共查询到20条相似文献,搜索用时 15 毫秒
1.
Parallel multiplex thermodynamic analysis of coaxial base stacking in DNA duplexes by oligodeoxyribonucleotide microchips
下载免费PDF全文

Parallel thermodynamic analysis of the coaxial stacking effect of two bases localized in one strand of DNA duplexes has been performed. Oligonucleotides were immobilized in an array of three-dimensional polyacrylamide gel pads of microchips (MAGIChips‘). The stacking effect was studied for all combinations of two bases and assessed by measuring the increase in melting temperature and in the free energy of duplexes formed by 5mers stacked to microchip-immobilized 10mers. For any given interface, the effect was studied for perfectly paired bases, as well as terminal mismatches, single base overlaps, single and double gaps, and modified terminal bases. Thermodynamic parameters of contiguous stacking determined by using microchips closely correlated with data obtained in solution. The extension of immobilized oligonucleotides with 5,6-dihydroxyuridine, a urea derivative of deoxyribose, or by phosphate, decreased the stacking effect moderately, while extension with FITC or Texas Red virtually eliminated stacking. The extension of the immobilized oligonucleotides with either acridine or 5-nitroindole increased stacking to mispaired bases and in some GC-rich interfaces. The measurements of stacking parameters were performed in different melting buffers. Although melting temperatures of AT- and GC-rich oligonucleotides in 5 M tetramethylammonium chloride were equalized, the energy of stacking interaction was significantly diminished. 相似文献
2.
Oligodeoxyribonucleotides containing N4-methoxycytosine (mo4C), N4-methoxy-5-methylcytosine (mo4m5C) and other base-analogues were synthesised and used to compare the stabilities of duplexes containing mo4C.A and mo4C.G base pairs with those containing normal and mismatch pairs. The Tm values and other thermodynamic parameters are recorded. The otherwise identical duplexes containing a mo4C.A and a mo4C.G base pair have closely similar stabilities to each other and to the corresponding duplexes containing normal base pairs, considerably greater than the stabilities of those containing mismatch pairs. Corresponding observations are recorded in dot-blot experiments using M13 cloned DNA carrying an insert complementary to the oligonucleotides; approximate Td values are given. 相似文献
3.
Sorokin NV Chechetkin VR Livshits MA Pan'kov SV Donnikov MY Gryadunov DA Lapa SA Zasedatelev AS 《Journal of biomolecular structure & dynamics》2005,22(6):725-734
The efficiency of discrimination between perfect and mismatched duplexes during hybridization on microchips depends on the concentrations of target DNA in solution and immobilized probes, buffer composition, and temperature of hybridization and is determined by both thermodynamic relationships and hybridization kinetics. In this work, optimal conditions of discrimination were studied using hybridization of fluorescently labeled target DNA with custom-made gel-based oligonucleotide microchips. The higher the concentration of immobilized probes and the higher the association constant, the higher the concentration of the formed duplexes and the stronger the corresponding fluorescence signal, but, simultaneously, the longer the time needed to reach equilibrium. Since mismatched duplexes hybridize faster than their perfect counterparts, perfect-to-mismatch signal ratio is lower in transient regime, and short hybridization times may hamper the detection of mutations. The saturation time can be shortened by decreasing the probe concentration or augmenting the gel porosity. This improves the detection of mutations in transient regime. It is shown that the decrease in the initial concentration of oligonucleotide probes by an order of magnitude causes only 1.5-2.5-fold decrease of fluorescence signals after hybridization of perfect duplexes for 3-12 h. At the same time, these conditions improve the discrimination between perfect and mismatched duplexes more than two-fold. A similar improvement may be obtained using an optimized dissociation procedure. 相似文献
4.
Boron-containing oligodeoxyribonucleotide 14mer duplexes: enzymatic synthesis and melting studies.
下载免费PDF全文

