RNA maturation and mRNA decay, can specifically interact with RNAs containing an AU-rich instability element. Through the analysis of a series of deletion mutants, we have now shown that a 266 amino acid fragment representing the RNase PH domain is responsible for the sequence-specific binding to AU-rich elements. Furthermore, we found that the RNase PH domains from two other exosomal components, OIP2 and RRP41, as well as from Escherichia coli polynucleotide phosphorylase, are all capable of specifically interacting with RNAs containing an AU-rich element with similar affinities. Finally, we demonstrate that the interaction of the RNase PH domain of PM-Scl-75 is readily competed by poly(U), but only inefficiently using other homopolymeric RNAs. These data demonstrate that RNase PH domains in general have an affinity for U- and AU-rich sequences, and broaden the potential role in RNA biology of proteins containing these domains.  相似文献   

15.
The pleckstrin homology (PH) domains of the homologous proteins Grp1 (general receptor for phosphoinositides), ARNO (Arf nucleotide binding site opener), and Cytohesin-1 bind phosphatidylinositol (PtdIns) 3,4,5-trisphosphate with unusually high selectivity. Remarkably, splice variants that differ only by the insertion of a single glycine residue in the beta1/beta2 loop exhibit dual specificity for PtdIns(3,4,5)P(3) and PtdIns(4,5)P(2). The structural basis for this dramatic specificity switch is not apparent from the known modes of phosphoinositide recognition. Here, we report crystal structures for dual specificity variants of the Grp1 and ARNO PH domains in either the unliganded form or in complex with the head groups of PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3). Loss of contacts with the beta1/beta2 loop with no significant change in head group orientation accounts for the significant decrease in PtdIns(3,4,5)P(3) affinity observed for the dual specificity variants. Conversely, a small increase rather than decrease in affinity for PtdIns(4,5)P(2) is explained by a novel binding mode, in which the glycine insertion alleviates unfavorable interactions with the beta1/beta2 loop. These observations are supported by a systematic mutational analysis of the determinants of phosphoinositide recognition.  相似文献   

16.
A fluorescent sensor for the detection of inositol-1,3,4,5-tetrakisphosphate, Ins(1,3,4,5)P4, was constructed from a split PH domain and a single circularly permuted GFP. A structure-based design was conducted to transduce a ligand-induced subtle structural perturbation of the split PH domain to an alteration in the population of the protonated and the deprotonated states of the GFP chromophore. Excitation of each distinct absorption band corresponding to the protonated or the deprotonated state of GFP resulted an increase and a decrease, respectively, in the intensity of emission spectra upon addition of Ins(1,3,4,5)P4 to the split PH domain-based sensor. The Ins(1,3,4,5)P4 sensor retained the ligand affinity and the selectivity of the parent PH domain, and realized the ratiometric fluorescence detection of Ins(1,3,4,5)P4.  相似文献   

17.
Dynamin and its related proteins are a group of mechanochemical proteins involved in the modulation of lipid membranes in various biological processes. Here we investigate the nature of membrane binding of the Arabidopsis dynamin-like 6 (ADL6) involved in vesicle trafficking from the trans-Golgi network to the central vacuole. Fractionation experiments by continuous sucrose gradients and gel filtration revealed that the majority of ADL6 is associated with membranes in vivo. Amino acid sequence analysis revealed that ADL6 has a putative pleckstrin homology (PH) domain. In vitro lipid binding assays demonstrated that ADL6 showed high affinity binding to phosphatidylinositol 3-phosphate (PtdIns-3-P) and that the PH domain was responsible for this interaction. However, the PH domain alone binds equally well to both PtdIns-3-P and phosphatidylinositol 4-phosphate (PtdIns-4-P). Interestingly, the high affinity binding of the PH domain to PtdIns-3-P was restored by a protein-protein interaction between the PH domain and the C-terminal region. In addition, deletion of the inserted regions within the PH domain results in high affinity binding of the PH domain to PtdIns-3-P. These results suggest that ADL6 binds specifically to PtdIns-3-P and that the lipid binding specificity is determined by the interaction between the PH domain and the C-terminal domain of ADL6.  相似文献   

18.
The general receptor for phosphoinositides isoform 1 (GRP1) is recruited to the plasma membrane in response to activation of phosphoinositide 3-kinases and accumulation of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]. GRP1's pleckstrin homology (PH) domain recognizes PtdIns(3,4,5)P(3) with high specificity and affinity, however, the precise mechanism of its association with membranes remains unclear. Here, we detail the molecular basis of membrane anchoring by the GRP1 PH domain. Our data reveal a multivalent membrane docking involving PtdIns(3,4,5)P(3) binding, regulated by pH and facilitated by electrostatic interactions with other anionic lipids. The specific recognition of PtdIns(3,4,5)P(3) triggers insertion of the GRP1 PH domain into membranes. An acidic environment enhances PtdIns(3,4,5)P(3) binding and increases membrane penetration as demonstrated by NMR and monolayer surface tension and surface plasmon resonance experiments. The GRP1 PH domain displays a 28 nM affinity for POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/PtdIns(3,4,5)P(3) vesicles at pH 6.0, but binds 22-fold weaker at pH 8.0. The pH sensitivity is attributed in part to the His355 residue, protonation of which is required for the robust interaction with PtdIns(3,4,5)P(3) and significant membrane penetration, as illustrated by mutagenesis data. The binding affinity of the GRP1 PH domain for PtdIns(3,4,5)P(3)-containing vesicles is further amplified (by approximately 6-fold) by nonspecific electrostatic interactions with phosphatidylserine/phosphatidylinositol. Together, our results provide new insight into the multivalent mechanism of the membrane targeting and regulation of the GRP1 PH domain.  相似文献   

19.
Upon stimulation of cells with platelet-derived growth factor (PDGF), phospholipase C-gamma1 (PLC-gamma1) binds to the tyrosine-phosphorylated PDGF receptor through one or both of its Src homology 2 (SH2) domains, is phosphorylated by the receptor kinase, and is thereby activated to hydrolyze phosphatidylinositol 4, 5-bisphosphate. Association of PLC-gamma1 with the insoluble subcellular fraction is also enhanced in PDGF-stimulated cells. The individual roles of the two SH2 domains of PLC-gamma1 in mediating the interaction between the enzyme and the PDGF receptor have now been investigated by functionally disabling each domain. A critical Arg residue in each SH2 domain was mutated to Ala. Both wild-type and mutant PLC-gamma1 proteins were transiently expressed in a PLC-gamma1-deficient fibroblast cell line, and these transfected cells were stimulated with PDGF. The mutant protein in which the COOH-terminal SH2 domain was disabled bound to the PDGF receptor. Accordingly, it was phosphorylated by the receptor, catalyzed the production of inositol phosphates, and mobilized intracellular calcium to extents similar to (but slightly less than) those observed with the wild-type enzyme. In contrast, the mutant in which the NH(2)-terminal SH2 domain was impaired did not bind to the PDGF receptor and consequently was neither phosphorylated nor activated. These results suggest that the NH(2)-terminal SH2 domain, but not the COOH-terminal SH2 domain, of PLC-gamma1 is required for PDGF-induced activation of PLC-gamma1. Functional impairment of the SH2 domains did not affect the PDGF-induced redistribution of PLC-gamma1, suggesting that recruitment of PLC-gamma1 to the particulate fraction does not involve the SH2 domains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号