首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 891 毫秒
1.
Abeta2M (beta(2)-microglobulin-related) amyloidosis is a frequent and serious complication in patients on long-term dialysis. Partial unfolding of beta2-m (beta(2)-microglobulin) may be essential to its assembly into Abeta2M amyloid fibrils in vivo. Although SDS around the critical micelle concentration induces partial unfolding of beta2-m to an alpha-helix-containing aggregation-prone amyloidogenic conformer and subsequent amyloid fibril formation in vitro, the biological molecules with similar activity under near-physiological conditions are still unknown. The effect of various NEFAs (non-esterified fatty acids), which are representative anionic amphipathic compounds in the circulation, on the growth of Abeta2M amyloid fibrils at a neutral pH was examined using fluorescence spectroscopy with thioflavin T, CD spectroscopy, and electron microscopy. Physiologically relevant concentrations of laurate, myristate, oleate, linoleate, and mixtures of palmitate, stearate, oleate and linoleate, induced the growth of fibrils at a neutral pH by partially unfolding the compact structure of beta2-m to an aggregation-prone amyloidogenic conformer. In the presence of human serum albumin, these NEFAs also induced the growth of fibrils when their concentrations exceeded the binding capacity of albumin, indicating that the unbound NEFAs rather than albumin-bound NEFAs induce the fibril growth reaction in vitro. These results suggest the involvement of NEFAs in the development of Abeta2M amyloidosis, and in the pathogenesis of Abeta2M amyloidosis.  相似文献   

2.
β2-Microglobulin-related (Aβ2M) amyloidosis is a serious complication in patients on long-term dialysis, and partial unfolding of β2-microglobulin (β2-m) is believed to be prerequisite to its assembly into Aβ2M amyloid fibrils. Many kinds of amyloid-associated molecules (e.g., apolipoprotein E (apoE), glycosaminoglycans (GAGs), proteoglycans (PGs)) may contribute to the development of Aβ2M amyloidosis. The formation of Aβ2M amyloid fibrils in vitro was first observed at low pH (2.0–3.0). Very recently, low concentrations of 2,2,2-trifluoroethanol (TFE) and the sub-micellar concentration of sodium dodecyl sulfate, a model for anionic phospholipids, have been reported to cause the extension of Aβ2M amyloid fibrils at a neutral pH, inducing partial unfolding of β2-m and stabilization of the fibrils. Moreover, apoE, GAGs and PGs were found to stabilize Aβ2M amyloid fibrils at a neutral pH, forming a stable complex with the fibrils. Some GAGs, especially heparin enhanced the fibril extension in the presence of TFE at a neutral pH. Some PGs, especially biglycan also induced the polymerization of acid-denatured β2-m. These findings are consistent with the hypothesis that in vivo, specific molecules that affect the conformation and stability of β2-m and amyloid fibrils will have significant effects on the deposition of Aβ2M amyloid fibrils.  相似文献   

3.
To obtain insight into the mechanism of amyloid fibril formation from beta(2)-microglobulin (beta2-m), we prepared a series of peptide fragments using a lysine-specific protease from Achromobacter lyticus and examined their ability to form amyloid fibrils at pH 2.5. Among the nine peptides prepared by the digestion, the peptide Ser(20)-Lys(41) (K3) spontaneously formed amyloid fibrils, confirmed by thioflavin T binding and electron microscopy. The fibrils composed of K3 peptide induced fibril formation of intact beta2-m with a lag phase, distinct from the extension reaction without a lag phase observed for intact beta2-m seeds. Fibril formation of K3 peptide with intact beta2-m seeds also exhibited a lag phase. On the other hand, the extension reaction of K3 peptide with the K3 seeds occurred without a lag phase. At neutral pH, the fibrils composed of either intact beta2-m or K3 peptide spontaneously depolymerized. Intriguingly, the depolymerization of K3 fibrils was faster than that of intact beta2-m fibrils. These results indicated that, although K3 peptide can form fibrils by itself more readily than intact beta2-m, the K3 fibrils are less stable than the intact beta2-m fibrils, suggesting a close relation between the free energy barrier of amyloid fibril formation and its stability.  相似文献   

