首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bifunctional enzyme CoA synthase can be nicked by trypsin without loss of its activities. The original dimer of subunit Mr approx. 61 000 yields fragments of Mr 41 000 and 22 000 as seen on gel electrophoresis in the presence of SDS, but the nicked enzyme retains the native Mr of 118 000. Further proteolysis occurs rapidly in the absence of protecting substrates. The N-terminal of native CoA synthase is proline, and proteolysis exposes glycine as a second N-terminal. This evidence strongly suggests that the subunits are identical.  相似文献   

2.
C Yokoyama  T Takai  T Tanabe 《FEBS letters》1988,231(2):347-351
The complete amino acid sequence of prostaglandin endoperoxide synthase from sheep vesicular gland has been deduced by cloning and sequence analysis of DNA complementary to its messenger RNA. The results were confirmed by digestion of the enzyme with carboxypeptidase Y and by automated Edman degradation of the intact enzyme polypeptide and peptide fragments obtained by limited proteolysis of the enzyme with Achromobacter proteinase I. Mature sheep prostaglandin endoperoxide synthase is shown to be composed of 576 amino acids with an Mr of 66,175. The precursor peptide is predicted to contain a 24-residue signal peptide. The serine residue susceptible to acetylation by aspirin is found to be located near the C-terminus of the enzyme polypeptide.  相似文献   

3.
The acetyl-CoA-dependent enzyme vinorine synthase was isolated from hybrid cell suspension cultures of Rauvolfia serpentina and Rhazya stricta. The sarpagan-type alkaloid gardneral was used as a substrate of the enzyme leading to the ajmalan-type 10-methoxyvinorine. An HPLC-based assay was developed to monitor vinorine synthase activity, which allowed establishing a five step purification procedure combining anion exchange, hydrophobic interaction, hydroxyapatite and gel filtration. Purification resulted in a yield of 0.2% and an approximately 991-fold enrichment of the acetyltransfer activity. SDS-PAGE analysis showed a Mr for the enzyme of approximately 50 kDa. The four peptide fragments generated by proteolysis of the pure enzyme with endoproteinase LysC and the N-terminal part of the enzyme were sequenced. The enzyme preparation (> 875-fold enrichment) delivering the N-terminal sequence was isolated from R. serpentina cell suspensions. Sequence alignment of the five peptides showed highest homologies in a range of 30-71% to acetyltransferases from other higher plants involved in natural plant product biosynthesis. Based on the partial sequences vinorine synthase is probably a novel member of the BAHD enzyme super family.  相似文献   

4.
Mild trypsin proteolysis of the H+-ATPase from yeast plasma membranes has been used to identify structurally distinct catalytic intermediates. In the absence of substrate, trypsin treatment resulted in rapid inactivation of enzyme activity. By contrast, trypsin treatment of enzyme in the presence of MgATP or MgATP plus vanadate resulted in enhanced rates of ATP hydrolysis accompanied by protection from extensive inactivation. High concentrations of Pi also induced strong protection from trypsin-induced inactivation, although enhancement of enzyme activity was not observed. Western blot analysis of peptide fragment profiles following tryptic digestion indicated that at least 15 prominent fragments of identical size, ranging from Mr = 12,800 to 48,000, were generated irrespective of digestion conditions. However, fragments from protected enzyme were resistant to further proteolysis, whereas fragments from unprotected enzyme were extensively degraded. These data have been interpreted in terms of a published catalytic reaction pathway (Amory, A., Goffeau, A., McIntosh, D.B., and Boyer, P.D. (1982) J. Biol. Chem. 257, 12509-12516) and are consistent with unprotected and protected enzyme conformations representing E1 and E2 X Pi catalytic intermediates, respectively. Trypsin proteolysis proved an effective tool for evaluating preferred enzyme conformational states and with this approach, it was found that ATPase inhibitors N-ethylmaleimide and fluorescein isothiocyanate locked the enzyme in an E1 conformation. The enhanced rate of ATP hydrolysis by trypsin-treated enzyme was fully coupled to proton transport, and all fragments generated by proteolysis were firmly bound to the membrane. These results, coupled with the fact that initial peptide fragmentation profiles were independent of enzyme conformation, suggest that the different conformational states, E1, and E2 X Pi, are not related to gross changes in overall enzyme structure but likely reflect localized changes in intramolecular bonding.  相似文献   