A set of three 14mer oligodeoxyribonucleotides of sequence d(5'-CTATGGCCTCAG*CT-3'/3'-GATACCGGAGTCGA-5') containing G* variants either as 2'-deoxyguanosine phosphate (unmodified), N7-cyanoborane 2'-deoxyguanosine phosphate (base-modified) or 2'-deoxyguanosine boranophosphate (backbone-modified) were synthesized by template-directed primer extension. Both the N7-cyanoborane 2'-deoxyguanosine triphosphate and 2'-deoxyguanosine alpha-boranotriphosphate nucleotides are good substrates for Sequenase. We infer that a single Sp boranophosphate linkage (which has a stereochemistry equivalent to the corresponding Rp thiophosphate analog) is formed in the backbone-modified 14mer. Thermally induced helix-coil transitions were monitored for the hybridized duplexes using UV and circular dichroism (CD) spectroscopy. The CD spectra of the two types of boron-modified hybrids closely resemble the unmodified parent duplex, forming B-type helices in 150 mM NaCl, 1 mM EDTA, 10 mM phosphate, pH 7.4, buffer. UV melting results indicate that both hybrids have stabilities comparable with the parent duplex as measured by Tm or delta G degree 25. These studies indicate that singly modified base- or backbone-boronated DNA are good analogs of normal DNA. 相似文献
5.
NMR studies of G:A mismatches in oligodeoxyribonucleotide duplexes modelled after ribozymes.
下载免费PDF全文

The structures of two oligodeoxyribonucleotide duplexes, the base sequences of which were modelled after both a hammerhead ribozyme and a small metalloribozyme, were studied by NMR. Both duplexes contain adjacent G:A mismatches; one has a PyGAPu:PyGAPu sequence and the other a PyGAPy:PuGAPu sequence. It is concluded on the basis of many characteristic NOEs that in both duplexes G:A base pairs are formed in the unique 'sheared' form, where an amino proton instead of an imino proton of G is involved in the hydrogen bonding, and G and A bases are arranged 'side by side' instead of 'head to head'. A photo-CIDNP experiment, which gives unique and independent information on the solvent accessibility of nucleotide bases, also supports G:A base pairing rather than a bulged-out structure of G and A residues. This is the first demonstration that not only the PyGAPu:PyGAPu sequence but also the PyGAPy:PuGAPu sequence can form the unique sheared G:A base pairs. Taking the previous studies on G:A mismatches into account, the idea is suggested that a PyGA:GAPu sequence is a minimum and essential element for the formation of the sheared G:A base pairs. The sheared G:A base pairs in the PyGAPu:PyGAPu sequence are suggested to be more stable than those in the PyGAPy:PuGAPu sequence. This is explained rationally by the idea proposed above. 相似文献
6.
Chemical reactions within DNA duplexes. Cyanogen bromide as an effective oligodeoxyribonucleotide coupling agent 总被引:8,自引:0,他引:8
Cyanogen bromide was found to condense oligodeoxyribonucleotides on a complementary template in aqueous solution. Optimum conditions for this vigorous and effective reaction were developed. CNBr proved to be useful for incorporation of phosphoramidate or pyrophosphate internucleotide bonds in DNA duplexes. 相似文献
7.
Effects of external transport on discrimination between perfect and mismatch duplexes on gel-based oligonucleotide microchips 总被引:1,自引:0,他引:1
Sorokin NV Yurasov DY Cherepanov AI Kozhekbaeva JM Chechetkin VR Gra OA Livshits MA Nasedkina TV Zasedatelev AS 《Journal of biomolecular structure & dynamics》2007,24(6):571-578
Using hydrogel-based oligonucleotide microchips developed previously for the choice of drugs during leukemia treatment and the other diseases, it is shown that the acceleration of external transport by mixing buffer solution with peristaltic pump not only enhances the observable fluorescence signals, but also improves significantly the discrimination between perfect and mismatch duplexes at the intermediate stage of hybridization on the oligonucleotide microchips. The discrimination efficiency for a given hybridization time grows monotonously with the frequency of flow pulsations. The mixing with frequency 10 Hz accelerates the hybridization rate approximately thrice and improves the discrimination efficiency 1.5-2.5 times higher for overnight hybridization. To study these effects, we have developed the special peristaltic pump mixing solution in a hybridization chamber of 35 mul in volume (area approximately 1 x 1 cm(2) and height 0.3 mm). We present also the brief theoretical summary for the interpretation and assessment of the observed experimental features. 相似文献
8.
Parallel analysis of oligodeoxyribonucleotide (oligonucleotide) interactions. I. Analysis of factors influencing oligonucleotide duplex formation. 总被引:1,自引:0,他引:1
下载免费PDF全文