4.
Beta2-microglobulin (beta2-m) is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. Recent studies have focused on the mechanism by which amyloid fibrils are formed under physiological conditions, which had been difficult to reproduce quantitatively. Yamamoto et al. (Yamamoto, S., Hasegawa, K., Yamaguchi, I., Tsutsumi, S., Kardos, J., Goto, Y., Gejyo, F. & Naiki, H. (2004) Biochemistry 43, 11075-11082) showed that a combination of seed fibrils prepared under acidic conditions and a low concentration of sodium dodecyl sulfate below its critical micelle concentration enabled extensive fibril formation at pH 7.0. Here, we found that repeated self-seeding at pH 7.0 with fibrils formed at the same pH causes a marked acceleration of growth, indicating the maturation of fibrils. The observed maturation can be simulated by assuming the existence of two types of fibrils with different growth rates. Importantly, some mutations of beta2-m or the addition of a low concentration of urea, both destabilizing the native conformation, were not enough to extend the fibrils at pH 7.0, and a low concentration of sodium dodecyl sulfate (i.e. 0.5 mM) was essential. Thus, even though the first stage fibrils in patients are unstable and require stabilizing factors to remain at neutral pH, they can adapt to a neutral pH with repeated self-seeding, implying a mechanism of development of amyloid deposition after a long latent period in patients.  相似文献   

5.
beta 2-Microglobulin-related (A beta 2M) amyloidosis is a common and serious complication in patients on long-term hemodialysis, and beta 2-microglobulin (beta 2-m) is a major structural component of A beta 2M amyloid fibrils. Fluorescence spectroscopic analysis with thioflavin T and electron microscopic study revealed that A beta 2M amyloid fibrils readily depolymerize into monomeric beta 2-m at a neutral to basic pH. Circular dichroism analysis revealed that soon after the initiation of the depolymerization reaction at pH 7.5, the characteristic spectrum of beta 2-m in A beta 2M amyloid fibrils changes to resemble that of monomeric beta 2-m at pH 7.5. Apolipoprotein E (apoE), a representative amyloid-associated protein, formed a stable complex with A beta 2M amyloid fibrils and inhibited the depolymerization of A beta 2M amyloid fibrils dose-dependently in a range of 0--10 microM. These results showed that apoE could enhance the deposition of amyloid fibrils in vivo, possibly by binding directly to the surface of the fibrils and stabilizing the conformation of beta 2-m in the fibrils.  相似文献   

6.
Beta2-microglobulin (beta2-m), a typical immunoglobulin domain made of seven beta-strands, is a major component of amyloid fibrils formed in dialysis-related amyloidosis. To understand the mechanism of amyloid fibril formation in the context of full-length protein, we prepared various mutants in which proline (Pro) was introduced to each of the seven beta-strands of beta2-m. The mutations affected the amyloidogenic potential of beta2-m to various degrees. In particular, the L23P, H51P, and V82P mutations significantly retarded fibril extension at pH 2.5. Among these, only L23P is included in the known "minimal" peptide sequence, which can form amyloid fibrils when isolated as a short peptide. This indicates that the residues in regions other than the minimal sequence, such as H51P and V82P, determine the amyloidogenic potential in the full-length protein. To further clarify the mutational effects, we measured their stability against guanidine hydrochloride of the native state at pH 8.0 and the amyloid fibrils at pH 2.5. The amyloidogenicity of mutants showed a significant correlation with the stability of the amyloid fibrils, and little correlation was observed with that of the native state. It has been proposed that the stability of the native state and the unfolding rate to the amyloidogenic precursor as well as the conformational preference of the denatured state determine the amyloidogenicity of the proteins. The present results reveal that, in addition, stability of the amyloid fibrils is a key factor determining the amyloidogenic potential of the proteins.  相似文献   

7.
The relationship between various amyloidoses and chaperones is gathering attention. In patients with dialysis-related amyloidosis, α(2)-macroglobulin (α2M), an extracellular chaperone, forms a complex with β(2)-microglobulin (β2-m), a major component of amyloid fibrils, but the molecular mechanisms and biological implications of the complex formation remain unclear. Here, we found that α2M substoichiometrically inhibited the β2-m fibril formation at a neutral pH in the presence of SDS, a model for anionic lipids. Binding analysis showed that the binding affinity between α2M and β2-m in the presence of SDS was higher than that in the absence of SDS. Importantly, SDS dissociated tetrameric α2M into dimers with increased surface hydrophobicity. Western blot analysis revealed that both tetrameric and dimeric α2M interacted with SDS-denatured β2-m. At a physiologically relevant acidic pH and in the presence of heparin, α2M was also dissociated into dimers, and both tetrameric and dimeric α2M interacted with β2-m, resulting in the inhibition of fibril growth reaction. These results suggest that under conditions where native β2-m is denatured, tetrameric α2M is also converted to dimeric form with exposed hydrophobic surfaces to favor the hydrophobic interaction with denatured β2-m, thus dimeric α2M as well as tetrameric α2M may play an important role in controlling β2-m amyloid fibril formation.  相似文献   