5.
The native enzyme must be denatured either by sodium dodecyl sulfate or by urea before limited proteolysis can occur. Under these conditions only one or two peptide bonds are hydrolyzed by each of the following proteases: Staphylococcal V8 protease, trypsin and elastase. The amino-terminal amino acid sequences were determined to identify the cleavage sites. The new sequences comprise approximately 20% of the entire polypeptide chain, and show good agreement with the nucleotide sequence of the trpC gene. Both V8 protease2 and elastase yield large carboxy-terminal fragments, about two thirds of the size of the parent enzyme, and corresponding small amino-terminal fragments. Trypsin cleaves a single peptide bond in the last one third of the polypeptide chain. After separation of the fragments, removal of dodecyl sulfate and renaturation, only the large fragments fold to stable structures. The small fragments precipitate. The large amino-terminal fragment catalyzes only the synthesis of indoleglycerol phosphate and precipitates when solutions are frozen and thawed. The large carboxy-terminal fragment catalyzes only the isomerization of N-(5′-phosphoribosyl)anthranilate and is stable towards freezing and thawing. These studies prove that the intact bifunctional enzyme consists of two autonomously folding, functional domains. They also support the notion that the bifunctional enzyme may have arisen by the fusion of separate ancestral genes, and that stabilization of the intrinsically labile indoleglycerol phosphate synthase domain by interdomain interactions is functionally advantageous.  相似文献   

6.
The mammalian aminoadipic semialdehyde synthase is a bifunctional enzyme that catalyzes the first two sequential steps in lysine degradation in the major saccharopine pathway (Markovitz, P. J., Chuang, D. T., and Cox, R. P. (1984) J. Biol. Chem. 259, 11643-11646). We show here that limited proteolysis of the highly purified synthase from bovine liver with elastase, chymotrypsin, and papain resulted in separation of lysine-ketoglutarate reductase and saccharopine dehydrogenase activities as judged by activity stainings of the polyacrylamide gel. Enzyme assays showed no loss of the two activities after digestions with these proteases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis disclosed the presence of two limit polypeptides in the elastolytic digests, i.e. fragment A (Mr = 62,700) and fragment B (Mr = 49,200). These fragments were apparently derived from the same polypeptide (Mr = 115,000) of the parent synthase. The reductase and dehydrogenase activities of the elastase-digested synthase were completely resolved by DEAE-Bio-Gel column chromatography. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that fragment A and fragment B were associated with reductase and dehydrogenase activities, respectively. The bovine synthase showed Mr = 420,000 in sedimentation equilibrium, confirming a tetrameric structure for the enzyme. The above results establish that the reductase and dehydrogenase domains of the aminoadipic semialdehyde synthase are separately folded and functionally independent of each other.  相似文献   

7.
Treatment of prostaglandin H (PGH) synthase (70 kDa) with trypsin generates fragments of 33 and 38 kDa. Each of the fragments was purified by reverse-phase high performance liquid chromatography (HPLC) using acetonitrile/water/trifluoroacetic acid gradients. Amino acid sequence analysis indicates that the 33-kDa protein contains the NH2 terminus of PGH synthase. Neither the 33- nor 38-kDa fragment isolated by HPLC exhibits any PGH synthase activity; however, cleavage of intact enzyme to 33- and 38-kDa fragments to the extent of 90% only reduces cyclooxygenase activity by 40%. This implies that the cleaved proteins or a complex formed between them retains the conformation necessary for enzyme activity. Extensive attempts to resolve active fragments from each other or from intact enzyme were unsuccessful; intact enzyme and digestion fragments cochromatograph under all conditions employed. Treatment of PGH synthase with [3H]acetylsalicylic acid followed by trypsin digestion introduces [3H]acetyl moieties into the intact protein and the 38-kDa fragment (0.8-0.9 acetyl group/subunit). Nearly complete conversion of PGH synthase to 33- and 38-kDa fragments by exposure to high concentrations of trypsin prior to [3H]acetylsalicylic acid treatment results in labeling of the 38-kDa fragment, but not the 33-kDa fragment. The present findings are consistent with the presence of a membrane-binding domain (33 kDa) and an active site domain (38 kDa) in the 70-kDa subunit of PGH synthase. They also suggest that, following cleavage, the 38-kDa fragment retains the structural features responsible for the cyclooxygenase activity and selective aspirin labeling of PGH synthase. PGH synthase undergoes self-catalyzed inactivation by oxidants generated during its catalytic turnover. When PGH synthase, inactivated by treatment with arachidonic acid or hydrogen peroxide, was treated with trypsin it was cleaved two to three times faster than unoxidized enzyme. Addition of heme to oxidized PGH synthase did not reconstitute cyclooxygenase activity or resistance to trypsin cleavage. Spectrophotometric studies demonstrated that oxidatively inactivated enzyme did not bind heme. This implies that oxidation of protein residues as well as the heme prosthetic group is an important determinant of proteolytic sensitivity. Oxidative modification may mark PGH synthase for proteolytic cleavage and turnover.  相似文献   

