首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of the external mycelium in arbuscular mycorrhiza for N uptake and transport was studied. The contribution of the fungal symbiont to N acquisition by plants was studied mainly under waterstressed conditions using 15N. Lettuce (Lactuca sativa L) was the host for two isolates of the arbuscular mycorrhizal fungi Glomus mosseae and G. fasciculatum. The experimental pots had two soil compartments separated by a fine mesh screen (60 m). The root system was restricted to one of these compartments, while the fungal mycelium was able to cross the screen and colonize the soil in the hyphal compartment. A trace amount of 15NH 4 + was applied to the hyphal compartment 1 week before harvest. Under water-stressed conditions both endophytes increased the 15N enrichment of plant tissues; this was negligible in nonmycorrhizal control plants. This indicates a direct effect of arbuscular mycorrhizal fungi on N acquisition in relatively dry soils. G. mosseae had more effect on N uptake and G. fasciculatum on P uptake under the water-limited conditions tested, but both fungi improved plant biomass production relative to nonmycorrhizal plants to a similar extent.  相似文献   

2.
Summary The influence of vesicular-arbuscular mycorrhizal symbiosis on cytokinin activity in Citrus jambhiri Lush, seedlings was investigated. C. jambhiri inoculated with cultures of Glomus caledonium (Nicol. and Gerd.), G. epigaeum (Dan. and Trappe), G. etunicatum (Becker and Gerd.), G. fasciculatum Thaxt. (Gerd, and Trappe) or G. mosseae (Nicol and Gerd.) was grown from seed for 105 days in a glasshouse. Cytokinin activity in roots and leaves of seedlings was analyzed using high-performance liquid chromatography, mass spectrometry and a bioassay. Seedling leaf tissue had greater cytokinin activity than root tissue. Zeatin, zeatin riboside, and their dihydro- and glucoside derivatives were isolated from leaves of 105-day-old seedlings inoculated with G. fasciculatum and G. mosseae. Cytokinin activity in roots and leaves was associated with differences in seedling total dry weight and vesicular-arbuscular mycorrhizal colonization. The ribose moiety and the saturated side chain apparently influence cytokinin transport and physiological activity in Citrus seedlings.  相似文献   

3.
Two arbuscular mycorrhizal fungi (Glomus deserticola and Glomus fasciculatum) were entrapped in calcium alginate, alone or in combination with a phosphate-solubilizing yeast (Yarowia lipolytica) and, after storage for 60 days, were inoculated into soil microcosms with tomato as the test plant. The average extent of root colonization by gel-entrapped G. deserticola and G. fasciculatum were 32 ± 5.6 and 24 ± 12.1%, respectively. Improved infective potential and colonization efficiency were observed when Y. lipolytica was co-entrapped with the mycorrhizal fungi. The best value, 49%, of mycorrhizal colonization was in roots of plants inoculated with G. deserticola co-entrapped with Y. lipolytica.  相似文献   

4.
This paper reports the successful isolation and preliminary characterisation of a mutant of Lycopersicon esculentum Mill. with highly reduced vesicular-arbuscular (VA) mycorrhizal colonization. The mutation is recessive and has been designated rmc . Colonization by G. mosseae is characterised by poor development of external mycelium and a few abnormal appressoria. Vesicles were never formed by this fungus in association with the mutant. Gi. margarita formed large amounts of external mycelium, complex branched structures and occasional auxiliary cells. Small amounts of internal colonization also occurred. Laser scanning confocal microscopy (LSCM) gave a clear picture of the differences in development of G. intraradices and Gi. margarita in mutant and wild-type roots and confirmed that the fungus is restricted to the root surface of the mutants. The amenability of tomato for molecular genetic characterisation should enable us to map and clone the mutated gene, and thus identify one of the biochemical bases for inability to establish a normal mycorrhizal symbiosis. The mutant represents a key advance in molecular research on VA mycorrhizal symbiosis.  相似文献   

5.
Summary Response ofLeucanea leucocephala to inoculation withGlomus fasciculatum and/or Rhizobium was studied in a phosphorus deficient unsterile soil.G. fasciculatum only inoculation improved nodulation by native rhizobia and Rhizobium only treatment improved colonization of roots by native mycorrhizal fungi. Dual inoculation with both the organisms improved nodulation, mycorrhizal colonization, dry weight, nitrogen and phosphorus content of the plants compared to single inoculation with either organism. Contribution of U.A.S. Research Project DR/AMB-1.  相似文献   