8.
Beta(2)-microglobulin (beta(2)m) forms amyloid fibrils that deposit in the musculo-skeletal system in patients undergoing long-term hemodialysis. How beta(2)m self-assembles in vivo is not understood, since the monomeric wild-type protein is incapable of forming fibrils in isolation in vitro at neutral pH, while elongation of fibril-seeds made from recombinant protein has only been achieved at low pH or at neutral pH in the presence of detergents or cosolvents. Here we describe a systematic study of the effect of 11 physiologically relevant factors on beta(2)m fibrillogenesis at pH 7.0 without denaturants. By comparing the results obtained for the wild-type protein with those of two variants (DeltaN6 and V37A), the role of protein stability in fibrillogenesis is explored. We show that DeltaN6 forms low yields of amyloid-like fibrils at pH 7.0 in the absence of seeds, suggesting that this species could initiate fibrillogenesis in vivo. By contrast, high yields of amyloid-like fibrils are observed for all proteins when assembly is seeded with fibril-seeds formed from recombinant protein at pH 2.5 stabilized by the addition of heparin, serum amyloid P component (SAP), apolipoprotein E (apoE), uremic serum, or synovial fluid. The results suggest that the conditions within the synovium facilitate fibrillogenesis of beta(2)m and show that different physiological factors may act synergistically to promote fibril formation. By comparing the behavior of wild-type beta(2)m with that of DeltaN6 and V37A, we show that the physiologically relevant factors enhance fibrillogenesis by stabilizing fibril-seeds, thereby allowing fibril extension by rare assembly competent species formed by local unfolding of native monomers.  相似文献   

9.
To obtain insight into the mechanism of fibril formation, we examined the effects of ultrasonication, a strong agitator, on beta2-microglobulin (beta2-m), a protein responsible for dialysis-related amyloidosis. Upon sonication of an acid-unfolded beta2-m solution at pH 2.5, thioflavin T fluorescence increased markedly after a lag time of 1-2 h with a simultaneous increase of light scattering. Atomic force microscopy images showed the formation of a large number of short fibrils 3 nm in diameter. When the sonication-induced fibrils were used as seeds in the next seeding experiment at pH 2.5, a rapid and intense formation of long fibrils 3 nm in diameter was observed demonstrating seed-dependent fibril growth. We then examined the effects of sonication on the native beta2-m at neutral pH, conditions under which amyloid deposits occur in patients. In the presence of 0.5 mm sodium dodecyl sulfate, a model compound of potential trigger and stabilizer of amyloid fibrils in patients, a marked increase of thioflavin T fluorescence was observed after 1 day of sonication at pH 7.0. The products of sonication caused the accelerated fibril formation at pH 7.0. Atomic force microscopy images showed that the fibrils formed at pH 7.0 have a diameter of more than 7 nm, thicker than those prepared at pH 2.5. These results indicate that ultrasonication is one form of agitation triggering the formation of amyloid fibrils of beta2-m, producing fibrils adapted to the respective pH.  相似文献   

10.
Beta(2)-microglobulin (beta(2)m) is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. Although full-length beta(2)m readily forms amyloid fibrils in vitro by seed-dependent extension with a maximum at pH 2.5, fibril formation under physiological conditions as detected in patients has been difficult to reproduce. A 22-residue K3 peptide of beta(2)m, Ser(20)-Lys(41), obtained by digestion with Acromobacter protease I, forms amyloid fibrils without seeding. To obtain further insight into the mechanism of fibril formation, we studied the pH dependence of fibril formation of the K3 peptide and its morphology using a ThT fluorescence assay and electron microscopy, respectively. K3 peptide formed amyloid fibrils over a wide range of pH values with an optimum around pH 7 and contrasted with the pH profile of the seed-dependent extension reaction of full-length beta(2)m. This suggests that once the rigid native-fold of beta(2)m is unfolded and additional factors triggering the nucleation process are provided, full-length beta(2)m discloses an intrinsic potential to form amyloid fibrils at neutral pH. The fibril formation was strongly promoted by dimerization of K3 through Cys(25). The morphology of the fibrils varied depending on the fibril formation conditions and the presence or absence of a disulfide bond. Various fibrils had the potential to seed fibril formation of full-length beta(2)m accompanied with a characteristic lag phase, suggesting that the internal structures are similar.  相似文献   

