首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
DNA sequencing by hybridization was carried out with a microarray of all 4(6) = 4,096 hexadeoxyribonucleotides (the generic microchip). The oligonucleotides immobilized in 100 x 100 x 20-microm polyacrylamide gel pads of the generic microchip were hybridized with fluorescently labeled ssDNA, providing perfect and mismatched duplexes. Melting curves were measured in parallel for all microchip duplexes with a fluorescence microscope equipped with CCD camera. This allowed us to discriminate the perfect duplexes formed by the oligonucleotides, which are complementary to the target DNA. The DNA sequence was reconstructed by overlapping the complementary oligonucleotide probes. We developed a data processing scheme to heighten the discrimination of perfect duplexes from mismatched ones. The procedure was united with a reconstruction of the DNA sequence. The scheme includes the proper definition of a discriminant signal, preprocessing, and the variational principle for the sequence indicator function. The effectiveness of the procedure was confirmed by sequencing, proofreading, and nucleotide polymorphism (mutation) analysis of 13 DNA fragments from 31 to 70 nucleotides long.  相似文献   

3.
A generic hexadeoxyribonucleotide microchip has been applied to test the DNA-binding properties of HU histone-like bacterial protein, which is known to have a low sequence specificity. All 4096 hexamers flanked within 8mers by degenerate bases at both the 3′- and 5′-ends were immobilized within the 100 × 100 × 20 mm polyacrylamide gel pads of the microchip. Single-stranded immobilized oligonucleotides were converted in some experiments to the double-stranded form by hybridization with a specified mixture of 8mers. The DNA interaction with HU was characterized by three type of measurements: (i) binding of FITC-labeled HU to microchip oligonucleotides; (ii) melting curves of complexes of labeled HU with single-stranded microchip oligonucleotides; (iii) the effect of HU binding on melting curves of microchip double-stranded DNA labeled with another fluorescent dye, Texas Red. Large numbers of measurements of these parameters were carried out in parallel for all or many generic microchip elements in real time with a multi-wavelength fluorescence microscope. Statistical analysis of these data suggests some preference for HU binding to G/C-rich single-stranded oligonucleotides. HU complexes with double-stranded microchip 8mers can be divided into two groups in which HU binding either increased the melting temperature (Tm) of duplexes or decreased it. The stabilized duplexes showed some preference for presence of the sequence motifs AAG, AGA and AAGA. In the second type of complex, enriched with A/T base pairs, the destabilization effect was higher for longer stretches of A/T duplexes. Binding of HU to labeled duplexes in the second type of complex caused some decrease in fluorescence. This decrease also correlates with the higher A/T content and lower Tm. The results demonstrate that generic microchips could be an efficient approach in analysis of sequence specificity of proteins.  相似文献   

4.
To analyze RNA interactions with RNA binding molecules an RNA microchip containing immobilized oligoribonucleotides with protective groups [t-butyldimethylsilyl (tBDMS)] at 2'-O- positions was developed. The oligonucleotides were immobilized within three-dimensional (3-D) hydrogel pads fixed on a glass support. The protective groups preserved the oligoribonucleodes from degradation and were suitable to be removed directly on the microchip when needed, right before its use. These immobilized, deprotected oligoribonucleotides were tested for their interaction with afluorescently labeled oligodeoxyribonucleotide and analyzed for their availability to be cleaved enzymatically by the RNase binase. Stability of tBDMS-protected immobilized oligoribonucleotides after 2.5 years of storage as well as after direct RNase action was also tested. Melting curves of short RNA/DNA hybrids that had formed into gel pads of the microchip were found to exhibit clearly defined S-like shapes, with the melting temperatures in full accordance with those theoretically predicted for the same ionic strength. This approach, based on keeping the protective groups attached to oligoribonucleotides, can be applied for manufacturing any RNA microchips containing immobilized oligoribonucleotides, including microchips with two-dimensional (2-D) features. These RNA microchips can be used to measure thermodynamic parameters of RNA/RNA or RNA/DNA duplexes as well as to study ligand- or protein-RNA interactions.  相似文献   

5.
The thermodynamic analysis was done for the duplexes formed by fluorescently labeled oligonucleotide targets on a genetic hexanucleotide microchip. All 4096 different hexanucleotide chains were immobilized as probes in individual gel pads of the microchip. To strengthen the hybridization, each hexamer was extended at both ends by one nucleotide from the equimolar mixture of all four nucleotides to serve as nonselective linkers. It has been shown that the melting curves for oligonucleotide duplexes formed on the microchip and in a solution are quite similar. The influence of ionic surrounding has been studied in terms of the hybridization efficiency and discrimination between the mismatched and perfect duplexes. Different approaches have been tested to compensate the dependence of duplex stability on the GC content. It has been demonstrated that the use of chaotropic agents, addition of nonlabeled GC-rich competitor oligonucleotides, as well as creation of a temperature gradient along the microchip reproducing the distribution of melting temperatures, efficiently level out the AT/GC differences. The use of tetramethylammonium chloride for the same purpose was accompanied by weakening to some extent the discrimination between the mismatched duplexes and the perfect ones.  相似文献   