6.
A study was performed to determine the effect of the systemin polypeptide on the bio-protective effect of arbuscular mycorrhizal fungi (AMF) in tomato plants infected with Alternaria solani, Phytophthora infestans or P. parasitica. Before infection, tomato plants were colonized with two different AMF, Glomus fasciculatum or G. clarum. In addition, a group of inoculated plants was treated with systemin, just after emergence. The exogenous application of systemin marginally suppressed the resistance against A. solani leaf blight observed in G. fasciculatum mycorrhizal plants but significantly enhanced it in plants colonized with G. clarum. Systemin induced resistance to P. parasitica in leaves of G. fasciculatum mycorrhizal plants, in which AMF colonization alone was shown to have no protective effect. Conversely, none of the treatments led to resistance to root or stem rots caused by P. infestans or P. parasitica. The above effects did not correlate with changes in the activity levels of β-1,3-glucanase (BG), chitinase (CHI), peroxidase (PRX), and phenylalanine ammonium lyase (PAL) in leaves of infected plants. However, they corroborated previous reports showing that colonization by AMF can lead to a systemic resistance response against A. solani. Systemic resistance to A. solani was similarly observed in non-mycorrhizal systemin-treated plants, which, in contrast, showed increased susceptibility to P. infestans and P. parasitica. The results indicated that the pattern of systemic disease resistance conferred by mycorrhizal colonization was dependent on the AMF employed and could be altered by the exogenous application of systemin, by means of a still undefined mechanism.  相似文献   

7.
Vesicular-arbuscular mycorrhizae may increase resistance of plants to drought by a number of mechanisms, such as increased root hydraulic conductivity, stomatal regulation, hyphal water uptake and osmotic adjustment. However, a substantial contribution of vesicular-arbuscular mycorrhizal (VAM) hyphae to water uptake has not been demonstrated unequivocally. The objective of this investigation was to examine the contribution of hyphae from two VAM fungi to water uptake and transport by the host plant. Lettuce (Lactuca sativa L.) plants were grown in a container divided by a screen into two compartments. One was occupied by roots, the other only by VAM hyphae, which the screen permitted to pass. Roots were colonized by the VAM fungi Glomus deserticola or Glomus fasciculatum, or were left uninoculated but P-supplemented. Water was supplied to the hyphal compartment at a distance of 10 cm from the screen (root). CO2 exchange rate, water-use efficiency, transpiration, stomatal conductance and photosynthetic phosphorus-use efficiency of VAM or P-amended control plants were evaluated at three levels of water application in the hyphal compartment. Results indicate that much of the water was taken up by the hyphae in VAM plants. VAM plants, which had access to the hyphal compartment, had higher water and nutrient contents. G. deserticola functioned efficiently under water limitation and mycelium from G. fasciculatum-colonized plants was very sensitive to water in the medium. This discrepancy in VAM behaviour reflects the various abilities of each fungus according to soil water levels. Different abilities of specific mycelia were also expressed in terms of nutritional and leaf gas-exchange parameters. G. fasciculatum caused a significant increase in net photosynthesis and rate of water use efficiency compared to G. deserticola and P-fertilized plants. In contrast, the G. deserticola treatment was the most efficient affecting N, P and K nutrition, leaf conductance and transpiration. Since no differences in the intra- and extra-radical hyphal extension of the two endophytes were found, the results demonstrate that mycorrhizal hyphae can take up water and that there are considerable variations in both the behaviour of these two VAM fungi and in the mechanisms involved in their effects on plant water relations.  相似文献   

8.
Cabbage (Brassica oleracea, var. capitata, cv. Hercules) seedlings were inoculated with vesicular-arbuscular mycorrhizal (VAM) fungi Glomus fasciculatum, G. aggregatum, and G. mosseae. Differential efficiency in mycorrhizal colonization and the specificity of fungal symbiont to stimulate the growth and nutrient uptake of the host were observed. In addition, there was an increase in phenol, protein, reducing sugar contents, and peroxidase activity in the VAM inoculated seedlings. Since these compounds are known to confer resistance against fungal pathogens, the use of VAM as a biological control agent to protect cabbage against several root diseases is suggested.  相似文献   