11.
beta(2)-Microglobulin (beta2M), the light chain of the type I major histocompatibility complex, is a major component of dialysis-related amyloid fibrils. beta2M in the native state has a typical immunoglobulin fold with a buried intrachain disulfide bond. The conformation and stability of recombinant beta2M in which the intrachain disulfide bond was reduced were studied by CD, tryptophan fluorescence, and one-dimensional NMR. The conformation of the reduced beta2M in the absence of denaturant at pH 8.5 was similar to that of the intact protein unless the thiol groups were modified. However, reduction of the disulfide bond decreased the stability as measured by denaturation in guanidine hydrochloride. Intact beta2M formed amyloid fibrils at pH 2.5 by extension reaction using sonicated amyloid fibrils as seeds. Under the same conditions, reduced beta2M did not form typical amyloid fibrils, although it inhibited fibril extension competitively, suggesting that the conformation defined by the disulfide bond is important for amyloid fibril formation of beta2M.  相似文献   

12.
Real-time monitoring of fibril growth is essential to clarify the mechanism of amyloid fibril formation. Thioflavin T (ThT) is a reagent known to become strongly fluorescent upon binding to amyloid fibrils. Here, we show that, by monitoring ThT fluorescence with total internal reflection fluorescence microscopy (TIRFM), amyloid fibrils of beta2-microgobulin (beta2-m) can be visualized without requiring covalent fluorescence labeling. One of the advantages of TIRFM would be that we selectively monitor fibrils lying along the slide glass, so that we can obtain the exact length of fibrils. This method was used to follow the kinetics of seed-dependent beta2-m fibril extension. The extension was unidirectional with various rates, suggesting the heterogeneity of the amyloid structures. Since ThT binding is common to all amyloid fibrils, the present method will have general applicability for the analysis of amyloid fibrils. We confirmed this with the octapeptide corresponding to the C terminus derived from human medin and the Alzheimer's amyloid beta-peptide.  相似文献   

13.
Armen RS  Daggett V 《Biochemistry》2005,44(49):16098-16107
The self-assembly of beta(2)-microglobulin into fibrils leads to dialysis-related amyloidosis. pH-mediated partial unfolding is required for the formation of the amyloidogenic intermediate that then self-assembles into amyloid fibrils. Two partially folded intermediates of beta(2)-microglobulin have been identified experimentally and linked to the formation of fibrils of distinct morphology, yet it remains difficult to characterize these partially unfolded states at high resolution using experimental approaches. Consequently, we have performed molecular dynamics simulations at neutral and low pH to determine the structures of these partially unfolded amyloidogenic intermediates. In the low-pH simulations, we observed the formation of alpha-sheet structure, which was first proposed by Pauling and Corey. Multiple simulations were performed, and two distinct intermediate state ensembles were identified that may account for the different fibril morphologies. The predominant early unfolding intermediate was nativelike in structure, in agreement with previous NMR studies. The late unfolding intermediate was significantly disordered, but it maintained an extended elongated structure, with hydrophobic clusters and residual alpha-extended chain strands in specific regions of the sequence that map to amyloidogenic peptides. We propose that the formation of alpha-sheet facilitates self-assembly into partially unfolded prefibrillar amyloidogenic intermediates.  相似文献   

14.
Calorimetric measurements were carried out using a differential scanning calorimeter in the temperature range from 10 to 120 degrees C for characterizing the thermal response of beta2-microglobulin amyloid fibrils. The thermograms of amyloid fibril solution showed a remarkably large decrease in heat capacity that was essentially released upon the thermal unfolding of the fibrils, in which the magnitude of negative heat capacity change was not explicable in terms of the current accessible surface area model of protein structural thermodynamics. The heat capacity-temperature curve of amyloid fibrils prior to the fibril unfolding exhibited an unusual dependence on the fibril concentration and the heating rate. Particularly, the heat needed to induce the thermal response was found to be linearly dependent on the heating rate, indicating that its thermal response is under a kinetic control and precluding the interpretation in terms of equilibrium thermodynamics. Furthermore, amyloid fibrils of amyloid beta peptides also exhibited a heating rate-dependent exothermic process before the fibril unfolding, indicating that the kinetically controlled thermal response may be a common phenomenon to amyloid fibrils. We suggest that the heating rate-dependent negative change in heat capacity is coupled to the association of amyloid fibrils with characteristic hydration pattern.  相似文献   