6.
Thermodynamic analysis was performed for the duplexes formed by fluorescently labeled oligonucleotide targets on a generic hexanucleotide microchip. All 4096 different hexanucleotide chains were immobilized as probes in individual gel pads of the microchip. To strengthen the hybridization, each hexamer was extended at both ends by one nucleotide from the equimolar mixture of all four nucleotides to serve as nonselective linkers. It has been shown that the melting curves for oligonucleotide duplexes formed on the microchip and in a solution are quite similar. The influence of ionic surrounding has been studied in terms of the hybridization efficiency and discrimination between the mismatched and perfect duplexes. Different approaches have been tested to compensate the dependence of duplex stability on the GC content. It has been demonstrated that the use of chaotropic agents, addition of nonlabeled GC-rich competitor oligonucleotides, as well as creation of a temperature gradient along the microchip reproducing the distribution of melting temperatures, efficiently level out the AT/GC differences. The use of tetramethylammonium chloride for the same purpose was accompanied by weakening to some extent the discrimination between the mismatched duplexes and the perfect ones.  相似文献   

7.
A generic oligodeoxyribonucleotide microchip was used to determine the sequence specificity of Hoechst 33258 binding to double-stranded DNA. The generic microchip contained 4096 oxctadeoxynucleo-tides in which all possible 4(6)= 4096 hexadeoxy-nucleotide sequences are flanked on both the 3'- and 5'-ends with equimolar mixtures of four bases. The microchip was manufactured by chemical immobilization of presynthesized 8mers within polyacrylamide gel pads. A selected set of immobilized 8mers was converted to double-stranded form by hybridization with a mixture of fluorescently labeled complementary 8mers. Massive parallel measurements of melting curves were carried out for the majority of 2080 6mer duplexes, in both the absence and presence of the Hoechst dye. The sequence-specific affinity for Hoechst 33258 was calculated as the increase in melting temperature caused by ligand binding. The dye exhibited specificity for A:T but not G:C base pairs. The affinity is low for two A:T base pairs, increases significantly for three, and reaches a plateau for four A:T base pairs. The relative ligand affinity for all trinucleotide and tetranucleotide sequences (A/T)(3)and (A/T)(4)was estimated. The free energy of dye binding to several duplexes was calculated from the equilibrium melting curves of the duplexes formed on the oligonucleotide microchips. This method can be used as a general approach for massive screening of the sequence specificity of DNA-binding compounds.  相似文献   

8.
Abstract

The reproducibility of melting curves for repeated hybridizations of target DNA with generic oligonucleotide microchips is shown experimentally to depend on the character of matching between fragments of target DNA and immobilized oligonucleotides. The reproducibility of melting curves is higher for the perfect match duplexes and decreases as the number of mismatched pairs within duplexes increases. This effect was applied to the comparative analysis of complex DNA mixtures. We developed a scheme in which we can identify and discriminate between the probe oligonucleotides responsible for the distinctions between target DNA mixtures. A scheme is illustrated by comparing DNA mixtures corresponding to VD-J genes connected with populations of mRNAs CDR3 TCR Vb (T-cell receptor beta complementarity determining region 3) from the thymus and pancreas of NOD mice. Our results demonstrate that generic microchips can be applied efficiently to the analysis of DNA mixtures.  相似文献   

9.
The reproducibility of melting curves for repeated hybridizations of target DNA with generic oligonucleotide microchips is shown experimentally to depend on the character of matching between fragments of target DNA and immobilized oligonucleotides. The reproducibility of melting curves is higher for the perfect match duplexes and decreases as the number of mismatched pairs within duplexes increases. This effect was applied to the comparative analysis of complex DNA mixtures. We developed a scheme in which we can identify and discriminate between the probe oligonucleotides responsible for the distinctions between target DNA mixtures. A scheme is illustrated by comparing DNA mixtures corresponding to V-D-J genes connected with populations of mRNAs CDR3 TCR Vb (T-cell receptor beta complementarity determining region 3) from the thymus and pancreas of NOD mice. Our results demonstrate that generic microchips can be applied efficiently to the analysis of DNA mixtures.  相似文献   