9.
The effects of application of two arbuscular mycorrhizal (AM) fungi Glomus macrocarpum and G. fasciculatum on shoot biomass and concentration of essential oil in Anethum graveolens L. and Trachyspermum ammi (Linn.) Sprague fruits were evaluated. Results revealed significant variation in effectiveness of the two AM fungal species. AM fungal inoculation in general improved the growth of the plants. On mycorrhization, the concentration of essential oil increased up to 90% in dill and 72% in carum over their respective controls. Glomus macrocarpum was more effective than G. fasciculatum in enhancing the oil concentration. The constituents of the essential oils were characterized by gas liquid chromatography. The levels of limonene and carvone were enhanced in essential oil obtained from G. macrocarpum-inoculated dill plants, while G. fasciculatum inoculation resulted in a higher level of thymol in carum.  相似文献   

10.
Effects of humic substances (humic acid or fulvic soil extract) or saprophytic microorganisms (Paecilomyces lilacinus and an unidentified actinomycete) on growth of mycelium and mycorrhiza formation by Glomus claroideum BEG23 were studied in a hydroponic system. Humic substances stimulated root colonization and production of extraradical mycelium by the mycorrhizal fungus. Both humic and fulvic acids tended to decrease populations of culturable bacteria and fungi in the cultivation system, indicating a moderately antibiotic activity. The addition of saprophytic microorganisms able to use humic substances to the cultivation system further stimulated the development of the mycorrhizal fungus. However, stimulation of G. claroideum was also observed when the saprophytic microorganisms were heat-killed, suggesting that their effect was not linked to a specific action on humic substances. The results indicate that humic substances may represent a stimulatory component of the soil environment with respect to arbuscular mycorrhizal fungi.  相似文献   

11.
The aim of this study is to investigate the effects of arbuscular mycorrhizal fungi (AMF) on garlic plants growth and the uptake of selenium (Se). Garlic plants were grown in the pots inoculated with Glomus fasciculatum and G. mosseae and maintained in a greenhouse. Three weeks after planting, the pots had received different concentrations of Se (5, 10, 15, 20, 25 mg kg?1 of soil) in the form of selenium dioxide (SeO2) at 3 weeks intervals up to 12 weeks. For physiological and biochemical analysis, the samples were randomly collected from five plants of each experiment. Maximum AM infection, spore population and plant biomass were observed in the roots of mycorrhizal-mediated plants without Se, and they were gradually declined in both mycorrhizal and non-mycorrhizal (NM) plants with increasing concentrations of Se. Among the two Glomus species tested, G. fasciculatum-mediated plants showed higher AM infection, spore population and plant biomass than G. mosseae. No differences were observed for the uptake of Se in mycorrhizal plants and NM plants. However, NM plants uptake more Se than mycorrhizal plants. Higher contents of total chlorophyll and sugars were observed in plants inoculated with G. fasciculatum without Se and they were decreased in the presence of Se. In contrast, increased amount of glutathione peroxidase was observed at increasing concentrations of Se up to 20 mg kg?1. High-performance liquid chromatography data revealed that SeO2 converted to organic form of Se as γ-glutamyl-Se-methylselenocysteine. These results are basis for further investigations on the role of AMF on plant growth and uptake of Se in crop plants.  相似文献   

12.
Eighteen different VA mycorrhizal fungi were screened for their symbiotic responses with wet land rice cultivar Prakash (IET 2254) under pot culture. Of the 18 fungi, Acaulospora sp. (ICRISAT), Glomus fasciculatum (Riverside) and G. mosseae (Invermay) were found to be the best in improving plant height, tiller number, total biomass, panicle number, grain weight and plant P and Zn concentrations. Increases in grain yield caused by inoculation with Acaulospora sp. (ICRISAT), G. fasciculatum (Riverside) and G. mosseae (Invermay) were 62%, 59% and 35%, respectively.  相似文献   

13.
Summary Effect of mycorrhizal colonisation byGlomus fasciculatum on survival, penetration and development of the root knot nematodeMeloidogyne incognita in tomato was studied. The number of giant cells formed in mycorrhizal plants was significantly low. Mycorrhizal roots did not prevent the penetration by nematode larvae. Root extract from the mycorrhizal plants brought about 50% mortality of the nematode larvae in four days time.  相似文献   

