首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of alkane oxidation in Pseudomonas putida.   总被引:24,自引:16,他引:8       下载免费PDF全文
We have studied the appearance of whole-cell oxidizing activity for n-alkanes and their oxidation products in strains of Pseudomonas putida carrying the OCT plasmid. Our results indicate that the OCT plasmid codes for inducible alkane-hydroxylating and primary alcohol-dehydrogenating activities and that the chromosome codes for constitutive oxidizing activities for primary alcohols, aliphatic aldehydes, and fatty acids. Mutant isolation confirms the presence of an alcohol dehydrogenase locus on the OCT plasmid and indicated the presence of multiple alcohol and aldehyde dehydrogenase loci on the P. putida chromosome. Induction tests with various compounds indicate that inducer recognition has specificity for chain length and can be affected by the degree of oxidation of the carbon chain. Some inducers are neither growth nor respiration substrates. Growth tests with and without a gratuitous inducer indicate that undecane is not a growth substrate because it does not induce alkane hydroxylase activity. Using a growth test for determining induction of the plasmid alcohol dehydrogenase it is possible to show that heptane induces this activity in hydroxylase-negative mutants. This suggests that unoxidized alkane molecules are the physiological inducers of both plasmid activities.  相似文献   

2.
Two Pseudomonas strains (PpG777 and PaG158) were derived from the parent isolate Pseudomonas incognita (putida). Strain PpG777 resembles the parental culture in growth on linalool as a source of carbon and slight growth on p-cymene, whereas PaG158 grows well on p-cymene, but not on linalool or other terpenes tested, and has a P. aeruginosa phenotype. Curing studies indicate that linalool metabolism is controlled by an extrachromosomal element whose loss forms a stable strain PaG158 with the p-cymene growth and P. aeruginosa phenotype characters. The plasmid can be transferred by PpG777 to both P. putida and P. aeruginosa strains. Surprisingly, the latter assume the P. putida phenotype. We conclude that the genetic potential to oxidize p-cymene is inherent in PpG777 but expression is repressed. Similarly, this observation implies that support of linalool oxidation effectively conceals the P. aeruginosa character.  相似文献   

3.
Two types of Pseudomonas putida PpG2 mutants which were unable to degrade branched-chain amino acids were isolated after mutagenesis and selection for ability to grow on succinate, but not valine, as a sole source of carbon. These isolates were characterized by growth on the three branched-chain amino acids (valine, isoleucine, and leucine), on the corresponding branched-chain keto acids (2-ketoisovalerate, 2-keto-3-methylvalerate, and 2-ketoisocaproate), and on other selected intermediates as carbon sources, and by their enzymatic composition. One group of mutants lost 2-ketoisovalerate-inducible branched-chain keto acid dehydrogenase that was active on all three keto acids. There was also a concomitant loss of ability to grow on all three branched-chain amino acids as well as on all three corresponding keto acids, but there was retention of ability to use subsequent intermediates in the catabolism of branched-chain amino acids. Another type of mutant showed a marked reduction in branched-chain amino acid transaminase activity and grew poorly at the expense of all three amino acids, but it utilized subsequent intermediates as carbon sources. Both the transaminase and branched-chain keto acid dehydrogenase mutants retained the ability to degrade camphor. These findings are consistent with the view that branched-chain amino acid transaminase and branched-chain keto acid dehydrogenase are common enzymes in the catabolism of valine, isoleucine, and leucine.  相似文献   

4.
Pseudomonas aeruginosa PAO8 cannot use n-alkanes or their respective alcohols as a sole carbon source. However, it can grow on n-alkanes when plasmid pBS251 is transferred into its cells. The hybrid plasmid pBS251 is a plasmid RP4 containing genes which control the capability to grow on n-alkanes of the C6-C12 series. Studies of n-alkane oxidation by P. aeruginosa PAO8 carrying pBS251 have shown that this plasmid controls the inducible alkane and alcohol oxidizing activities; the subsequent steps of n-alkane oxidation controlled by chromosomal genes are constitutive.  相似文献   