A novel method for the analysis of oligonucleotide-oligonucleotide interactions is described. Oligonucleotides of different sequence are synthesised in situ as stripes on the surface of a glass slide (see accompanying paper). Multiple hybridizations are then carried out on each oligonucleotide simultaneously to determine the dependence of oligonucleotide duplex formation on duplex length, base composition, hybridisation solvent and sequence complexity. 相似文献
9.
Massive parallel analysis of
the binding specificity of histone-like protein HU to single- and
double-stranded DNA with generic oligodeoxyribonucleotide microchips 总被引:3,自引:4,他引:3
下载免费PDF全文

Alexander S. Krylov Olga A. Zasedateleva Dmitry V. Prokopenko Josette Rouviere-Yaniv Andrei D. Mirzabekov 《Nucleic acids research》2001,29(12):2654-2660
A generic hexadeoxyribonucleotide microchip has been applied to test the DNA-binding properties of HU histone-like bacterial protein, which is known to have a low sequence specificity. All 4096 hexamers flanked within 8mers by degenerate bases at both the 3′- and 5′-ends were immobilized within the 100 × 100 × 20 mm polyacrylamide gel pads of the microchip. Single-stranded immobilized oligonucleotides were converted in some experiments to the double-stranded form by hybridization with a specified mixture of 8mers. The DNA interaction with HU was characterized by three type of measurements: (i) binding of FITC-labeled HU to microchip oligonucleotides; (ii) melting curves of complexes of labeled HU with single-stranded microchip oligonucleotides; (iii) the effect of HU binding on melting curves of microchip double-stranded DNA labeled with another fluorescent dye, Texas Red. Large numbers of measurements of these parameters were carried out in parallel for all or many generic microchip elements in real time with a multi-wavelength fluorescence microscope. Statistical analysis of these data suggests some preference for HU binding to G/C-rich single-stranded oligonucleotides. HU complexes with double-stranded microchip 8mers can be divided into two groups in which HU binding either increased the melting temperature (Tm) of duplexes or decreased it. The stabilized duplexes showed some preference for presence of the sequence motifs AAG, AGA and AAGA. In the second type of complex, enriched with A/T base pairs, the destabilization effect was higher for longer stretches of A/T duplexes. Binding of HU to labeled duplexes in the second type of complex caused some decrease in fluorescence. This decrease also correlates with the higher A/T content and lower Tm. The results demonstrate that generic microchips could be an efficient approach in analysis of sequence specificity of proteins. 相似文献
10.
Thermodynamic stability and drug-binding properties of oligodeoxyribonucleotide duplexes containing 3-deazaadenine:thymine base pairs.
下载免费PDF全文

We have used ultraviolet melting techniques to study the effect on stability of incorporating the nucleoside analogue 2'-deoxy-3-deazaadenosine (d3cA) into the duplex 5'-d(CGCAATCG)-3'-d(GCGTTAGC). Our results demonstrate that the successive replacement of dA by d3CA increasingly destabilises the duplex. The destabilising effect of this analogue is considerably enhanced as the pH is lowered and the results are consistent with protonation of 3-deazaadenine (probably at N-1) contributing to duplex destablisation. Surprisingly, the incorporation of d3CA does not significantly affect the binding of distamycin-A. 相似文献
11.
Exploratory studies on azole carboxamides as nucleobase analogs: thermal denaturation studies on oligodeoxyribonucleotide duplexes containing pyrrole-3-carboxamide.
下载免费PDF全文