14.
The impact of Glomus fasciculatum on Meloidogyne hapla associated with Allium cepa was evaluated in two experiments. Nematode density was not different in mycorrhizal and nonmycorrhizal plants 10 weeks after the joint inoculation of M. hapla and G. fasciculatum. Differences in the age structure of M. hapla populations reared on mycorrhizal and nonmycorrhizat plants were noted. G. fasciculatum enhanced leaf and bulb growth of A. cepa in the absence of M. hapla, but did not affect plant weight when nematodes were present. Survival and reproduction of M. hapla were not affected by G. fasciculatum or phosphorus (P). The estimated time required for inoculated second-stage juveniles (J2) to mature to the adult stage was 1,000 degree hours (base = 9 C) greater in mycorrhizal than in nonmycorrhizal plants supplemented with P. Although the infectivity of J2 was not measured directly, colonization of A. cepa by G. fasciculatum appeared to alter the ability of M. hapla to penetrate roots.  相似文献   

15.
Vesicular-arbuscular mycorrhizal (VAM) associations often vary according to the abundance of available soil phosphorus (P). Therefore, understanding the response of crop plants to colonization by VAM fungi necessitates the study of the response of colonized and noncolonized plants, from a range of cultivars, to differing levels of P. Cowpea is grown throughout the world, often on impoverished soils in which it can benefit from formation of mycorrhizae. The present study was conducted to determine the response of four cultivars of cowpea (Vigna unguiculata (L.) Walp.), varying in nitrogen fixation capacity, to inoculation withGlomus fasciculatum at four levels of added P in the rooting medium. In a greenhouse experiment, four cowpea cultivars, Mississippi Silver, Brown Crowder, Six Week Browneye and MI 35, were grown with and without the mycorrhizal fungus at four levels of added P, 0, 10, 20 and 30 ppm. Root colonization (%) was negatively correlated with P content of the growth medium and shoot P concentration. Intraspecific variability was shown for shoot dry weight and leaf area in response to inoculation withG. fasciculatum at different P levels. The range of P required in the growth medium which allowed benefit fromG. fasciculatum was identified for individual cultivars using shoot dry weight and leaf area, and collectively across cultivars for other parameters.  相似文献   

16.
Summary Six mycorrhizal fungi were tested as inoculants for pearl millet (Pennisetum americanum Leeke) grown in pots maintained in a greenhouse. VAM fungi varied in their ability to stimulate plant growth and phosphorus uptake. Inoculation withGigaspora margarita, G. calospora andGlomus fasciculatum increased shoot drymatter 1.3 fold over uninoculated control. In another pot trial, inoculation withGigaspora calospora andGlomus fasciculatum resulted in dry matter and phosphorus uptake equivalent to that produced by adding phosphorus at 8 kg/ha.The influence of inoculatingGigaspora calospora on pearl millet at different levels of phosphorus fertilizer (0 to 60 kg P/ha) as triple superphosphate in sterile and unsterile alfisol soil was also studied. In sterile soil, mycorrhizal inoculation increased dry matter and phosphorus uptake at levels less than 20 kg/ha. At higher P levels the mycorrhizal effect was decreased. These studies performed in sterilized soil suggest that inoculation of pearl millet with efficient VAM fungi could be extremely useful in P deficient soils. However, its practical utility depends on screening and isolation of fungal strains which perform efficiently in natural (unsterilized) field conditions.  相似文献   