8.
The beta 2 subunit of tryptophan synthase is composed of two independently folding domains connected by a hinge segment of the polypeptide that is particularly susceptible to limited proteolysis by trypsin [H?gberg-Raibaud, A., & Goldberg, M. (1977) Biochemistry 16, 4014-4019]. Since tryptic cleavage in the hinge region inactivates the beta 2 subunit, the spatial relationship between the two domains is important for enzyme activity. However, it was not previously known whether inactivation results from cleavage of the chain or from the loss of internal fragment(s) subsequent to cleavage at two or more sites. We now report comparative studies of limited proteolysis by three proteinases: trypsin and endoproteinases Lys-C and Arg-C. Our key finding that endoproteinase Arg-C inactivates the beta 2 subunit by cleavage at a single site (Arg-275) demonstrates the important role of the hinge peptide for enzymatic activity. We have also identified the sites of cleavage and the time course of proteolysis by trypsin at Arg-275, Lys-283, and Lys-272 and by endoproteinase Lys-C at Lys-283 and Lys-272. Sodium dodecyl sulfate gel electrophoresis, Edman degradation, and carboxypeptidases B and Y have been used to identify the several fragments and peptides produced. Our finding that the beta 2 subunit and F1 fragments have a heterogeneous amino terminus (Met-1 or Thr-2) indicates that the amino-terminal methionine is incompletely removed during posttranslational modification. Our results show that Edman degradation can be effectively used with a protein of known sequence to analyze proteolytic digests that have at least four different amino-terminal sequences.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Cytidine 5'-triphosphate synthase catalyses the ATP-dependent formation of CTP from UTP using either ammonia or l-glutamine as the source of nitrogen. When glutamine is the substrate, GTP is required as an allosteric effector to promote catalysis. Limited trypsin-catalysed proteolysis, Edman degradation, and site-directed mutagenesis were used to identify peptide bonds C-terminal to three basic residues (Lys187, Arg429, and Lys432) of Escherichia coli CTP synthase that were highly susceptible to proteolysis. Lys187 is located at the CTP/UTP-binding site within the synthase domain, and cleavage at this site destroyed all synthase activity. Nucleotides protected the enzyme against proteolysis at Lys187 (CTP > ATP > UTP > GTP). The K187A mutant was resistant to proteolysis at this site, could not catalyse CTP formation, and exhibited low glutaminase activity that was enhanced slightly by GTP. K187A was able to form tetramers in the presence of UTP and ATP. Arg429 and Lys432 appear to reside in an exposed loop in the glutamine amide transfer (GAT) domain. Trypsin-catalyzed proteolysis occurred at Arg429 and Lys432 with a ratio of 2.6 : 1, and nucleotides did not protect these sites from cleavage. The R429A and R429A/K432A mutants exhibited reduced rates of trypsin-catalyzed proteolysis in the GAT domain and wild-type ability to catalyse NH3-dependent CTP formation. For these mutants, the values of kcat/Km and kcat for glutamine-dependent CTP formation were reduced approximately 20-fold and approximately 10-fold, respectively, relative to wild-type enzyme; however, the value of Km for glutamine was not significantly altered. Activation of the glutaminase activity of R429A by GTP was reduced 6-fold at saturating concentrations of GTP and the GTP binding affinity was reduced 10-fold. This suggests that Arg429 plays a role in both GTP-dependent activation and GTP binding.  相似文献   