5.
More than 170 phage-resistant mutants (PRM) of the first order of Pseudomonas putida strain PpG1 were obtained using newly isolated and previously described bacteriophages specific for this strain. According to the results of analysis of resistance of the mutants to each of 31 phages of PpG1 strain and 8 phages of the PpN strain, the PRM strains were distributed into 20 groups. In most cases, the reason for resistance is loss of absorption capacity of bacteria. However, no direct relation between the level of absorption and efficiency of phage plating was detected. It was shown that some of the PRM of P. putida PpG1 strains acquired the ability to maintain the growth of phages specific for the other P. putida strain, PpN. Frequencies of isolating mutants of various resistance types depend on the concrete phage used. In accordance with their absorption specificity, all phages were distributed into 23 groups, and a tridimensional formal scheme of receptor sites for these phages on the PpG1 strain was drawn. In the process of selection of the PpG1 clones resistant to non-lysogenizing mutant of temperate PP71 phage, a variant of this strain manifesting the phenomenon of "auto-plaquing" was found. These results support the mutational origin of this phenomenon in some cases.  相似文献   

6.
The OCT plasmid encodes enzymes for alkane hydroxylation and alkanol dehydrogenation. Structural components are encoded on the 7.5-kilobase pair alkBAC operon, whereas positive regulatory components are encoded by alkR. We have constructed plasmids containing fusions of cloned alkBAC and alkR DNA and used these fusion plasmids to study the functional expression of the alkBAC operon and the regulatory locus alkR in Pseudomonas putida and in Escherichia coli. Growth on alkanes requires a functional chromosomally encoded fatty acid degradation system in addition to the plasmid-borne alk system. While such a system is active in P. putida, it is active in E. coli only in fadR mutants in which fatty acid degradation enzymes are expressed constitutively. Using such mutants, we found that E. coli as well as P. putida grew on octane as the sole source of carbon and energy when they were supplied with the cloned complete alk system. The alkR locus was strictly necessary in E. coli as well as in P. putida for expression of the alkBAC operon. The alkBAC operon could, however, be further reduced to a 5-kilobase pair operon without affecting the Alk phenotype in either species to a significant extent. Although with this reduction the plasmid-encoded alkanol dehydrogenase activity was lost, chromosomally encoded alkanol dehydrogenases in P. putida and E. coli compensated for this loss. The induction kinetics of the alk system was studied in detail in P. putida and E. coli. We used specific antibodies raised against alkane hydroxylase to follow the appearance of this protein following induction with octane. We found the induction kinetics of alkane hydroxylase to be similar in both species. A steady-state level was reached after about 2 h of induction in which time the alkane hydroxylase accounted for about 1.5% of total newly synthesized protein. Thus, alkBAC expression is very efficient and strictly regulated to both P. putida and E. coli.  相似文献   

7.
8.
Selection experiments and protein engineering were used to identify an amino acid position in integral membrane alkane hydroxylases (AHs) that determines whether long-chain-length alkanes can be hydroxylated by these enzymes. First, substrate range mutants of the Pseudomonas putida GPo1 and Alcanivorax borkumensis AP1 medium-chain-length AHs were obtained by selection experiments with a specially constructed host. In all mutants able to oxidize alkanes longer than C13, W55 (in the case of P. putida AlkB) or W58 (in the case of A. borkumensis AlkB1) had changed to a much less bulky amino acid, usually serine or cysteine. The corresponding position in AHs from other bacteria that oxidize alkanes longer than C13 is occupied by a less bulky hydrophobic residue (A, V, L, or I). Site-directed mutagenesis of this position in the Mycobacterium tuberculosis H37Rv AH, which oxidizes C10 to C16 alkanes, to introduce more bulky amino acids changed the substrate range in the opposite direction; L69F and L69W mutants oxidized only C10 and C11 alkanes. Subsequent selection for growth on longer alkanes restored the leucine codon. A structure model of AHs based on these results is discussed.  相似文献   