P Zhang W T Johnson D Klewer N Paul G Hoops V J Davisson D E Bergstrom 《Nucleic acids research》1998,26(9):2208-2215
In order to study base pairing properties of the amide group in DNA duplexes, a nucleoside analog, 1-(2'-deoxy-beta-D-ribofuranosyl)pyrrole-3-carboxamide, was synthesized by a new route from the ester, methyl 1-(2'-deoxy-3',5'-di-O-p -toluoyl-beta-D-erythro-pentofuranosyl)pyrrole-3-carboxylate, obtained from the coupling reaction between 1-chloro-2-deoxy-3,5-di-O -toluoyl-d-erythropentofuranose and methyl pyrrole-3-carboxylate by treatment with dimethylaluminum amide. 1-(2'-Deoxy-beta-D-ribofuranosyl)pyrrole-3-carboxamide was incorporated into a series of oligodeoxyribonucleotides by solid-phase phosphoramidite technology. The corresponding oligodeoxyribonucleotides with 3-nitropyrrole in the same position in the sequence were synthesized for UV comparison of helix-coil transitions. The thermal melting studies indicate that pyrrole-3-carboxamide, which could conceptually adopt either a dA-like or a dI-like hydrogen bond conformation, pairs with significantly higher affinity to T than to dC. Pyrrole-3-carboxamide further resembles dA in the relative order of its base pairing preferences (T >dG >dA >dC). Theoretical calculations on the model compound N-methylpyrrole-3-carboxamide using density functional theory show little difference in the preference for a syntau versus anti conformation about the bond from pyrrole C3 to the amide carbonyl. The amide groups in both the minimized antitau and syntau conformations are twisted out of the plane of the pyrrole ring by 6-14 degrees. This twist may be one source of destabilization when the amide group is placed in the helix. Another contribution to the difference in stability between the base pairs of pyrrole-3-carboxamide with T and pyrrole-3-carboxamide with C may be the presence of a hydrogen bond in the former involving an acidic proton (N3-H of T). 相似文献
12.
Oxidation of guanine or 8-oxo-7,8-dihydroguanine can produce spiroiminodihydantoin (Sp) R and S stereoisomers. Both in vitro and in vivo experiments have shown that the Sp stereoisomers are highly mutagenic, causing G --> C and G --> T transversion mutations. Therefore, they are of interest as potential endogenous cancer causing lesions. However, their structural properties in DNA duplexes remain to be elucidated. We have employed computational methods to study the Sp lesions in 11-mer DNA duplexes with A, C, G, and T partners. Molecular dynamics simulations have been carried out to obtain ensembles of structures, and the trajectories were employed to analyze the structures and compute free energies. The structural and thermodynamic analyses reveal that the Sp stereoisomers energetically favor positioning in the B-DNA major groove, with minor groove conformers also low energy in some cases, depending on the partner base. The R and S stereoisomers adopt opposite orientations with respect to the 5' to 3' direction of the modified strand. Both syn and anti glycosidic bond conformations are energetically feasible, with partner base and stereochemistry determining the preference. The lesions adversely impact base stacking and Watson-Crick hydrogen bonding interactions in the duplex, and cause groove widening. The chemical nature of the partner base determines specific hydrogen bonding and stacking properties of the damaged duplexes. The structural characteristics may relate to observed mutagenic properties of the Sp stereoisomers, including possible stereoisomer-dependent differences. 相似文献
13.
We have examined quantitatively stabilities of PNA/DNA hybrid duplexes with identical nearest-neighbor base pairs and compared stabilities between PNA/DNA and DNA/DNA. The average difference of stabilization energy of the short PNA/DNA was 0.9 kcal mol(-1), which suggests that the stability of the hybrids with identical nearest-neighbor base pairs can be predicted with the nearest-neighbor model as well as those of nucleic acid duplexes. 相似文献
14.
Oligodeoxynucleotide-containing phosphorothioate backbones have been used to regulate viral as well as cellular gene expression. The studies carried out in tissue culture have shown promising results on the use of oligonucleotide phosphorothioates as antiviral agents and, at present, study is underway to develop these oligonucleotide analogues as chemotherapeutic agents. To analyze and purify oligonucleotide analogues, high-performance liquid chromatography using weak anion exchange column has been described. The separation of oligonucleotide phosphorothioate is found to be length dependent. 相似文献
15.
Sequence effects on the relative thermodynamic stabilities of B-Z junction-forming DNA oligomeric duplexes 总被引:1,自引:0,他引:1
下载免费PDF全文