10.
Parallel thermodynamic analysis of the coaxial stacking effect of two bases localized in one strand of DNA duplexes has been performed. Oligonucleotides were immobilized in an array of three-dimensional polyacrylamide gel pads of microchips (MAGIChips‘). The stacking effect was studied for all combinations of two bases and assessed by measuring the increase in melting temperature and in the free energy of duplexes formed by 5mers stacked to microchip-immobilized 10mers. For any given interface, the effect was studied for perfectly paired bases, as well as terminal mismatches, single base overlaps, single and double gaps, and modified terminal bases. Thermodynamic parameters of contiguous stacking determined by using microchips closely correlated with data obtained in solution. The extension of immobilized oligonucleotides with 5,6-dihydroxyuridine, a urea derivative of deoxyribose, or by phosphate, decreased the stacking effect moderately, while extension with FITC or Texas Red virtually eliminated stacking. The extension of the immobilized oligonucleotides with either acridine or 5-nitroindole increased stacking to mispaired bases and in some GC-rich interfaces. The measurements of stacking parameters were performed in different melting buffers. Although melting temperatures of AT- and GC-rich oligonucleotides in 5 M tetramethylammonium chloride were equalized, the energy of stacking interaction was significantly diminished.  相似文献   

11.
Strizhkov BN  Drobyshev AL  Mikhailovich VM  Mirzabekov AD 《BioTechniques》2000,29(4):844-8, 850-2, 854 passim
PCR amplification on a microarray of gel-immobilized primers (microchip) has been developed. One of a pair of PCR primers was immobilized inside a separate microchip polyacrylamide porous gel pad of 0.1 x 0.1 x 0.02 (or 0.04) micron in size and 0.2 (or 0.4) nL in volume. The amplification was carried out simultaneously both in solution covering the microchip array and inside gel pads. Each gel pad contained the immobilized forward primers, while the fluorescently labeled reverse primers, as well as all components of the amplification reaction, diffused into the gel pads from the solution. To increase the amplification efficiency, the forward primers were also added into the solution. The kinetics of amplification was measured in real time in parallel for all gel pads with a fluorescent microscope equipped with a charge-coupled device (CCD) camera. The accuracy of the amplification was assessed by using the melting curves obtained for the duplexes formed by the labeled amplification product and the gel-immobilized primers during the amplification process; alternatively, the duplexes were produced by hybridization of the extended immobilized primers with labeled oligonucleotide probes. The on-chip amplification was applied to detect the anthrax toxin genes and the plasmid-borne beta-lactamase gene responsible for bacterial ampicillin resistance. The allele-specific type of PCR amplification was used to identify the Shiga toxin gene and discriminate it from the Shiga-like one. The genomic mutations responsible for rifampicin resistance of the Mycobacterium tuberculosis strains were detected by the same type of PCR amplification of the rpoB gene fragment isolated from sputum of tuberculosis patients. The on-chip PCR amplification has been shown to be a rapid, inexpensive and powerful tool to test genes responsible for bacterial toxin production and drug resistance, as well as to reveal point nucleotide mutations.  相似文献   

12.
Protein microchips: use for immunoassay and enzymatic reactions   总被引:34,自引:0,他引:34  
Different proteins such as antibodies, antigens, and enzymes were immobilized within the 100 x 100 x 20-microm gel pads of protein microchips. A modified polyacrylamide gel has been developed to accommodate proteins of a size up to 400,000 daltons. Electrophoresis in the microchip reaction chamber speeded up antigen-antibody interactions within the gel. Protein microchips were used in immunoassays for detection of antigens or antibodies, as well as to carry out enzymatic reactions and to measure their kinetics in the absence or presence of an inhibitor. A protein microchip can be used several times in different immunoassays and enzymatic kinetic measurements.  相似文献   

13.
The MAGIChip (MicroArrays of Gel-Immobilized Compounds on a chip) consists of an array of hydrophilic gel pads fixed on a hydrophobic glass surface. These pads of several picoliters to several nanoliters in volume contain gel-immobilized nucleic acids, proteins, and other compounds, as well as live cells. They are used to conduct chemical and enzymatic reactions with the immobilized compounds or samples bound to them. In the latter case, nucleic acid fragments can be hybridized, modified, and fractionated within the gel pads. The main procedures required to analyze nucleic acid sequences (PCR, detachment of primers and PCR-amplified products from a substrate, hybridization, ligation, and others) can be also performed within the microchip pads. A flexible, multipurpose, and inexpensive system has been developed to register the processes on a microchip. The system provides unique possibilities for research and biomedical applications, allowing one to register both equilibrium states and the course of reaction in real time. The system is applied to analyze both kinetic and thermodynamic characteristics of molecular interaction in the duplexes formed between nucleic acids and the probes immobilized within the microchip gel pads. Owing to the effect of stacking interaction of nucleic acids, the use of short oligonucleotides extends the possibilities of microchips for analysis of nucleic acid sequences, allowing one to employ the MALDI-TOF mass spectrometry to analyze the hybridization data. The specialized MAGIChips has been successfully applied to reveal single-nucleotide polymorphism of many biologically significant genes, to identify bacteria and viruses, to detect toxins and characterize the genes of pathogenic bacteria responsible for drug resistance, and to study translocations in the human genome. On the basis of the MAGIChip, protein microchips have been created, containing immobilized antibodies, antigens, enzymes, and many other substances, as well as microchips with gel-immobilized live cells.  相似文献   