9.
An alkane-degrading, sulfate-reducing bacterial strain, AK-01, isolated from a petroleum-contaminated sediment was studied to elucidate its mechanism of alkane metabolism. Total cellular fatty acids of AK-01 were predominantly C even when it was grown on C-even alkanes and were predominantly C odd when grown on C-odd alkanes, suggesting that the bacterium anaerobically oxidizes alkanes to fatty acids. Among these fatty acids, some 2-, 4-, and 6-methylated fatty acids were specifically found only when AK-01 was grown on alkanes, and their chain lengths always correlated with those of the alkanes. When [1,2-(13)C(2)]hexadecane or perdeuterated pentadecane was used as the growth substrate, (13)C-labeled 2-Me-16:0, 4-Me-18:0, and 6-Me-20:0 fatty acids or deuterated 2-Me-15:0, 4-Me-17:0, and 6-Me-19:0 fatty acids were recovered, respectively, confirming that these monomethylated fatty acids were alkane derived. Examination of the (13)C-labeled 2-, 4-, and 6-methylated fatty acids by mass spectrometry showed that each of them contained two (13)C atoms, located at the methyl group and the adjacent carbon, thus indicating that the methyl group was the original terminal carbon of the [1, 2-(13)C(2)]hexadecane. For perdeuterated pentadecane, the presence of three deuterium atoms, on the methyl group and its adjacent carbon, in each of the deuterated 2-, 4-, and 6-methylated fatty acids further supported the hypothesis that the methyl group was the terminal carbon of the alkane. Thus, exogenous carbon appears to be initially added to an alkane subterminally at the C-2 position such that the original terminal carbon of the alkane becomes a methyl group on the subsequently formed fatty acid. The carbon addition reaction, however, does not appear to be a direct carboxylation of inorganic bicarbonate. A pathway for anaerobic metabolism of alkanes by strain AK-01 is proposed.  相似文献   

10.
Role and control of isocitrate lyase in Candida lipolytica.   总被引:2,自引:2,他引:0       下载免费PDF全文
M Matsuoka  Y Ueda    S Aiba 《Journal of bacteriology》1980,144(2):692-697
Mutants of Candida lipolytica that were unable to grow on acetate but able to utilize succinate or glycerol as a sole carbon source were isolated. Amongst the mutants isolated, one strain (Icl-) was specifically deficient in isocitrate lyase activity, whereas another strain (Acos-) was deficient in acetyl coenzyme A synthetase activity. Since the Icl- mutant could not grow either on n-alkane or its derivatives, such as fatty acid and long-chain dicarboxylic acid, any anaplerotic route other than the glyoxylate pathway was inconceivable as far as growth on these carbon sources was concerned. Acetyl coenzyme A is most likely a metabolic inducer of isocitrate lyase and malate synthase, because the Acos- mutant was characterized by the least susceptibility to induction of these enzymes by acetate. The structural gene for isocitrate lyase was most probably impaired in the Icl- mutant, since revertants (Icl-) produced thermolabile isocitrate lyase. The production of isocitrate from n-alkane by the revertants was enhanced in comparison with the parental strain.  相似文献   

11.
12.
The effects of hydrocarbons and hydrocarbon derivatives as growth substrates on the polar lipid fractions of an Acinetobacter isolate were studied. Tetradecane, hexadecane, and octadecane resulted in the incorporation of substantial quantities of equivalent-chain-length fatty acids into cellular lipids. Cells cultured on nonane, the only odd-numbered alkane tested, contained both odd- and even-chain fatty acids. The n-alkane dotriacontane (32 carbons), 1-chlorohexadecane, 1-chlorododecane, 1-chlorodecane, and 1-phenyldodecane yielded significant amounts of odd-chain fatty acids. A subterminal oxidative pathway is believed to account for these results. Cells grown on long-chain alcohols exhibited fatty acid profiles nearly identical to those of cells grown on the corresponding alkanes.  相似文献   

13.
Pseudomonas oleovorans can grow on linear alkanes and alkenes in the hexane to dodecane range by virtue of enzymes encoded by the alk genes. By introducing selected alk genes into Pseudomonas strains and by supplying alkanes in the growth medium as a bulk liquid phase, specific alkane oxidation products can be accumulated in the alkane phase. We review the genetics and enzymology of the alk system and the potential of bioconversions in two-liquid-phase bioreactors, and suggest that such systems might eventually allow the biotechnological production of intermediate value compounds.  相似文献   