Circular dichroism (CD) and ultraviolet absorption techniques were employed in characterizing the sequence-dependent thermodynamic stabilities of B-Z junction-forming DNA duplexes. The Watson strand of the duplexes has the general sequence (5meC-G)4-NXYG-ACTG (where N = A or G and XY represents all permutations of pyrimidine bases). Duplexes were generated by mixing stoichiometric amounts of the complementary strands. Circular dichroism studies indicate that each duplex is fully right-handed at low salt (e.g., 115 mM Na+) but undergoes a salt-induced conformational transition to a structure that possesses both left- and right-handed conformations at high salt (4.5 M Na+), and hence a B-Z junction. Optical melting studies of the DNA duplexes at fixed DNA concentration with total Na+ concentration ranging from 15 mM to 5.0 M were determined. A nonlinear dependence of the melting temperature (Tm) on [Na+] was observed. Thermodynamic parameters at Na+ concentrations of 115 mM and 4.5 M with a wide range of DNA concentrations were determined from UV optical melting studies via construction of van't Hoff plots. A change of a single dinucleotide within these duplexes significantly affected the helix stabilities. The experimentally obtained free energies for the duplex to single-strand transitions were in close agreement with predicted values obtained from two different methods. 相似文献
16.
Very stable mismatch duplexes: structural and thermodynamic studies on tandem G.A mismatches in DNA.
We have used ultraviolet melting techniques to compare the stability of several DNA duplexes containing tandem G.A mismatches to similar duplexes containing tandem A.G, I.A, and T.A base pairs. We have found that tandem G.A mismatches in 5'-Y-G-A-R-3' duplexes are more stable than their I.A counterparts and that they are sometimes more stable than tandem 5'-Y-T-A-R-3' sequences. This is not the case for tandem G.A mismatches in other base stacking environments, and it suggests that tandem G.A mismatches in 5'-Y-G-A-R-3' sequences have a unique configuration. In contrast to tandem 5'-G-A-3' mismatches, tandem 5'-A-G-3' mismatches were found to be unstable in all cases examined. 相似文献
17.
Sequence effects of aminofluorene-modified DNA duplexes: thermodynamic and circular dichroism properties
下载免费PDF全文

Meneni SR D'Mello R Norigian G Baker G Gao L Chiarelli MP Cho BP 《Nucleic acids research》2006,34(2):755-763
Circular dichroism (CD) and UV-melting experiments were conducted with 16 oligodeoxynucleotides modified by the carcinogen 2-aminofluorene, whose sequence around the lesion was varied systematically [d(CTTCTNG[AF]NCCTC), N = G, A, C, T], to gain insight into the factors that determine the equilibrium between base-displaced stacked (S) and external B-type (B) duplex conformers. Differing stabilities among the duplexes can be attributed to different populations of S and B conformers. The AF modification always resulted in sequence-dependent thermal (Tm) and thermodynamic (−ΔG°) destabilization. The population of B-type conformers derived from eight selected duplexes (i.e. -AG*N- and -CG*N-) was inversely proportional to the −ΔG° and Tm values, which highlights the importance of carcinogen/base stacking in duplex stabilization even in the face of disrupted Watson–Crick base pairing in S-conformation. CD studies showed that the extent of the adduct-induced negative ellipticities in the 290–350 nm range is correlated linearly with −ΔG° and Tm, but inversely with the population of B-type conformations. Taken together, these results revealed a unique interplay between the extent of carcinogenic interaction with neighboring base pairs and the thermodynamic properties of the AF-modified duplexes. The sequence-dependent S/B heterogeneities have important implications in understanding how arylamine–DNA adducts are recognized in nucleotide excision repair. 相似文献
18.
Massive parallel analysis of DNA-Hoechst 33258 binding specificity with a generic oligodeoxyribonucleotide microchip. 总被引:2,自引:3,他引:2
下载免费PDF全文