14.
The MAGIChip (MicroArrays of Gel-Immobilized Compounds on a chip) consists of an array of hydrophilic gel pads fixed on a hydrophobic glass surface. These pads of several picoliters to several nanoliters in volume contain the gel-immobilized nucleic acids, proteins, and other compounds, as well as live cells. They are used to conduct chemical and enzymatic reactions with the immobilized compounds or samples bound to them. In the latter case, nucleic acid fragments can be hybridized, modified, and fractionated within the gel pads. The main procedures required to analyze nucleic acid sequences (PCR, detachment of primers and PCR-amplified products from a substrate, hybridization, ligation, and others) can be also performed within the microchip pads. A flexible, multipurpose, and inexpensive system has been developed to register the processes proceeding on a microchip. The system provides unique possibilities for research and biomedical applications, allowing one to register both equilibrium states and the course of reaction in real time. The system is applied to analyze both kinetic and thermodynamic characteristics of molecular interaction in the duplexes formed between nucleic acids and the probes immobilized within the microchip gel pads. Owing to the effect of stacking interaction of nucleic acids, the use of short oligonucleotides extends the possibilities of microchips for analysis of nucleic acid sequences, allowing one to employ the MALDI-TOF mass spectrometry to analyze the hybridization data. The specialized MAGIChips has been successfully applied to reveal single nucleotide polymorphism of many biologically significant genes, to identify bacteria and viruses, to detect toxins and characterize the genes of pathogenic bacteria responsible for drug resistance, and to study translocations in the human genome. On the basis of the MAGIChip, the protein microchips have been created, containing the immobilized antibodies, antigens, enzymes, and many other substances, as well as the microchips with the gel-immobilized live cells.  相似文献   

15.
A method for DNA sequencing by hybridization with oligonucleotide matrix.   总被引:12,自引:0,他引:12  
A new technique of DNA sequencing by hybridization with oligonucleotide matrix (SHOM) which could also be applied for DNA mapping and fingerprinting, mutant diagnostics, etc., has been tested in model experiments. A dot matrix was prepared which contained 9 overlapping octanucleotides (8-mers) complementary to a common 17-mer. Each of the 8-mers was immobilized as individual dot in thin layer of polyacrylamide gel fixed on a glass plate. The matrix was hybridized with the 32P-labeled 17-mer and three other 17-mers differing from the first one by a single base change. The hybridization enabled us to distinguish perfect duplexes from those containing mismatches in 32 out of 35 cases. These results are discussed with respect to the applicability of the approach for sequencing. It was shown that hybridization of DNA with an immobilized 8-mer in the presence of a labeled 5-mer led to the formation of a stable duplex with the 5-mer only if the 5- and the 8-mers were in continuous stacking making a perfect nicked duplex 13 (5+8) base pairs long. These experiments and computer simulations suggest that continuous stacking hybridization may increase the efficiency of sequencing so that random or natural coding DNA fragments about 1000 bases long could be sequenced in more than 97% of cases. Miniaturized matrices or sequencing chips were designed, where oligonucleotides were immobilized within 100 x 100 micron dots disposed at 100 micron intervals. Hybridization of fluorescently labeled DNA fragments with microchips may simplify sequencing and ensure sensitivity of at least 10 attomoles per dot. The perspectives and limitations of SHOM are discussed.  相似文献   

16.
The kinetics of hybridization on the oligonucleotide microchip with gel pads is studied both theoretically and experimentally. The monitoring of kinetics was performed with the measurements of fluorescence intensity produced by the labeled target oligonucleotides. As is shown, the hybridization time depends on the stability of the formed duplexes, the concentrations of target and probe oligonucleotides, and the diffusion of target oligonucleotides in solution and gel pad. The initial stage of hybridization is determined by the flow of target oligonucleotides from solution, then, followed by the diffusive propagation with approximately constant concentration of oligonucleotides at the boundary of gel pad and, finally, by the exponential saturation. The theoretical predictions of hybridization kinetics reveal a good correspondence with the experimental results and may be used for the choice of the optimal hybridization conditions. The possible applications of kinetic hybridization curves to the discrimination problems and assessment of diffusion coefficients in gel pads are briefly discussed. Finally, we discuss the relationships between the binding kinetics and the general functioning of biomolecular microchips.  相似文献   