14.
The influence of the carbon source on cell wall properties was analyzed in an efficient alkane-degrading strain of Rhodococcus erythropolis (strain E1), with particular focus on the mycolic acid content. A clear correlation was observed between the carbon source and the mycolic acid profiles as estimated by high-performance liquid chromatography and mass spectrometry. Two types of mycolic acid patterns were observed after growth either on saturated linear alkanes or on short-chain alkanoates. One type of pattern was characterized by the lack of odd-numbered carbon chains and resulted from growth on linear alkanes with even numbers of carbon atoms. The second type of pattern was characterized by mycolic acids with both even- and odd-numbered carbon chains and resulted from growth on compounds with odd-numbered carbon chains, on branched alkanes, or on mixtures of different compounds. Cellular short-chain fatty acids were twice as abundant during growth on a branched alkane (pristane) as during growth on acetate, while equal amounts of mycolic acids were found under both conditions. More hydrocarbon-like compounds and less polysaccharide were exposed at the cell wall surface during growth on alkanes. Whatever the substrate, the cells had the same affinity for aqueous-nonaqueous solvent interfaces. By contrast, bacteria displayed completely opposite susceptibilities to hydrophilic and hydrophobic antibiotics and were found to be strongly stained by hydrophobic dyes after growth on pristane but not after growth on acetate. Taken together, these data show that the cell wall composition of R. erythropolis E1 is influenced by the nutritional regimen and that the most marked effect is a radical change in cell wall permeability.  相似文献   

15.
The transfer of hybrid plasmid RP4::PT (where PT is the genome of a transposable phage specific for Pseudomonas aeruginosa) into recipient cells of P. putida strain PpG1 occurs with the same frequency as into P. aeruginosa, the homologous host for PT. Approximately 1/3 of all PpG1 exconjugants carrying RP4 markers lost the capability to produce viable PT phage. In contrast, in a cross with homologous recipient P. aeruginosa all exconjugant clones contained nondefective prophages in the hybrid plasmids. Zygotic induction is an obligatory condition for detection of PpG1 exconjugants with defective phages. The defective prophages in RP4::PT hybrid plasmids have deletions of different size; the other carry mutations indistinguishable from point mutations in an essential phage gene. Some of deletions also cover plasmid genes. At least some of the defective prophages, including deleted ones, have arisen in the recipient cells of P. putida after transfer of the hybrid plasmid.  相似文献   

16.
The capacity of Pseudomonas putida PpG7 (ATCC 17,485) to grow on naphthalene, phenotype Nah(+), is lost spontaneously, and the frequency is increased by treatment with mitomycin C. The Nah(+) growth character can be transferred to cured or heterologous fluorescent pseudomonads lacking this capacity by conjugation, or between phage pf16-sensitive strains by transduction. After mutagenesis, strains can be selected with increased donor capacity in conjugation. Clones which use naphthalene grow on salicylate and carry catechol 2,3-oxygenase, the initial enzyme of the aromatic alpha-keto acid pathway, whereas cured strains grow neither on salicylate nor naphthalene and lack catechol 2,3-oxygenase, but retain catechol 1,2-oxygenase and the aromatic beta-keto adipate pathway enzymes.  相似文献   

17.
The parent Escherichia coli K-12 is constitutive for the enzymes of the glyoxylate bypass and adapts to growth on long-chain fatty acids (C(12) to C(18)). It does not utilize medium-chain (C(6) to C(11)) or short-chain (C(4), C(5)) n-monocarboxylic acids. Several mutants of this strain which grow using short- or medium-chain acids, or both, as the sole carbon source were selected and characterized. One mutant (D(1)) synthesizes the beta-oxidation enzymes constitutively and grows on medium-chain but not on short-chain acids. A second (N(3)) is partially derepressed for synthesis of these enzymes and grows both on medium-chain and on short-chain acids. Secondary mutants (N(3)V(-), N(3)B(-), N(3)OL(-)) were derived from N(3). N(3)V(-) grows on even-chain but not on odd-chain acids and exhibits a lesion in propionate oxidation. N(3)B(-) grows on odd-chain but not on even-chain acids and exhibits no crotonase activity as assayed by hydration of crotonyl-CoA. N(3)OL(-) grows on acetate and propionate but does not utilize fatty acids C(4) to C(18); it exhibits multiple deficiencies in the beta-oxidation pathway. Growth on acetate of N(3), but not of the parent strain, is inhibited by 4-pentenoate. Revertants of N(3) which are resistant to growth inhibition by 4-pentenoate (N(3)PR) exhibit loss of ability to grow on short-chain acids but retain the ability to grow on medium-chain and long-chain acids. The growth characteristics of these mutants suggest that in order to grow at the expense of butyrate and valerate, E. coli must be (i) derepressed for synthesis of the beta-oxidation enzymes and (ii) derepressed for synthesis of a short-chain fatty acid uptake system.  相似文献   