A L Drobyshev A S Zasedatelev G M Yershov A D Mirzabekov 《Nucleic acids research》1999,27(20):4100-4105
A generic oligodeoxyribonucleotide microchip was used to determine the sequence specificity of Hoechst 33258 binding to double-stranded DNA. The generic microchip contained 4096 oxctadeoxynucleo-tides in which all possible 4(6)= 4096 hexadeoxy-nucleotide sequences are flanked on both the 3'- and 5'-ends with equimolar mixtures of four bases. The microchip was manufactured by chemical immobilization of presynthesized 8mers within polyacrylamide gel pads. A selected set of immobilized 8mers was converted to double-stranded form by hybridization with a mixture of fluorescently labeled complementary 8mers. Massive parallel measurements of melting curves were carried out for the majority of 2080 6mer duplexes, in both the absence and presence of the Hoechst dye. The sequence-specific affinity for Hoechst 33258 was calculated as the increase in melting temperature caused by ligand binding. The dye exhibited specificity for A:T but not G:C base pairs. The affinity is low for two A:T base pairs, increases significantly for three, and reaches a plateau for four A:T base pairs. The relative ligand affinity for all trinucleotide and tetranucleotide sequences (A/T)(3)and (A/T)(4)was estimated. The free energy of dye binding to several duplexes was calculated from the equilibrium melting curves of the duplexes formed on the oligonucleotide microchips. This method can be used as a general approach for massive screening of the sequence specificity of DNA-binding compounds. 相似文献
19.
Effects of monofunctional adducts of platinum(II) complexes on thermodynamic stability and energetics of DNA duplexes
下载免费PDF全文

Effects of adducts of [PtCl(NH3)3]Cl or chlorodiethylenetriamineplatinum(II) on DNA stability were studied with emphasis on thermodynamic origins of that stability. Oligodeoxyribonucleotide duplexes (15-bp) containing the single, site-specific monofunctional adduct at G-residues of the central sequences TGT/ACA or 5'-AGT/5'-ACT were prepared and analyzed by differential scanning calorimetry, temperature-dependent ultraviolet absorption and circular dichroism. The unfolding of the platinated duplexes was accompanied by relatively small unfavorable free energy terms. This destabilization was enthalpic in origin. On the other hand, a relatively large reduction of melting temperature (T(m)) was observed as a consequence of the monofunctional adduct in the TGT sequence, whereas T(m) due to the adduct in the AGT sequence was reduced only slightly. We also examined the efficiency of the mammalian nucleotide excision repair system to remove from DNA the monofunctional adducts and found that these lesions were not recognized by this repair system. Thus, rather thermodynamic than thermal characterization of DNA adducts of monofunctional platinum compounds is a property implicated in the modulation of downstream effects such as protein recognition and repair. 相似文献
20.
C F Edman D E Raymond D J Wu E Tu R G Sosnowski W F Butler M Nerenberg M J Heller 《Nucleic acids research》1997,25(24):4907-4914
Selection and adjustment of proper physical parameters enables rapid DNA transport, site selective concentration, and accelerated hybridization reactions to be carried out on active microelectronic arrays. These physical parameters include DC current, voltage, solution conductivity and buffer species. Generally, at any given current and voltage level, the transport or mobility of DNA is inversely proportional to electrolyte or buffer conductivity. However, only a subset of buffer species produce both rapid transport, site specific concentration and accelerated hybridization. These buffers include zwitterionic and low conductivity species such as: d- and l-histidine; 1- and 3-methylhistidines; carnosine; imidazole; pyridine; and collidine. In contrast, buffers such as glycine, beta-alanine and gamma-amino-butyric acid (GABA) produce rapid transport and site selective concentration but do not facilitate hybridization. Our results suggest that the ability of these buffers (histidine, etc.) to facilitate hybridization appears linked to their ability to provide electric field concentration of DNA; to buffer acidic conditions present at the anode; and in this process acquire a net positive charge which then shields or diminishes repulsion between the DNA strands, thus promoting hybridization. 相似文献