10.
Escherichia coli and Serratia marcescens tryptophan synthase beta 2 protein (EC 4.2.1.20) was subjected to mild trypsin proteolysis. Two separate folding regions (domains) of the E. coli (EF1 and EF2) and the S. marcescens (SF1 and SF2) enzyme were shown to form interspecies hybrid reconstituted molecules [(EF1-SF2)2 and (SF1-EF2)2] and intraspecies reconstituted molecules [(EF1-EF2)2 and (SF1-SF2)2] with equal efficiency. The data suggest that structural regions, associated with beta monomer assembly, exist somewhere on the domain fragments and that these regions are conserved.  相似文献   

11.
Molecular properties of calcium-pumping ATPase from human erythrocytes   总被引:8,自引:0,他引:8  
The Ca2+-pumping ATPase from human erythrocyte membranes, purified by the method previously reported [Niggli, V., Penniston, J. T., & Carafoli, E. (1979) J. Biol. Chem. 254, 9955-9958], was freed of minor impurities by extensive washing while bound to the calmodulin-Sepharose column. The pure enzyme showed a single band of Mr 138000, which contained no stainable carbohydrate. The enzyme retained calmodulin-stimulable ATPase activity; with appropriate assay conditions, an activity of 21.2 mumol/(mg x min) was obtained. Amino acid analysis showed that the ATPase had a larger proportion of polar amino acids than do other integral membrane proteins. Despite this, the ATPase showed a tendency to form dimers and higher aggregates even in the presence of sodium dodecyl sulfate and urea. The enzyme required Mg2+ but showed little activity unless a second ion was added. With regard to this second ion, the enzyme responded to alkaline earth metal ions in the order Ca2+ greater than Sr2+ much greater than Ba2+. It was highly specific for ATP and was stimulated by Na+ or K+; in all of these properties it resembled the enzyme in unfractionated membranes. Limited proteolysis using trypsin yielded, at short times, many fragments of various molecular weights; continued proteolysis resulted in two trypsin-resistant fragments of Mr 81000 and 33500. Analysis of the time course of proteolysis indicated that the ATPase existed in two or more conformations that had differing susceptibilities to proteolysis. It is suggested that these correspond to active and inactive conformers of the enzyme.  相似文献   

12.
The binding of pyridoxal analogues to the structural domains of pyridoxal kinase was studied by fluorescence spectroscopy and chromatographic techniques. Two fragments of 24 and 16 kDa, arising from limited proteolysis of the native enzyme, were separated by ion-exchange chromatography and used for binding studies with pyridoxal oxime. Fluorometric titrations yielded dissociation constants of 6 and 12.4 MicroM for pyridoxal oxime bound to the native enzyme and 24-kDa fragment, respectively. 4-(4-Azido-2-nitrophenyl)-pyridoxamine, a new photolabeling reagent, binds irreversibly to the kinase with concomitant loss of catalytic activity. The modified kinase (2.1 mol label/mol dimer) yields two fragments upon limited proteolysis with chymotrypsin. The two fragments were separated by reverse-phase HPLC and SDS/polyacrylamide gel electrophoresis. Radiolabeled ligand was detected only in the 24-kDa fragment. It is postulated that the pyridoxal binding site is located in the 24-kDa structural domain.  相似文献   

13.
The multifunctional enzyme complex anthranilate synthase from Neurospora crassa has been purified to homogeneity by a new procedure which yields a stable preparation of the enzyme. Unlike earlier preparations of the enzyme, anthranilate synthase prepared by this technique is not degraded during incubation at 37 °C or during freeze-thaw treatment. Purified anthranilate synthase contains two subunits of Mr 84,000 (β-subunit) and 76,000 (α-subunit), which are shown, by partial proteolysis, to be unrelated in sequence. Immunoprecipitation studies demonstrate that freshly prepared crude extracts of Neurospora contain anthranilate synthase subunits identical in size with those of the purified enzyme. The β-subunit is shown to be the product of the trp1 gene, and the a-subunit, of the trp2 gene.  相似文献   