15.
The tissue specificity of fibrillar deposition in dialysis-related amyloidosis is most likely associated with the peculiar interaction of beta2-microglobulin (beta2-m) with collagen fibers. However, other co-factors such as glycosaminoglycans might facilitate amyloid formation. In this study we have investigated the role of heparin in the process of collagen-driven amyloidogenesis. In fact, heparin is a well known positive effector of fibrillogenesis, and the elucidation of its potential effect in this type of amyloidosis is particularly relevant because heparin is regularly given to patients subject to hemodialysis to prevent blood clotting. We have monitored by atomic force microscopy the formation of beta2-m amyloid fibrils in the presence of collagen fibers, and we have discovered that heparin strongly accelerates amyloid deposition. The mechanism of this effect is still largely unexplained. Using dynamic light scattering, we have found that heparin promotes beta2-m aggregation in solution at pH 6.4. Morphology and structure of fibrils obtained in the presence of collagen and heparin are highly similar to those of natural fibrils. The fibril surface topology, investigated by limited proteolysis, suggests that the general assembly of amyloid fibrils grown under these conditions and in vitro at low pH is similar. The exposure of these fibrils to trypsin generates a cleavage at the C-terminal of lysine 6 and creates the 7-99 truncated form of beta2-m (DeltaN6beta2-m) that is a ubiquitous constituent of the natural beta2-m fibrils. The formation of this beta2-m species, which has a strong propensity to aggregate, might play an important role in the acceleration of local amyloid deposition.  相似文献   

16.
beta(2)-Microglobulin (beta2-m) is a major component of dialysis-related amyloid fibrils. Although recombinant beta2-m forms needle-like fibrils by in vitro extension reaction at pH 2.5, reduced beta2-m, in which the intrachain disulfide bond is reduced, cannot form typical fibrils. Instead, thinner and flexible filaments are formed, as shown by atomic force microscopy images. To clarify the role of the disulfide bond in amyloid fibril formation, we characterized the conformations of the oxidized (intact) and reduced forms of beta2-m in the acid-denatured state at pH 2.5, as well as the native state at pH 6.5, by heteronuclear NMR. [(1)H]-(15)N NOE at the regions between the two cysteine residues (Cys25-Cys80) revealed a marked difference in the pico- and nanosecond time scale dynamics between that the acid-denatured oxidized and reduced states, with the former showing reduced mobility. Intriguingly, the secondary chemical shifts, DeltaCalpha, DeltaCO, and DeltaHalpha, and (3)J(HNHalpha) coupling constants indicated that both the oxidized and reduced beta2-m at pH 2.5 have marginal alpha-helical propensity at regions close to the C-terminal cysteine, although it is a beta-sheet protein in the native state. The results suggest that the reduced mobility of the denatured state is an important factor for the amylodogenic potential of beta2-m, and that the marginal helical propensity at the C-terminal regions might play a role in modifying this potential.  相似文献   

17.
Although the formation of an alpha-helix or partial unfolding of proteins has been suggested to be important for amyloid fibrils to form in alcohols, the exact mechanism involved remains elusive. To obtain further insight into the development of amyloid fibrils, we used a 22-residue peptide, K3, corresponding to Ser20 to Lys41 of intact beta2-microglobulin. Although K3 formed an alpha-helix at high concentrations of 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) in 10 mM HCl (pH approximately 2), the helical content was not high, indicating a low preference to do so. The partly alpha-helical conformation was converted with time into a highly ordered beta-sheet with a fibrillar morphology as revealed by atomic force microscopy. Importantly, the TFE and HFIP-induced fibrillation exhibited a concentration dependence with a maximum at approximately 20 and approximately 10% (v/v), respectively, slightly below the concentrations at which these alcohols form dynamic clusters. Focusing on the similarity of the effects of alcohol on proteins with those of sodium dodecyl sulfate (SDS), we examined the effects of SDS on K3. SDS also induced fibrils to form with a maximum at approximately 4 mM, slightly below the critical micelle concentration. These results indicate that, with an increase in the concentration of hydrophobic cosolvent (TFE, HFIP, or SDS), a delicate balance of decreasing hydrophobic interactions and increasing polar interactions (i.e. H-bonds) in and between peptides leads to the formation of ordered fibrils with a bell-shaped concentration dependence.  相似文献   