18.
Mutant strains of Pseudomonas putida (arvilla) mt-2 which have lost the ability to grow at the expense of m- or p-toluate (methylbenzoate) but retain the ability to grow with benzoate arise spontaneously during growth on benzoate; this genetic loss occurs to a lesser extent during growth on nonaromatic carbon sources in the presence of mitomycin C. The mutants have totally lost the activity of the enzymes of the divergent meta pathway with the possible exception of 2-oxopent-4-enoate hydratase and 4-hydroxy-2-oxovalerate aldolase; unlike the wild type they utilize benzoate by the ortho pathway. Evidence is presented that these mutants have lost a plasmid coding for the enzymes of the meta pathway, which may be transmitted back to them or into other P. putida strains. Preliminary results from these mutants and from a mutant defective in the regulation of the plasmid-carried pathway suggest that the wild type contains two benzoate oxidase systems, one on the plasmid which is nonspecific in both its catalysis and its induction and one on the chromosome which is more specific to benzoate as substrate and is specifically induced by benzoate.  相似文献   

19.
An alkane-degrading, sulfate-reducing bacterial strain, AK-01, isolated from a petroleum-contaminated sediment was studied to elucidate its mechanism of alkane metabolism. Total cellular fatty acids of AK-01 were predominantly C even when it was grown on C-even alkanes and were predominantly C odd when grown on C-odd alkanes, suggesting that the bacterium anaerobically oxidizes alkanes to fatty acids. Among these fatty acids, some 2-, 4-, and 6-methylated fatty acids were specifically found only when AK-01 was grown on alkanes, and their chain lengths always correlated with those of the alkanes. When [1,2-13C2]hexadecane or perdeuterated pentadecane was used as the growth substrate, 13C-labeled 2-Me-16:0, 4-Me-18:0, and 6-Me-20:0 fatty acids or deuterated 2-Me-15:0, 4-Me-17:0, and 6-Me-19:0 fatty acids were recovered, respectively, confirming that these monomethylated fatty acids were alkane derived. Examination of the 13C-labeled 2-, 4-, and 6-methylated fatty acids by mass spectrometry showed that each of them contained two 13C atoms, located at the methyl group and the adjacent carbon, thus indicating that the methyl group was the original terminal carbon of the [1,2-13C2]hexadecane. For perdeuterated pentadecane, the presence of three deuterium atoms, on the methyl group and its adjacent carbon, in each of the deuterated 2-, 4-, and 6-methylated fatty acids further supported the hypothesis that the methyl group was the terminal carbon of the alkane. Thus, exogenous carbon appears to be initially added to an alkane subterminally at the C-2 position such that the original terminal carbon of the alkane becomes a methyl group on the subsequently formed fatty acid. The carbon addition reaction, however, does not appear to be a direct carboxylation of inorganic bicarbonate. A pathway for anaerobic metabolism of alkanes by strain AK-01 is proposed.  相似文献   

20.
We have cloned homologs of the Pseudomonas putida GPo1 alkane hydroxylase from Pseudomonas aeruginosa PAO1, Pseudomonas fluorescens CHA0, Alcanivorax borkumensis AP1, Mycobacterium tuberculosis H37Rv, and Prauserella rugosa NRRL B-2295. Sequence comparisons show that the level of protein sequence identity between the homologs is as low as 35%, and that the Pseudomonas alkane hydroxylases are as distantly related to each other as to the remaining alkane hydroxylases. Based on the observation that rubredoxin, an electron transfer component of the GPo1 alkane hydroxylase system, can be replaced by rubredoxins from other alkane hydroxylase systems, we have developed three recombinant host strains for the functional analysis of the novel alkane hydroxylase genes. Two hosts, Escherichia coli GEc137 and P. putida GPo12, were equipped with pGEc47 Delta B, which encodes all proteins necessary for growth on medium-chain-length alkanes (C(6) to C(12)), except a functional alkane hydroxylase. The third host was an alkB knockout derivative of P. fluorescens CHA0, which is no longer able to grow on C(12) to C(16) alkanes. All alkane hydroxylase homologs, except the Acinetobacter sp. ADP1 AlkM, allowed at least one of the three hosts to grow on n-alkanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号