14.
A polyclonal sheep antibody to rat heart glycogen synthase has been used for immunoblot analysis and immunoprecipitation of both rat heart and liver synthase. The purified antibody completely inhibits glycogen synthase activity in rat heart preparations and specifically blots to a 93-kDa band in the 10,000 X g supernatants of both heart and liver homogenates. Immunoprecipitation of in vitro translation products from rat heart or liver poly(A+) RNA yields a unique band with a molecular mass of 93 kDa. Thus the subunit molecular mass of active glycogen synthase in rat heart is 93 kDa. In rat liver at least one form of glycogen synthase also appears to have a molecular mass of 93 kDa. Protocols used to purify rat liver synthase yield a subunit of 80-87 kDa, which retains activity, but which is no longer recognized by the antibody. This suggests that 1) a specific antigenic sequence has been proteolytically removed from the NH2 or COOH terminus of the protein, or 2) that limited proteolysis has led to a conformational change in the enzyme such that the antibody binding site is no longer recognized. Either or both of these possibilities represent a significant alteration in the enzyme due to proteolysis. In vitro studies using synthase preparations having molecular masses less than 93 kDa must be interpreted with caution due to possible structural changes which occur during purification which may alter the regulation or covalent modification of synthase.  相似文献   

15.
By complementation of an alpha-isopropylmalate synthase-negative mutant of Saccharomyces cerevisiae (leu4 leu5), a plasmid was isolated that carried a structural gene for alpha-isopropylmalate synthase. Restriction mapping and subcloning showed that sequences sufficient for complementation of the leu4 leu5 strain were located within a 2.2-kilobase SalI-PvuII segment. Southern transfer hybridization indicated that the cloned DNA was derived intact from the yeast genome. The cloned gene was identified as LEU4 by integrative transformation that caused gene disruption at the LEU4 locus. When this transformation was performed with a LEU4fbr LEU5 strain, the resulting transformants had lost the 5',5',5'-trifluoro-D,L-leucine resistance of the recipient strain but were still Leu+. When it was performed with a LEU4 leu5 recipient, the resulting transformants were Leu-. The alpha-isopropylmalate synthase of a transformant that carried the LEU4 gene on a multicopy plasmid (in a leu5 background) was characterized biochemically. The transformant contained about 20 times as much alpha-isopropylmalate synthase as wild type. The enzyme was sensitive to inhibition by leucine and coenzyme A, was inactivated by antibody generated against alpha-isopropylmalate synthase purified from wild type and was largely confined to the mitochondria. The subunit molecular weight was 65,000-67,000. Limited proteolysis generated two fragments with molecular weights of about 45,000 and 23,000. Northern transfer hybridization showed that the transformant produced large amounts of LEU4-specific RNA with a length of about 2.1 kilonucleotides. The properties of the plasmid-encoded enzyme resemble those of a previously characterized alpha-isopropylmalate synthase that is predominant in wild-type cells. The existence in yeast of a second alpha-isopropylmalate synthase activity that depends on the presence of an intact LEU5 gene is discussed.  相似文献   

16.
Characterisation of a reconstituted Mg-ATP-dependent protein phosphatase   总被引:14,自引:0,他引:14  
Homogenous preparations of the catalytic subunit of protein phosphatase-1 and inhibitor-2 can be combined to produce an inactive enzyme that consists of a 1:1 complex between these two proteins. This species is indistinguishable from the Mg-ATP-dependent protein phosphatase in that preincubation with glycogen synthase kinase-3 and Mg-ATP is required to generate activity. Activation results from the phosphorylation of inhibitor-2. The molar concentrations of protein phosphatase-1 and inhibitor-2 in rabbit skeletal muscle (0.25-0.5 microM) are similar. Incubation of the reconstituted Mg-ATP-dependent protein phosphatase with chymotrypsin is accompanied by limited proteolysis of inhibitor-2 and the loss of its phosphorylation site(s). This species can be activated by glycogen synthase kinase-3 and Mg-ATP provided that inhibitor-2 is added. This exogenous inhibitor-2 appears to displace the fragments of inhibitor-2 from the enzyme that were generated by chymotryptic digestion. These experiments may explain the report [Yang, S.D., Vandenheede, J.R. and Merlevede, W. (1981) J. Biol. Chem. 256, 10231-10234] that inhibitor-2 can function as an 'activator' as well as an inhibitor of the Mg-ATP-dependent protein phosphatase. Incubation of the catalytic subunit of protein phosphatase-1 with sodium fluoride or sodium pyrophosphate converted the enzyme to an inactive form that could be partially reactivated by manganese ions, but not by glycogen synthase kinase-3 and Mg-ATP. Conversely, the reconstituted Mg-ATP-dependent protein phosphatase could only be activated by glycogen synthase kinase-3 and Mg-ATP, and not by manganese ions. It is concluded that the conversion of protein phosphatase-1 to a manganese-ion dependent form is a quite separate phenomenon from the formation of the Mg-ATP-dependent protein phosphatase. Inhibitor-2 can inactivate protein phosphatase-1 by a second mechanism that is not reversed by preincubation with glycogen synthase kinase-3 and Mg-ATP. This occurs at higher concentrations of inhibitor-2 than those required to form the Mg-ATP-dependent protein phosphatase, and appears to result from the binding of inhibitor-2 to a distinct site on the enzyme.  相似文献   