17.
The review describes the history of formation and development of the microchip technology and its role in the human genome project in Russia. The main accent was done on the three-dimensional gel-based microchips developed at the Center of Biological Microchips headed by A.D. Mirzabekov since 1988. The gel-based chips of the last generation, IMAGE chips (Immobilized Micro Array of Gel Elements), have a number of advantages over the previous models. The microchips are manufactured by photoinitiated copolymerization of gel components and immobilized molecules (DNA, proteins, and ligands). This ensures an even distribution of the immobilized probe throughout the microchip gel element with a high yield (about 50% for oligonucleotides). The use of methacrylamide as a main component of the polymerization mixture resulted in a substantial increase of gel porosity without affecting its mechanical properties and stability; this allowed one to work with the DNA fragments of up to 500 nt in length, as well as with quite large protein molecules. At present, the gel-based microchips are widely applied to solve different problems. The generic microchips containing a complete set of possible hexanucleotides are used to reveal the DNA motifs binding with different proteins and to study the DNA–protein interactions. The oligonucleotide microchips are a cheap and reliable diagnostic tool designed for mass application. Biochips have been developed for identification of the tuberculosis pathogen and its antibiotic-resistant forms; of orthopoxviruses, including the smallpox virus; of the anthrax pathogen; and chromosomal rearrangements in leukemia patients. The protein microchips can be adapted for further use in proteo-mics. Bacterial and yeast cells were also immobilized in the gel, maintaining their viability, which opens a wide potential for creating biosensors on the basis of microchips.  相似文献   

18.
The review describes the history of creation and development of the microchip technology and its role in the human genome project in Russia. The emphasis is placed on the three-dimensional gel-based microchips developed at the Center of Biological Microchips headed by A.D. Mirzabekov since 1988. The gel-based chips of the last generation, IMAGE chips (Immobilized Micro Array of Gel Elements), have a number of advantages over the previous versions. The microchips are manufactured by photo-initiated copolymerization of gel components and immobilized molecules (DNA, proteins, and ligands). This ensures an even distribution of the immobilized probe throughout the microchip gel element with a high yield (about 50% for oligonucleotides). The use of methacrylamide as a main component of the polymerization mixture resulted in a substantial increase of gel porosity without affecting its mechanical strength and stability, which allowed one to work with the DNA fragments of up to 500 nt in length, as well as with rather large protein molecules. At present, the gel-based microchips are widely applied to address different problems. The generic microchips containing a complete set of possible hexanucleotides are used to reveal the DNA motifs binding with different proteins and to study the DNA-protein interactions. The oligonucleotide microchips are a cheap and reliable tool of diagnostics designed for mass application. Biochips have been developed for identification of the tuberculosis pathogen and its antibiotic-resistant forms; for diagnostics of orthopoxviruses, including the smallpox virus; for diagnostics of the anthrax pathogen; and for identification of chromosomal rearrangements in leukemia patients. The protein microchips can be adapted for further use in proteomics. Bacterial and yeast cells were also immobilized in the gel, maintaining their viability, which open a wide potential for creation biosensors on the basis of microchips.  相似文献   

19.
Acyclic adenosine and thymidine analogs derived from L- and D-threonie were synthesised and incorporated into oligonucleotides by automated protocols using a standard phosphoramidite method. UV melting experiments with thus obtained oligonucleotides showed that incorporation of those acyclic nucleosides did not destabilize the hybrid duplexes and that the stabilities of them are influenced by the stereochemical structures of acyclic analogs. Modification of 3'-end of oligonucleotide with acyclic analogs protected the oligonucleotide against 3'-exonuclease.  相似文献   

20.
A number of boradiazaindacene dyes containing a carboxyl group separated from a fluorophore by two methylene units were synthesized. The compounds have narrow spectral bands with absorption maxima at 480–530 nm and fluorescence maxima at 500–550 nm. Succinimide esters of these compounds and the corresponding fluorescent-labeled oligonucleotides were also prepared. Boradiazaindacene dyes can be used as fluorescent labels for oligonucleotides for analysis of melting curves of duplexes on microchips either by themselves or in combination with Texas Red. They can also be applied for labeling primers for polymerase chain reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号