18.
Dialysis-related amyloidosis, which occurs in the patients receiving a long-term hemodialysis with high frequency, accompanies the deposition of amyloid fibrils composed of beta(2)-microglobulin (beta2-m). In vitro, beta2-m forms two kinds of fibrous structures at acidic pH. One is a rigid "mature fibril", and the other is a flexible thin filament often called an "immature fibril". In addition, a 22-residue peptide (K3 peptide) corresponding to Ser20 to Lys41 of intact beta2-m forms rigid amyloid-like fibrils similar to mature fibrils. We compared the core of these three fibrils at single-residue resolution using a recently developed hydrogen/deuterium (H/D) exchange method with the dissolution of fibrils by dimethylsulfoxide (DMSO). The exchange time-course of these fibrils showed large deviations from a single exponential curve showing that, because of the supramolecular structures, the same residue exists in different environments from molecule to molecule, even in a single fibril. The exchange profiles revealed that the core of the immature fibril is restricted to a narrow region compared to that of the mature fibril. In contrast, all residues were protected from exchange in the K3 fibril, indicating that a whole region of the peptide is engaged in the beta-sheet network. These results suggest the mechanism of amyloid fibril formation, in which the core beta-sheet formed by a minimal sequence propagates to form a rigid and extensive beta-sheet network.  相似文献   

19.
Recent progress in the field of amyloid research indicates that the classical view of amyloid fibrils, being irreversibly formed highly stable structures resistant to perturbating conditions and proteolytic digestion, is getting more complex. We studied the thermal stability and heat-induced depolymerization of amyloid fibrils of β(2)-microglobulin (β2m), a protein responsible for dialysis-related amyloidosis. We found that freshly polymerized β2m fibrils at 0.1-0.3 mg/mL concentration completely dissociated to monomers upon 10 min incubation at 99 °C. Fibril depolymerization was followed by thioflavin-T fluorescence and circular dichroism spectroscopy at various temperatures. Dissociation of β2m fibrils was found to be a reversible and dynamic process reaching equilibrium between fibrils and monomers within minutes. Repolymerization experiments revealed that the number of extendable fibril ends increased significantly upon incubation at elevated temperatures suggesting that the mechanism of fibril unfolding involves two distinct processes: (1) dissociation of monomers from the fibril ends and (2) the breakage of fibrils. The breakage of fibrils may be an important in vivo factor multiplying the number of fibril nuclei and thus affecting the onset and progress of disease. We investigated the effects of some additives and different factors on the stability of amyloid fibrils. Sample aging increased the thermal stability of β2m fibril solution. 0.5 mM SDS completely prevented β2m fibrils from dissociation up to the applied highest temperature of 99 °C. The generality of our findings was proved on fibrils of K3 peptide and α-synuclein. Our simple method may also be beneficial for screening and developing amyloid-active compounds for therapeutic purposes.  相似文献   

20.
Amyloid beta-protein (Abeta) fibril assembly is a defining characteristic of Alzheimer's disease. Fibril formation is a complex nucleation-dependent polymerization process characterized in vitro by an initial lag phase. To a significant degree, this phase is a consequence of the energy barrier that must be overcome in order for Abeta monomers to fold and oligomerize into fibril nuclei. Here we show that low concentrations of 2,2,2-trifluoroethanol (TFE) convert predominately unstructured Abeta monomers into partially ordered, quasistable conformers. Surprisingly, this results in a temporal decrease in the lag phase for fibril formation and a significant increase in the rate of fibril elongation. The TFE effect is concentration dependent and is maximal at approximately 20% (v/v). In the presence of low concentrations of TFE, fibril formation is observed in Abeta samples at nanomolar concentration, well below the critical concentration for Abeta fibril formation in the absence of TFE. As the amount of TFE is increased above 20%, helix content progressively rises to approximately 80%, a change paralleled first by a decrease in elongation rate and then by a complete cessation of fibril growth. These findings are consistent with the hypothesis that a partially folded helix-containing conformer is an intermediate in Abeta fibril assembly. The requirement that Abeta partially folds in order to assemble into fibrils contrasts with the mechanism of amyloidogenesis of natively folded proteins such as transthyretin and lysozyme, in which partial unfolding is a prerequisite. Our results suggest that in vivo, factors that affect helix formation and stability will have significant effects on the kinetics of Abeta fibril formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号