17.
The regulation of dihydrodipicolinate synthase (EC 4.2.1.52) and aspartate kinase (EC 2.7.2.4) was studied in Bacillus subtilis 168. Starvation for lysine gave depression of one aspartate kinase isoenzyme but not of dihydrodipicolinate synthase. Strains resistant to growth inhibition by the lysine analogue thiosine exhibited constitutively derepressed synthesis of one aspartate kinase isoenzyme but had normal levels of dihydrodipicolinate synthase. The data provide strong evidence that lysine is not the signal for derepression of dihydrodipicolinate synthase. Nevertheless, dihydrodipicolinate synthase specific activity increased during sporulation, and it is suggested that this increase may result, in part, from resistance to proteolysis of that enzyme.  相似文献   

18.
Limited proteolysis of aspartokinase I-homoserine dehydrogenase I from Escherichia coli by type VI protease from Streptomyces griseus yields five proteolytic fragments, three of which are dimeric, the other two being monomeric. One of the monomeric fragments (27 kilodaltons) exhibits residual aspartokinase activity, while the second one (33 kilodaltons) possesses residual homoserine dehydrogenase activity. The smallest of the dimeric species (2 X 25 kilodaltons) is inactive; the two other dimers exhibit either only homoserine dehydrogenase activity (2 X 59 kilodaltons) or both activities (hybrid fragment, 89 + 59 kilodaltons). This characterization of the proteolytic species in terms of molecular weight, subunit structure, and activity leads to the proposal of a triglobular model for the native enzyme. In addition, the time course of the formation of the various fragments was followed by measuring enzymatic activity and performing gel electrophoretic analysis of the protein mixture at defined time intervals during proteolysis. On the basis of the results of these studies, a reaction scheme describing the succession of events during proteolysis is given.  相似文献   

19.
Carbamoyl-phosphate synthase I (pig liver) is modified at the cysteine residues 1327 and 1337 (numbered according to the rat sequence) in the presence of 5 mM-N-acetyl-L-glutamate with enhanced rate. ATP/Mg2+ (greater than or equal to 5 mM) protects against alkylation of these two cysteines and loss of activity. According to the results obtained by limited proteolysis of monobromobimane-modified carbamoyl-phosphate synthase I, the accessible cysteines 1327 and 1337 are located in the C-terminal 20 kDa domain D of the enzyme. N-Bromoacetyl-L-glutamate is an allosteric activator and inactivates carbamoyl-phosphate synthase in a slow reaction.  相似文献   

20.
Although highly stable toward unfolding, native ribonuclease A is known to be cleaved by unspecific proteases in the flexible loop region near Ala20. With the aim to create a protease-resistant ribonuclease A, Ala20 was substituted for Pro by site-directed mutagenesis. The resulting mutant enzyme was nearly identical to the wild-type enzyme in the near-UV and far-UV circular dichroism spectra, in its activity to 2',3'-cCMP and in its thermodynamic stability. However, the proteolytic resistance to proteinase K and subtilisin Carlsberg was extremely increased. Pseudo-first-order rate constants of proteolysis, determined by densitometric analysis of the bands of intact protein in SDS-PAGE, decreased by two orders of magnitude. In contrast, the rate constant of proteolysis with elastase was similar to that of the wild-type enzyme. These differences can be explained by the analysis of the fragments occurring in proteolysis with elastase. Ser21-Ser22 was identified as the main primary cleavage site in the degradation of the mutant enzyme by elastase. Obviously, this bond is not cleavable by proteinase K or subtilisin Carlsberg. The results demonstrate the high potential of a single mutation in protein stabilization to proteolytic degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号