首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Role of iron in the regulation of ferritin metabolism   总被引:5,自引:0,他引:5  
  相似文献   

4.
Role of nitric oxide in cellular iron metabolism   总被引:2,自引:0,他引:2  
Sangwon Kim  Prem Ponka 《Biometals》2003,16(1):125-135
Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) which are located in the 3 untranslated region (UTR) and the 5 UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO, a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO+ (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon- (IFN-) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN--treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO+-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.  相似文献   

5.
6.
Iron metabolism is a balancing act, and biological systems have evolved exquisite regulatory mechanisms to maintain iron homeostasis. Iron metabolism disorders are widespread health problems on a global scale and range from iron deficiency to iron-overload. Both types of iron disorders are linked to heart failure. Iron play a fundamental role in mitochondrial function and various enzyme functions and iron deficiency has a particular negative impact on mitochondria function. Given the high-energy demand of the heart, iron deficiency has a particularly negative impact on heart function and exacerbates heart failure. Iron-overload can result from excessive gut absorption of iron or frequent use of blood transfusions and is typically seen in patients with congenital anemias, sickle cell anemia and beta-thalassemia major, or in patients with primary hemochromatosis. This review provides an overview of normal iron metabolism, mechanisms underlying development of iron disorders in relation to heart failure, including iron-overload cardiomyopathy, and clinical perspective on the treatment options for iron metabolism disorders.  相似文献   

7.
Iron toxicity reduces growth of rice plants in acidic lowlands. Silicon nutrition may alleviate many stresses including heavy metal toxicity in plants. In the present study, the ameliorating effects of silicon nutrition on rice (Oryza sativa L.) plants under toxic Fe levels were investigated. Plants were cultivated in greenhouse in hydroponics under different Fe treatments including 10, 50, 100, and 250 mg L?1 as Fe-EDTA and silicon nutrition including 0 and 1.5 mM sodium silicate. Iron toxicity imposed significant reduction in plant fresh weight, tiller, and leaf number. The activity of catalase, cell wall, and soluble peroxidases, and polyphenol oxidase in shoots decreased due to moderate Fe toxicity (50 and 100 mg L?1), but increased at greater Fe concentration. Ascorbate peroxidase activity increased in both roots and shoots of Fe-stressed plants. Iron toxicity led to increased tissue hydrogen peroxide and lipid peroxidation. Silicon nutrition improved plant growth under all Fe treatments and alleviated Fe toxicity symptoms, probably due to lower Fe concentration of Si-treated plants. Silicon application could improve the activity of antioxidant enzymes such as catalase, ascorbate peroxidase, and soluble peroxidase under moderate Fe toxicity, which resulted in greater hydrogen peroxide detoxification and declined lipid peroxidation. Thus, silicon nutrition could ameliorate harmful effects of Fe toxicity possibly through reduction of plant Fe concentration and improvement of antioxidant enzyme activity.  相似文献   

8.
9.
10.
11.
12.
Iron overload disorders represent a heterogenous group of conditions resulting from inherited and acquired causes. If undiagnosed they can be progressive and fatal. Early detection and phlebotomy prior to the onset of cirrhosis can reduce morbidity and normalise life expectancy. We now have greater insight into the complex mechanisms of normal and disordered iron homeostasis following the discovery of new proteins and genetic defects. Here we review the normal mechanisms and regulation of gastrointestinal iron absorption and liver iron transport and their dysregulation in iron overload states. Advances in the understanding of the natural history of iron overload disorders and new methods for clinical detection and management of hereditary haemochromatosis are also reviewed. The current screening strategies target high-risk groups such as first-degree relatives of affected individuals and those with clinical features suggestive of iron loading. Potential ethical, legal and psychosocial issues arising through application of genetic screening programs need to be resolved prior to implementation of general population screening programs.  相似文献   

13.
14.
Magnesium: nutrition and metabolism   总被引:14,自引:0,他引:14  
Magnesium is an essential mineral that is needed for a broad variety of physiological functions. The usual daily magnesium uptake with a western diet is sufficient to avoid deficiency but seems not to be high enough to establish high normal serum magnesium concentrations that are protective against various diseases. Changes in magnesium homeostasis mainly concern the extracellular space, as the intracellular magnesium concentration is well regulated and conserved. The extracellular magnesium concentration is primarily regulated by the kidney, the mechanisms of this regulation have been elucidated recently. Due to the growing knowledge about the regulation of extra- and intracellular magnesium concentrations and the effects of changed extracellular magnesium levels the use of magnesium in therapy gains more widespread attention.  相似文献   

15.
16.
17.
M L Freedman 《Blood cells》1987,13(1-2):227-235
Cells from aged animals show a decrease in heme synthesis, an increase in heme degradation, and a maintenance of heme concentration and heme-containing proteins. This raises the possibility that alternate sources of heme are utilized by the old animal to maintain intracellular heme necessary for initiation of protein synthesis. The mechanisms to balance heme and protein synthesis, and cytoplasmic and mitochondrial protein synthesis remain intact with advanced age. Iron remains available to the healthy organism in abundant amounts throughout the life span. The decrease in cellular iron utilization seen with age might conceivably result from availability of heme independent of heme synthesis, as intracellular heme controls the cellular uptake of iron from transferrin. Heme levels in aged cells seem to be maintained via an alternate heme source. The bone marrow in aged animals appears to function adequately as long as there is no stress. Anemia, therefore, should always be considered as a serious sign in illness and never as a normal concomitant of aging.  相似文献   

18.
Progress in the genetic understanding of plant iron and zinc nutrition   总被引:10,自引:0,他引:10  
In this review, we describe the need and progress to improve the iron and zinc contents in crop plants by genetic means. To achieve this goal either by transgenic approaches or classical breeding, knowledge about the physiological and molecular mechanisms of mineral uptake and mineral homeostasis will be very helpful. The progress in our understanding of the molecular processes and genes is described, and the use of the identified genes by transgenic approaches is illustrated. Genetic mapping of the existing variation will allow marker-assisted breeding to exploit the available natural variation in crop plants. For this application, ultimately the knowledge of the genes underlying this quantitative variation, called quantitative trait loci (QTL), will be required. It is expected that research in this field in the model species Arabidopsis thaliana , where the molecular tools are available, might help in the identification of the allelic variation at QTL.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号