17.
Improved salt tolerance of mycorrhizal plants is commonly attributed to their better mineral nutrition, particularly phosphorus. However, the effect of arbuscular-mycorrhizal (AM) fungi on salt tolerance may not be limited to this mechanism. We investigated the possibility that non-nutritional effects of AM fungi, based on proline accumulation or increased photosynthesis and related parameters, can influence the tolerance of lettuce (Lactuca sativa L.) to salinity. Three levels of salt (3, 4 and 5 g NaCl kg-1 dry soil) were applied and plants were maintained under these conditions for 7 weeks. The salt-treated AM plants produced greater root and shoot dry weights than unfertilized or P-fertilized non-AM controls. With increasing salinity, both shoot and root dry weights were reduced, but this decrease was greater in uninoculated plants. In particular, shoot dry weight was not reduced in G. fasciculatum-colonized plants as a consequence of salt, whereas in uninoculated plants it was reduced by about 35% at the highest salt level. Proline accumulation was considerably lower for P-amended non-AM and for AM plants except for G. mosseae-colonized plants than was the case for unamended plants. Transpiration, carbon dioxide exchange rate (CER), stomatal conductance and water use efficiency (WUE) were higher in mycorrhizal plants. At 5 g NaCl kg-1, both photosynthesis and WUE increased by more than 100% in mycorrhizal treatment relative to uninoculated plants. The contents of phosphorus of P-fertilized non-AM plants was similar to or higher than those of G. mosseae- and G. fasciculatum-colonized plants. Plants colonized by G. deserticola had the highest P-content regardless of salt level. Hence, the effect of G. mosseae and G. fasciculatum on salt tolerance in this experiment could not be attributed to a difference in the P content. The mechanisms by which these two fungi alleviated salt stress appeared to be based on physiological processes (increased CER, transpiration, stomatal conductance and WUE) rather than on nutrient uptake (N or P).  相似文献   

18.
Root-rot and wilt caused by Fusarium chlamydosporum affects the cultivation of Coleus forskohlii, a medicinal plant grown for its roots, which contain a pharmaceutically important compound called forskolin. In this study, management of this disease under low and high inoculum levels was assessed with four arbuscular mycorrhizal (AM) fungi and a strain of Pseudomonas fluorescens. The AM fungus Glomus fasciculatum and P. fluorescens were the most effective treatments that reduced the severity of root-rot and wilt of C. forskohlii by 56–65% and 61–66%, respectively, under lower and higher levels of pathogen F. chlamydosporum. G. fasciculatum increased the dry shoot and root weight by 108–241% and 92–204%, respectively, while in plants treated with P. fluorescens, an increase of 97–223% and 97–172% in dry shoot and root weight, respectively, was observed. Although P. fluorescens was effective, it gave higher root yields only under lower inoculum level of the pathogen. G. fasciculatum performed equally well under both lower and higher inoculum levels. Increase in yields with both the biocontrol agents was accompanied by increase in P uptake (230–303%) and in K uptake (270–335%). The forskolin content of the roots was significantly increased (14–21%) by G. fasciculatum, P. fluorescens or G. mosseae under lower inoculum level of pathogen.  相似文献   

19.
Investigations were carried out using the vesicular arbuscular mycorrhizal fungus, Glomus fasciculatum, to improve the success in transplanting micropropagated plantlets of Sesbania sesban. Plantlets were developed from somatic embryos and/or adventitious buds (induced from various explants on Gamborg's medium supplemented with 6-benzylaminopurine), in the presence of 10–7 m α-naphthaleneacetic acid and 5×10–6 m gibberellic acid. Subsequent to nodulating the roots with Rhizobium, plantlets were transplanted into sterile garden soil and inoculated with or without G. fasciculatum. Only 30% of plantlets transferred to soil without G. fasciculatum survived. In contrast, all the plantlets inoculated with G. fasciculatum survived. Histochemical study revealed the presence of intracellular hyphae with well-developed arbuscules and intercellular hyphae with vesicles, suggesting that G. fasciculatum formed a good mycorrhizal association with S. sesban roots. These observations showed that mycorrhizal association helped to increase the potential of micropropagated plantlets to successfully withstand transplantation shock. Received: 6 January 1997 / Revision received: 28 August 1997 / Accepted: 5 September 1997  相似文献   

20.
The present study on efficacy of different Glomus species, an arbuscular mycorrhizal (AM) fungus (G. aggregatum, G. fasciculatum, G. mosseae, G. intraradices) on various growth parameters such as biomass, macro and micronutrients, chlorophyll, protein, cytokinin and alkaloid content and phosphatase activity of pink flowered Catharanthus roseus plants showed that all Glomus species except G. intraradices enhanced the chlorophyll, protein, crude alkaloid, phosphorus, sulphur, manganese and copper contents of C. roseus plants along with phosphatase activity significantly over uninoculated plants. However only G. mosseae and G. fasciculatum exhibited superior symbiotic relationship with the plant. G. mosseae was found to be the best for increasing the crude alkaloid content (8.19%) in leaf and also in increasing the quantity of important alkaloids vincristine and vinblastine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号